
TYPE Original Research

PUBLISHED 03 October 2024

DOI 10.3389/fdata.2024.1462745

OPEN ACCESS

EDITED BY

Olawande Daramola,

University of Pretoria, South Africa

REVIEWED BY

Eugenio Vocaturo,

National Research Council (CNR), Italy

John Atanbori,

University of Lincoln, United Kingdom

*CORRESPONDENCE

Jianrong Dai

dai_jianrong@cicams.ac.cn

Zhiqiang Liu

zhiqiang.liu@cicams.ac.cn

Hui Yan

hui.yan@cicams.ac.cn

†These authors have contributed equally to

this work and share first authorship

RECEIVED 10 July 2024

ACCEPTED 16 September 2024

PUBLISHED 03 October 2024

CITATION

Huang P, Shang J, Fan Y, Hu Z, Dai J, Liu Z and

Yan H (2024) Unsupervised machine learning

model for detecting anomalous volumetric

modulated arc therapy plans for lung cancer

patients. Front. Big Data 7:1462745.

doi: 10.3389/fdata.2024.1462745

COPYRIGHT

© 2024 Huang, Shang, Fan, Hu, Dai, Liu and

Yan. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Unsupervised machine learning
model for detecting anomalous
volumetric modulated arc
therapy plans for lung cancer
patients

Peng Huang†, Jiawen Shang†, Yuhan Fan†, Zhihui Hu,

Jianrong Dai*, Zhiqiang Liu* and Hui Yan*

Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for

Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,

Beijing, China

Purpose: Volumetric modulated arc therapy (VMAT) is a new treatment modality

in modern radiotherapy. To ensure the quality of the radiotherapy plan, a physics

plan review is routinely conducted by senior clinicians; however, this process

is less e�cient and less accurate. In this study, a multi-task AutoEncoder (AE) is

proposed to automate anomaly detection of VMATplans for lung cancer patients.

Methods: The feature maps are first extracted from a VMAT plan. Then, a multi-

task AE is trained based on the input of a feature map, and its output is the

two targets (beam aperture and prescribed dose). Based on the distribution of

reconstruction errors on the training set, a detection threshold value is obtained.

For a testing sample, its reconstruction error is calculated using the AE model

and compared with the threshold value to determine its classes (anomaly or

regular). The proposed multi-task AE model is compared to the other existing AE

models, including Vanilla AE, Contractive AE, and Variational AE. The area under

the receiver operating characteristic curve (AUC) and the other statistics are used

to evaluate the performance of these models.

Results: Among the four tested AE models, the proposed multi-task AE model

achieves the highest values in AUC (0.964), accuracy (0.821), precision (0.471),

and F1 score (0.632), and the lowest value in FPR (0.206).

Conclusion: The proposed multi-task AE model using two-dimensional (2D)

feature maps can e�ectively detect anomalies in radiotherapy plans for lung

cancer patients. Compared to the other existing AE models, the multi-task AE

is more accurate and e�cient. The proposed model provides a feasible way to

carry out automated anomaly detection of VMAT plans in radiotherapy.

KEYWORDS

volumetricmodulated arc therapy, AutoEncoder, anomaly detection, radiotherapy, lung
cancer

1 Introduction

Machine learning (ML) is an interdisciplinary field based on mathematics, statistics,

and data processing. It is a specific type of artificial intelligence that collects data from

applications for training (Ethem, 2020). ML is used in many real-world applications and is

essential in several fields such as image recognition (Chan et al., 2020), image segmentation
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(Chen et al., 2022), natural language processing (Wu et al.,

2020), and fraud detection (Chalapathy and Chawla, 2019). In the

healthcare sector, ML is mainly used in medical record analysis

and disease forecasts (Shehab et al., 2022). ML is successfully

adopted by a wide range of medical applications, such as COVID-

19 detection (Rani et al., 2022a; Minaee et al., 2020), multi-organ

segmentation (Asgari Taghanaki et al., 2021; Azad et al., 2024), and

bone suppression (Rani et al., 2022b; Yang et al., 2017). In this study,

we explore its potential in detecting anomalies from treatment plan

records in radiotherapy.

Radiotherapy has been an indispensable component for cancer

patient treatment. Currently, ∼60% of cancer patients receive

radiotherapy for definitive, adjuvant, or palliative treatment.

Furthermore, the percentage of cancer survivors treated by

radiotherapy alone or combined with other treatment modalities,

such as surgery and chemotherapy, is close to 40% (Du et al., 2022).

Modern medical linear accelerators can deliver higher radiation

doses to tumors while minimizing exposure to the surrounding

organs at risk. This allows for significant destruction of tumor

tissue tissue within the target volume, while significantly protecting

surrounding healthy tissue from irradiation (Gardner et al., 2019).

As the complex process heavily relies on ionized radiation, a highly

accurate treatment plan is required to ensure the prescribed dose is

safely delivered to the patient. In many reported accidents, even a

small error or mistake could result in serious issues for the patient

under radiotherapy (Du et al., 2022).

As planning and delivering doses to patients is a complex

process in modern radiotherapy, it is crucial to secure the highest

quality control over the whole treatment process. For this purpose,

routine daily physics plans and chart reviews are required and

conducted by senior medical physicists. While human-led plan

reviews are effective and reliable, they can also be inefficient

and error-prone (Ganesh, 2014). The contents of a physics plan

review are mostly based on clinical guidelines such as AAPM

TG 275 (Ford et al., 2020) and MPPG (Xia et al., 2021).

They are designed mainly for traditional radiotherapy techniques

such as three-dimensional conformal radiotherapy (3D-CRT) and

intensity-modulated radiotherapy (IMRT) and include items such

as simulation imaging, dose prescription, treatment planning, and

mechanical parameters (Yang et al., 2012). For new treatment

techniques, such as volumetric modulated arc therapy (VMAT),

existing guidelines (Palta et al., 2008) previously designed for IMRT

are not appropriate and should be updated.

Automated methods were introduced to assist the physics

plan review process in recent years (Gopan et al., 2016). Most

of them are rule-based applications and automate the checking

process in the physics plan review. In a clinical setting, these

methods are implemented in the oncology information system

and run as background processes. A semi-automatic system was

proposed to assist the automatic inspection of the treatment plan

by Dewhurst et al. (2015). An automatic tool to check and compare

radiotherapy plans was developed by Covington et al. (2016).

To perform intra-plan and inter-plan reviewing automatically,

software was developed by Furhang et al. (2009). To verify the

integrity of the treatment plan automatically, dynamic scripts were

implemented by Yang and Moore (2012). With the emergence of

automated tools, the accuracy and efficiency of physics plan reviews

significantly improved.

Anomaly detection is a prominent area of research in

computer vision and pattern recognition (Hojjati et al., 2024).

There are many methods to detect anomalies using various

machine learning methods, such as principal component analysis

(PCA) and K-means clustering. In recent years, deep-learning

neural networks have demonstrated unprecedented results over

traditional machine learning methods (Pang et al., 2021). As a

popular network, AutoEncoder (AE) has been widely used in

many industries, including shape representation (Chalapathy and

Chawla, 2019; Pimentel et al., 2014), credit fraud detection (Misra

et al., 2020; Fanai and Abbasimehr, 2023), and network attack

monitoring (Song et al., 2021; Lopes et al., 2022). Recently, AE

has been introduced in radiotherapy for modeling organ motion

(Mezheritsky et al., 2022), detecting raremachine events (Dou et al.,

2022), and conducting patient-specific QA (Wang et al., 2020).

There are several AE models developed for anomaly detection

in automatic plan review, but most of them focus on simple plan

configurations, such as 3D-CRT and IMRT (Huang et al., 2023a;

Azmandian et al., 2007; Kisling et al., 2020). In these applications,

a few feature parameters of a plan, including segment number,

collimator positions, gantry angle, and monitor unit (MU), were

extracted from the treatment plan and used to train the model

(Huang et al., 2023b). As shown in Table 1, a set of feature

parameters were extracted to represent an IMRT plan. Recently,

VMAT replaced 3D-CRT and IMRT as the main treatment

modalities in radiotherapy. Unlike traditional techniques, a VMAT

plan consists of hundreds of gantry angles in a treatment, as shown

in Figure 1. For catching the speed of gantry rotation and MLC leaf

movement, the leaf positions during continuous gantry rotation are

optimized for the best delivery efficiency (Otto, 2008). As there are

thousands of parameters used in a VMAT plan, identifying a set of

salient features is challenging.

In this study, we proposed to create an aperture-based feature

map to represent the shape of the treatment beam at each gantry

angle. Based on the feature map, a multi-task AutoEncoder (multi-

task AE) model is built to detect anomalous plans by assessing the

magnitude of the reconstruction error. This study presents a novel

way to perform automatic plan review in VMAT radiotherapy.

The rest of the paper is organized as follows: In Section 2,

the method to generate a feature map from the VMAT plan is

described, followed by an introduction to multi-task AE model

learning and evaluation. In Section 3, the effect of the distance

metrics on model performance is evaluated, and the proposed

AE model is compared to the other three existing AE models.

In Section 4, the merits and limitations of the proposed method

are discussed.

2 Materials and methods

2.1 Aperture-based feature map

The multi-leaf collimator (MLC) consists of a set of thin

tungsten leaves attached to a carriage on the treatment machine

head, as shown in Figure 2A. The multiple leaves can be used to

shape the aperture of the beam as shown in Figure 2B. Volumetric

modulated arc therapy (VMAT) usually involves 100 beams along

a 360◦arc, with intervals of 2–4◦, as shown in Figure 2C. For each
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TABLE 1 Summary of the original features obtained from IMRT plans.

Feature Description Number of features Type Unit

Segment Number of segments of the field 2 Integer Number

SSD Source to skin distance 4 Float cm

Collx1 Collimator position in x1 direction 4 Float cm

Collx2 Collimator position in x2 direction 4 Float cm

Colly1 Collimator position in y1 direction 4 Float cm

Colly2 Collimator position in y2 direction 4 Float cm

Cθ Angle of collimator 4 Integer Degree

Gθ Angle of gantry 4 Integer Degree

Meter set MU per field 4 Float MU

Dose Dose per fraction 1 Float cGy

SSD, source to surface distance; Coll, collimator; MU, monitor unit.

FIGURE 1

Treatment planning interface of A VMAT plan consisting of two arcs for liver cancer.

beam or control point (CP) along the arc, the leaf positions and

dose are determined by the treatment planning software. The leaf

positions at a CP in a VMAT plan are constrained by the limitation

of leaf speed.

For a beam aperture at k-th CP, its shape can be defined by the

leaf index i and position index j on a coordinate grid as shown

in Figure 3. The real leaf width varies from thinner one (such as

0.25mm) in the middle to thicker one (such as 0.50mm) at the

edge for different machines. For digitization, the leaf width is re-

sampled to a finer resolution. For example, if the field width is

300mm and the resolution is set to 0.1mm, then the maximum

leaf index NL is 300/0.1 = 3,000. The leaf position is determined

using its position index multiplied by the step size. As the step size

is varied for different machines, for simplification, the step size is

re-sampled to the finer resolution. For example, if the field height

is 400mm and the resolution is set to 0.1mm, then the maximum

position index NP is 400/0.1= 4,000.

At each CP, the set of all leaves and their positions form a region.

The corresponding aperture at k-th CP, Ak, is defined as all pairs of

(i, j) falling within this region.

Ak

(

i, j
)

=

{

1, (i, j) ∈ Regionk
0, else

(1)

For the aperture Ak, its intensity map of Ik is computed as

Ik
(

i, j
)

= DkAk

(

i, j
)

, (2)

where Dk represents the dose (cGy) or monitor unit at the k-th

CP. For simplification, the intensity map is re-normalized to a
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uniform image resolution with a pixel size of 0.1 by 0.1mm. The

intensity map is float-point two-dimensional matrix. Compared to

the features shown in Table 1, the intensity map is a combination of

the geometrical and dosimetric features. As a result, the intensity

maps corresponding to 180 CPs of a VMAT plan are shown in

Figure 4.

2.2 Multi-task AE model

A multi-task AE is developed and its network architecture is

shown in Figure 5. The encoder takes Ik (k=1, . . . , K) as its input

and outputs a one-dimensional vector h in a bottleneck. It consists

of four down conv blocks and one linear block. Each down conv

block consists of one 3 × 3 convolution by strides of two and

one 3 × 3 convolution by strides of one, each followed by a batch

normalization layer and a rectified linear unit (ReLu). Each linear

block consists of a linear layer followed by a ReLu.

There are two decoders specified for two reconstruction tasks:

2D aperture map Ak and dose Dk. For the first decoder, as shown

in the upper side of Figure 5, the decoder takes the 1D vector h as

input and reconstructs the 2D aperture map Ak. It includes a linear

block with the same structure as one of the encoders and four up-

conv blocks. Each up-conv block consists of one up-convolution by

strides of two and one convolution by strides of one, each followed

by a batch normalization layer and ReLu. For the second decoder, as

shown in the lower side of Figure 5, the decoder takes the 1D vector

h as input and reconstructs the single dose Dk. It contains three

linear blocks with the same structure as the one in the encoder.

For reconstructing the aperture map in the first decoder, the

binary cross-entropy loss LA between the original apertures Ak

(k=1, . . . , K) and the reconstructed apertures Ak’ (k=1, . . . , K) is

minimized as defined below,

LA
(

A, A′
)

=
1

K ×M × N

K
∑

k

M
∑

i

N
∑

j

[Akij logA
′
kij

+ (1− Akij) log (1− A′
kij)], (3)

where Akij and A′
kij are the pixels of the original Ak and A′

k at k-th

control point, andM andN are the dimensions of the aperturemap.

For reconstructing the dose in the second decoder, the mean-

square error LD is used to penalize the distance between the original

dose D and the reconstructed dose D′ as defined below,

LD(D, D
′) =

1

K

K
∑

k

[

Dk − D′
k

]2
, (4)

where Dk and D′
k are the original dose and the reconstructed dose

at the k-th control point. These two loss functions are weighted by

parameter λ and form the overall loss function LR of multi-task AE

as defined below:

LR = λLA(A, A
′)+ LD(D, D

′), (5)

where λ is the weighting factor. During the model learning, the

reconstruction error LR is minimized using the Adam optimizer

with a learning rate of 1e-3.

2.3 Model learning

The learning and testing process of the multi-task AE model is

illustrated in Figure 6. The workflow of model learning and model

testing are labeled with solid and dashed lines. The model learning

is first performed on the training set. Then, the trained model is

validated on the testing set.

For evaluating the model performance, three distance

metrics were employed to measure the difference between the

reconstructed and original outputs. The first metric measures

the distance between the original I and the reconstructed I′ as

defined below:

||I, I′|| =
1

K

K
∑

k=1

[

Ik − I′k
]2
, (6)

where K is the total number of CPs. In addition to ||I, I′||, the other

two metrics are the distance ||A, A′||, which measures the binary

cross-entropy between the original A and the reconstructed A′ as

LA defined in Equation 3, and the distance ||D, D′||, whichmeasures

the distance between the original D and the reconstructed D′ as LD
defined in Equation 4.

The model is first learned using all feature maps of the training

set. Then, the distribution of reconstruction error LR for all training

samples is obtained. To ensure all anomalous plans are detected

and the least regular plans are falsely detected, the maximum value

causing 0 false negative rate (FNR) is chosen as the detection

threshold value α. For a testing sample, the reconstruction error

LR is obtained with the trained AE model and compared with the

threshold α. If LR is more than the threshold α, this plan is classified

as an anomalous plan; otherwise, it is a regular plan.

In clinical scenarios, the learned model could be integrated into

the oncology information system (OIS). For each plan review task,

the feature vector of a VMAT plan will be extracted and fed to the

model for a decision. If an anomaly is detected, the plan will be

sent back to the planner for revision. After revision, it will be re-

examined by the AI model until it passes the examination. Since

a semi-automated anomaly detection module already exists in the

current system, implementing this AI model would be feasible by

following the footprint of the existing semi-automated module,

with a similar function and interface.

2.4 Evaluation

All treatment plans in this study are VMAT plans. Each plan

consists of two arcs, and each arc has 90 CPs (a total of 180 CPs for

two arcs). These plans are executed on Synergy (Elekta Oncology

Systems, Crawley, UK), equipped with 40 pairs of MLC leaves.

The MLC leaves are installed on two banks, and the leaf width

is 1.0 cm. The maximum gap width formed by these MLC leaves

is 400mm. A total of 677 VMAT plans for lung cancer patients
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FIGURE 2

Example of machine head with MLC, beam aperture, and intensity maps of beams in a VMAT plan. (A) The MLC attached to the head of a

radiotherapy machine. (B) The aperture created by MLC leaves. (C) The intensity maps of beams in a VMAT plan.

FIGURE 3

Apertures formed by MLC leaves at three consecutive CPs.

FIGURE 4

Intensity maps corresponding to 180 CPs of a VMAT plan. CPs 1–90 and CPs 91–180 belong to Arc 1 and Arc 2, respectively.
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FIGURE 5

Network architecture of the multi-task AE model.

FIGURE 6

Flowchart of model learning and testing.

treated in our institute between 2010 and 2020 years were used in

this study. These plans are typical VMAT configurations designed

with two full arcs and a beam energy of 6MV. Among them, 652

plans are regular and 25 plans are anomalous. For model learning,

80% of the regular plans are assigned to the training set, while

the remaining 20% of the regular plans, along with all anomalous

plans are assigned to the testing set. Five-folder cross-validation

is performed for model evaluation. The models’ performance is

mainly evaluated based on the area under the receiver operating

characteristic curve (AUC). In addition, the other statistics such

as false positive rate (FPR), accuracy, precision, and F1-score are

also evaluated.

ROC shows the ability of the model to distinguish between

anomalous and regular plans, and AUC is the area under the

ROC. The classification model with a larger AUC means better

anomaly detection capability. FPR [false positive/(false positive

+ true negative)] judges a case as abnormal when it is normal.

The accuracy [(true positive + true negative)/(true positive +

TABLE 2 Performance of the multi-task AE model with respect to the

three distance metrics.

Distances AUC Accuracy Precision FPR F1
score

||I,I′|| 0.964 0.821 0.471 0.206 0.632

||A,A′|| 0.819 0.314 0.185 0.809 0.310

||D,D′|| 0.855 0.365 0.197 0.748 0.327

false positive + true negative + false negative)] and precision

[true positive/(true positive + false positive)] of the model

were calculated to evaluate the performance comprehensively.

In addition, considering the highly unbalanced distribution of

abnormal and normal classes in the dataset, the F1 score [2
∗ precision ∗ recall/(precision + recall), where recall = true

positive/(true positive + false negative)] of the model was also

calculated. Since anomalous plans may cause irreversible damage
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FIGURE 7

Confusion matrices of the multi-task AE model with respect to the three distance metrics.

FIGURE 8

ROCs of the model with respect to the three distance metrics.

to patients, all the metrics except AUC are evaluated while

maintaining a false negative rate (FNR) to 0 (to ensure no

anomalous plans are missed).

To evaluate the sensitivity of the distance metrics on the

detection accuracy of anomaly, three types of distances are tested.

They are the three distance metrics as defined in Equations 3,

4, 6. To compare the proposed model with the other existing

AE models, three AE models, including Vanilla AE, Contractive

AE, and Variational AE, are evaluated. Vanilla AE is a simple

AE with a single encoder and decoder, and a mean-square error-

based loss function is used to penalize the distance between

the original and reconstructed inputs (Kingma and Welling,

2014). Contractive AE (CAE) is another kind of improved AE

to learn robust features by introducing the Frobenius norm of

the Jacobian matrix of the learned feature with respect to the

original input (Michelucci, 2022). Rather than building an encoder

that outputs a single value to describe each latent state attribute,

Variational AE (VAE) provides a probabilistic manner to describe

an observation in latent space (Aamir et al., 2021). To fairly

evaluate the performance of all models, only ||I,I′|| is used as the

distance metric.

3 Results

3.1 Reconstruction error

The anomaly detection accuracy of the model with respect

to the three distance metrics is shown in Table 2. The multi-task

AE with the metric ||I,I′|| achieved the best performance with an

AUC value of 0.964. While maintaining 0 FNR, the accuracy and

precision of the model with the metric ||I,I′|| are 0.821 and 0.471,

respectively. The accuracy and precision are 0.314 and 0.185 for

metric the ||A,A′||, while they are 0.365 and 0.197 for metric the

||D,D′||. The detection performance of multi-task AE with metric

the ||I,I′|| is the best among the three forms of distances.

The confusion matrices of the proposed model with respect to

the three distances are shown in Figure 7. It is worth noting that

all the anomalous plans were correctly detected since the confusion

matrix is achieved with 0 FNR. Themodel with the distance metrics

||I,I′|| misclassified 27 regular plans as anomalous plans. While the

model with the distance metrics ||A,A′|| and ||D,D′|| misclassified

106 and 98 regular plans as anomalous plans. The multi-task AE

with the distance metric ||I,I′|| had the best detection accuracy.

The ROC curves of the multi-task AEmodel with respect to the

three distance metrics are compared in Figure 8. The AUC of the

multi-task AE with the metric ||I,I′|| is the highest. The AUC of the

multi-task AEwith themetric ||A,A′|| is lower than that withmetric

||I,I′|| but higher than that with the metric ||D,D′||. The multi-task

AE models, with three types of distances, all achieve higher AUC

values (more than 0.8), which indicates it is advantageous to apply

2D intensity maps for anomaly detection in VMAT plan review.

The box plot of the distance distributions of the multi-task

AE model with respect to the three distance metrics is shown

in Figure 9. The top and bottom horizontal lines indicate the

maximum and minimum values of the distribution, respectively.

The points beyond these two lines are outliers. The top and bottom

edges of the box denote the 75th and 25th percentiles of the

distribution, respectively. The middle line in the box represents the

median value of the distribution.

The median value of the distribution of the anomalous plans is

higher than the maximum value of the distribution of the regular

plans, and the minimum value of the distribution of the anomalous

plans is close to the 75th percentile of the distribution of the regular

plans, as shown in Figure 9A. The median value of the distribution
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FIGURE 9

Distance distributions of the multi-task AE model with three distance metrics. (A) ||I,I′||, (B) ||A,A′||, and (C) ||D,D′||.

TABLE 3 Performance of four AE models with the distance metric ||I,I′||.

AE
models

AUC Accuracy Precision FPR F1
score

Multi-task

AE

0.964 0.821 0.471 0.206 0.632

Vanilla AE 0.943 0.769 0.407 0.267 0.571

Contractive

AE

0.936 0.782 0.421 0.252 0.585

Variational

AE

0.948 0.795 0.436 0.237 0.600

of the anomalous plans is lower than the maximum value of the

distribution of the regular plans, and the minimum value of the

distribution of the anomalous plans is lower than the median of the

distribution of the regular plans as shown in Figure 9B. The median

value of the distribution of the anomalous plans is lower than the

maximum value of the distribution of the regular plans, and the

minimum value of the distribution of the anomalous plans is lower

than the 25th percentile of the distribution of the regular plans as

shown in Figure 9C. The gap between the clusters of the anomalous

and regular plans on the distance distribution of the multi-task AE

model with ||I-I′|| is the largest.

3.2 Model comparison

The performances of the multi-task AE and three existing AE

models are compared in Table 3. The confusion matrices of the

four AE models with the three distance metrics ||I,I′|| are shown in

Figure 10. The multi-task AE achieved the best performance, while

Variational AE and Contractive AE are comparable and slightly

lower. Vanilla AE has the lowest AUC score but is higher than 0.93.

While maintaining 0 FNR, the accuracy and precision of multi-task

AE are both the highest among the four models. The accuracy and

precision of Variational AE and Contractive AE are comparable and

slightly lower. The accuracy and precision of Vanilla AE are the

lowest among the four AE models.

The ROC curves of the four AEmodels with the distance metric

||I,I′|| are compared in Figure 11. The AUC of the multi-task AE

is the highest. The AUC of Variational AE and Contractive AE is

comparable and lower than that of multi-task AE. The AUC of

Vanilla AE is the lowest. All AE models have AUC scores of more

than 0.94, which indicates it is advantageous to apply 2D intensity

maps for anomaly detection in VMAT plan review.

The box plot of distance distributions of three AE models with

the distance metric ||I,I′|| is shown in Figure 12. The median value

of the distribution of the anomalous plans is close to the maximum

value of the distribution of the regular plans, and the minimum

value of the distribution of the anomalous plans is lower than the

75th percentile of the distribution of the regular plans, as shown in

Figure 12A. The median value of the distribution of the anomalous

plans is lower than the maximum value of the distribution of the

regular plans, and the minimum value of the distribution of the

anomalous plans is close to the median of the distribution of the

regular plans, as shown in Figure 12B. The median value of the

distribution of the anomalous plans is higher than the maximum

value of the distribution of the regular plans, and the minimum

value of the distribution of the anomalous plans is close to the

75th percentile of the distribution of the regular plans, as shown

in Figure 12C. The distance distribution of Variation AE is closer to

that of the multi-task AE model, as shown in Figure 9A. This result

is also consistent with those shown in Table 3 and Figure 11.

4 Discussion

This study evaluates the performance of multi-task AE and the

other three classic AE models in detecting anomalies from routine

radiotherapy plans using the MLC aperture-based feature map. In

contrast to the discrete geometry features such as distance and

angle, the 2D aperture-based feature map provides not only the

beam shape but also the dose information. In addition, as a set of

feature maps is created for all CPs and subsequently used for model

learning, the leaf positions at adjacent CPs can be checked to ensure

their consistency for plan delivery. Our study is different from the

heatmap proposed by Kump et al. (2022), in which the 2D intensity

map is generated based on the summation of a set of intensity maps

for all CPs in an IMRT plan. The heatmap may be sensitive in
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FIGURE 10

Confusion matrices of the four models with the distance metric ||I,I′||.

FIGURE 11

ROCs of four AE models with the distance metric ||I,I′||.

distinguishing IMRT plans with different treatment sites but may

be insufficient in characterizing the leaf position relationship at the

adjacent CPs in the VMAT plan. As the VMAT plan consists of

hundreds of CPs, which is more complex than the IMRT plan, a set

of 2D featuremaps is more useful to characterize the leaf movement

than the heatmap.

Compared to the classic machine learning method such as

PCA, which represents high-dimensional plan features with low-

dimensional linear features, the proposed AE model is more

effective. The AE model uses a non-linear activation function in

the encoder/decoder, allowing the neural network to arbitrarily

approximate any non-linear function. This allows the network

to learn more complex mapping relationships between high-

dimensional space and low-dimensional space to better fit the

distribution of normal data and thus to find anomalous data with

a very small percentage through the network. In addition, the

proposed model uses two outputs to represent two key features of

a beam, which makes the model more sensitive to the anomalous

plan. The AUC scores also show that the proposed AE model

outperforms the other existing AEmodels in addition to having the

highest accuracy and precision.

The advantage of the multi-task AE model is its dual outputs

with regard to two critical parameters of a VMAT plan: aperture

and dose. We can easily calculate the distance between the original

and the reconstructed values for aperture and dose, respectively.

This is convenient as we can detect anomalies by focusing on the

specific features: leaf position or dose. For achieving this goal, there

are certain tradeoffs in the model learning and detection processes.

First, the loss function used in model learning is Equation 5

instead of Equation 6, which takes more time to compute two

loss functions (LA and LD). If the reconstructed intensity map

is needed, its value has to be calculated from the reconstructed

aperture and reconstructed dose as defined in Equation 6. Since

three distance metrics can be calculated from the output of the

multi-task AE model, it is more flexible than the other AE models

with a single output.

Applying an intensity map with a multi-task AE model in a

radiotherapy plan review is promising, but there are several aspects

to be improved. First, only VMAT plans for lung cancer patients

are used in this study. More treatment sites will be included and

tested using current models. In addition, due to the limitations of

the paper, the effectiveness of this model on the other treatment

modalities is not validated and should be performed in the future.

Second, the components of the multi-task AE model used in

this study are relatively simple. This model can be improved by

introducing attention and adversarial mechanisms. In addition,

parameter tuning is also another challenge for the deep-learning

model. Third, the numbers of the regular and anomalous plans

are severely imbalanced. This could result in models that have

poor predictive performance, specifically for the minority class

(anomalous plan in this study). To alleviate this issue, synthetic

data generated using GAN-based techniques should be used to

compensate the minority class in future studies.

The proposed multi-task AE model utilizes the reconstruction

error to classify a plan as anomalous or regular and exhibits

excellent performance. However, the model is not able to provide

additional information on how to improve or modify the plan

in response to the anomalous event. In a clinical setting, it

is critical to understand the rationale behind decisions, and

therefore an explainable AI model is needed (Caroprese et al.,

2022). In this study, it is also helpful to determine the cause of

anomalies with a transparent AI model. To address this issue,

the plan representations in latent space should be partitioned

meaningfully into several semantic regions, allowing for the

identification and correlation of the underlying causes of any

anomalies. It would be possible to implement this idea using an

adversarial autoencoder (Schreyer et al., 2019), which provides

a holistic and semantic view of plan representations in latent

space. Combining our model with AAE would be promising for

future research.
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FIGURE 12

Distance distributions of three AE models with the distance metric ||I,I′||. (A) Vanilla AE, (B) Contractive AE, and (C) Variational AE.

5 Conclusion

The aperture-based intensity map provides a simple way to

characterize the shapes in the VMAT plan. The proposed AE

model is more accurate in detecting anomalies from routine

radiotherapy plans compared to the existing deep-learning models.

The combination of feature maps and the multi-task AE model

provides an effective way to perform automated plan reviews for

VMAT plans. The multi-task AE model could also be used in a

plan review of the other types of plans with different treatment sites

and modalities. It is also promising to combine the explainable AI

with the current model for a more clinically interpretable anomaly

detection model for current VMAT plan reviews in radiotherapy.
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