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Advances in high-throughput genome sequencing have enabled large-scale

genome sequencing in clinical practice and research studies. By analyzing

genomic variants of humans, scientists can gain better understanding of the risk

factors of complex diseases such as cancer andCOVID-19. Tomodel and analyze

the rich genomic data, knowledge graphs (KGs) and graph machine learning

(GML) can be regarded as enabling technologies. In this article, we present

a scalable tool called VariantKG for analyzing genomic variants of humans

modeled using KGs and GML. Specifically, we used publicly available genome

sequencing data from patients with COVID-19. VariantKG extracts variant-level

genetic information output by a variant calling pipeline, annotates the variant

data with additional metadata, and converts the annotated variant information

into a KG represented using the Resource Description Framework (RDF). The

resulting KG is further enhanced with patient metadata and stored in a scalable

graph database that enables e�cient RDF indexing and query processing.

VariantKG employs the Deep Graph Library (DGL) to perform GML tasks such as

node classification. A user can extract a subset of the KG and perform inference

tasks using DGL. The user can monitor the training and testing performance

and hardware utilization. We tested VariantKG for KG construction by using

1,508 genome sequences, leading to 4 billion RDF statements. We evaluated

GML tasks using VariantKG by selecting a subset of 500 sequences from the

KG and performing node classification using well-known GML techniques such

as GraphSAGE, Graph Convolutional Network (GCN) and Graph Transformer.

VariantKG has intuitive user interfaces and features enabling a low barrier to entry

for KG construction, model inference, and model interpretation on genomic

variants of humans.

KEYWORDS

knowledge graphs, human genomic variants, graph machine learning, scalability,

inference

1 Introduction

Started in 1990, the Human Genome Project (Olson, 1993) undertook an ambitious

effort to sequence the entire human genome to produce an official gene map. Over the

years, the gene map has offered crucial insights into the human blueprint, accelerating

the study of human biology and advancements in medicine. In recent years, genomics
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has been regarded as a Big Data science (Stephens et al., 2015).

It is projected that between 100 million and 2 billion humans

could be sequenced by 2025 producing between 2 and 40 exabytes

of genome data. Whole-genome sequencing (WGS) has become

economically feasible in large-scale studies and clinical practice.

Improved understanding of the human genome has become the

quintessential scientific process to treating life-threatening diseases

and improving health outcomes. Variant calling is a fundamental

task that is performed to identify variants in an individual’s genome

compared to a reference human genome. This task can enable better

understanding of an individual’s risk to diseases and eventually lead

to new innovations in precision medicine and drug discovery.

Variants are genetic differences between healthy and

diseased tissues or between individuals of a population. The

process of analyzing these genetic differences or variations in

deoxyribonuclei acid (DNA) sequences and categorizing their

functional significance is called variant analysis. Ribonucleic acid

(RNA) sequencing is similar to DNA sequencing but differs in

its extraction technique. RNA is extracted from a sample and

then reverse transcribed to produce what is known as copy or

complementary DNA called cDNA. This cDNA is then fragmented

and run through a next-gen sequencing system. Examining DNA

provides a static picture of what a cell or an organism might do,

but examining RNA tells us precisely what the cell or organism is

doing. Another advantage of RNA sequencing is that molecular

features sometimes can only be observed at the RNA level.

Variant calling pipeline is the process of identifying variants

from sequence data. To measure the deleteriousness of a variant,

the combined annotation dependent depletion (CADD) (Rentzsch

et al., 2019, 2021) scores can be used. CADD evaluates or ranks

the deleteriousness of a single nucleotide, insertion, and deletion

variants in the human genome.

Knowledge graphs such as Yet Another Great Ontology

(YAGO) (Mahdisoltani et al., 2013), Wikidata (Vrandečić and

Krötzsch, 2014), DBPedia (Lehmann et al., 2015), and Schema.org

(Guha et al., 2016) are crucial for structuring and linking vast

amounts of diverse data, to enable efficient information retrieval,

enhance data interoperability, and provide a foundation for

advanced applications in domains not limited to semantic search,

natural language processing (NLP), and data integration. One such

example is the work of Dong (2018), which focuses on constructing

a comprehensive KG called ProductKG from Amazon’s large-

scale and diverse product catalog. ProductKG captures product

attributes, categories, and relationships using graph mining and

embedding techniques. This structured representation aims to

improve understanding and retrieval of product information,

thereby enhancing user experience and supporting various artificial

intelligence (AI) applications within Amazon’s ecosystem. Another

such example is FoodKG, introduced by Gharibi et al. (2020)

that demonstrates the importance of knowledge graphs in the

food domain through their tool, FoodKG, by integrating diverse

datasets, using NLP to extract meaningful entities and state-of-the-

art model to enhance and enrich graphs based on food, energy,

and water (FEW) used by the tool. Their contribution highlights

the significant role of KGs in managing and utilizing large-scale,

heterogeneous data.

Representing genomic data as KGs allows vast and diverse

information from various sources to be integrated. These

specialized graph structures, which model entities as nodes and

relationships as edges, provide an ideal framework for integrating

and organizing diverse biological information from multiple

sources. Furthermore, it allows for efficient querying and indexing

and supports inference and new knowledge discovery.

The key contributions of this work are as follows:

• We developed VariantKG, a scalable tool that represents

human genome variants as a KG in RDF. VariantKG can

consume a large number of variant call format (VCF) files

produced by a variant calling pipeline and annotate them

using SnpEff (2024) to generate additional information about

the raw variants. The annotated files were converted to the

RDF format using Sparqling-genomics (Di Bartolomeo et al.,

2018).

• VariantKG employs a new ontology for the genomic variants

to precisely represent the variant-level information. It

leverages Wikidata (Vrandečić and Krötzsch, 2014) concepts

that are useful for representing genomic data. It also extracts

patient metadata (e.g., age, sex, disease stage) from the

European Nucleotide Archive (ENA) browser. Additional

RDF statements are then inserted into the KG based on these

resources making the underlying KG unique and valuable.

• A key feature of VariantKG is the synergistic integration of

GML for conducting inference tasks on the KG. It employs

DGL for training and inference on the KG. A user can select

a subset of the KG and prepare the data for GML. They

can monitor the training and testing performance such as

accuracy, loss, and hardware utilization. Currently, VariantKG

supports node classification tasks on the KG using well-known

techniques such as GraphSAGE (Hamilton et al., 2017),

GCN (Zhang et al., 2019), and Graph Transformer (DGL

Team, 2024). It also supports the model interpretability where

it extracts the top performing features used in model training

and also, provides the subgraphs and node features crucial for

predicting the target node.

• VariantKG was evaluated by constructing a KG with 4 billion

RDF statements from 1,508 VCF files. Each VCF file required

between 1 and 3 min to process. We evaluated VariantKG

for GML tasks by selecting a subset of 500 VCFs and their

additional metadata from the KG for node classification.

In short, VariantKG enables low barrier to entry for users

interested in GML on human genomic variants.

The remainder of the article is organized as follows: Section 2

presents related work on KGs for biomedical data and GML;

Section 3 presents the overall design and implementation of

VariantKG including data processing pipeline, KG construction

using a new ontology and other relevant metadata, and GML for

node classification tasks. Section 4 presents a case study on how the

tool was used to model the genomic variants of COVID-19 patients

and perform inference tasks using GML (i.e., GraphSAGE, GCN

and Graph Transformer) along with model interpretability. Finally,

we conclude in Section 5.
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2 Related work

2.1 Prior studies on KGs

KGs are used to integrate and analyze diverse genomic

data, providing a comprehensive and contextual representation of

genomic information. For instance, Feng et al. (2024) extended

the development of GenomicKB by creating a graph database

that integrates the human genome, epigenome, transcriptome, and

4D nucleosome data. This extensive database, annotated from

over 30 consortia and portals, includes 347 million entities, 1.36

billion relations, and 3.9 billion properties, covering comprehensive

data on pancreases and diabetes’ genome-wide association study

(GWAS), disease ontology, and expression quantitative trait loci

(eQTL) data. Another notable work (Feng et al., 2023) presented

a knowledge graph, GenomicKB, that consolidates various sources

of genomic information, including data from genomic databases,

experimental studies, literature, and public repositories, into a

single, unified framework. This integration facilitates efficient data

analysis and knowledge discovery through a user-friendly web

portal.

KG exploration and visualization have become crucial

in biomedical research, with several frameworks addressing

various aspects of the challenge like KGEV (Peng et al., 2022)

offering flexible framework that combines elements of knowledge

graph construction, interactive visualization, and rapid access

to supporting literature. It is a five-stage pipeline for graph

construction and visualization with best practices in the field.

KGs have been well integrated with biomedical data specifically

for precision medicine. AIMedGraph (Quan et al., 2023) builds

upon such efforts that developed an evidence-based knowledge

graph that uniquely focuses on variant-drug relations, addressing a

critical gap in precision medicine knowledge representation.

KGs have been instrumental in understanding the COVID-

19 pandemic and its treatment. For example, Sakor et al.

(2023) developed a framework that integrates diverse COVID-

19 drug resources to discover drug-drug interactions among

COVID-19 treatments, utilizing RDF mapping language and

NLP to extract relevant entities and relationships. Similarly,

Reese et al. (2021) proposed KG-COVID-19, a knowledge graph

framework that integrates heterogeneous data on SARS-CoV-2

and related viruses, supporting downstream tasks such as

machine learning, hypothesis-based querying, and user interface

exploration. Chen et al. (2021) used RDF to integrate COVID-

19 data extracted from iTextMine, PubTator, and SemRep

biological databases into a standardized KG. This COVID-

19 KG supports federated queries on the Semantic Web and

is accessible through browsing and searching web interfaces,

with a RESTful API for programmatic access and RDF file

downloads.

These diverse efforts highlight the significant potential of

integrating KGs with genomic data and deep learning, facilitating

comprehensive data integration, efficient analysis, and innovative

solutions to complex problems in genomics and beyond.

2.2 Prior studies on GML

Recent advancements in predicting the emergence of COVID-

19 variants have led to innovative approaches using graph-based

machine learning techniques. Aawar et al. (2024) introduced a

novel variant-dynamics-informed graph neural network (GNN)

for global prediction of the COVID-19 variant spread. Their

method incorporates a derived model of variant prevalence

dynamics between countries, addressing the limitations of previous

statistical approaches. The authors developed a comprehensive

benchmarking tool covering 87 countries and 36 variants,

enabling rigorous evaluation of predictionmodels. Their dynamics-

informed GNN outperformed baseline models, including physics-

informed neural networks (PINNs), in retrospectively predicting

variant emergence and delay.

Song et al. (2023) explored the application of GNNs to

predict COVID-19 infection patterns. The authors developed an

innovative approach using GNNs to predict the influence of

infected individuals on future infections. Their study utilized

a comprehensive dataset containing interaction information

between the confirmed cases, including contact order, times, and

movement routes. The authors compared two GNN variants,

GCN and graph attention networks (GAT), against traditional

machine learning models. Their results demonstrated that graph-

based models significantly outperformed conventional approaches,

TABLE 1 Summary of related work on KGs and GML in genomics and biomedical research.

Reference Problem addressed Methods used Key contributions

Feng et al. (2024) Genomic data integration Graph database integrating genome, epigenome,

transcriptome, and 4D nucleosome data

Created a database with 347M entities, 1.36B relations, and

3.9B properties

Feng et al. (2023) Consolidation of genomic

information from several

sources

KG construction integrating data from genomic

databases, experimental studies, literature, and

public repositories

Facilitated data analysis and knowledge discovery through a

unified framework and web portal

Peng et al. (2022) KG exploration and

visualization in biomedical

research

KGEV framework combining KG construction,

interactive visualization, and rapid access to

supporting literature

Offered a flexible five-stage pipeline for graph construction

and visualization with best practices

Aawar et al. (2024) Predicting COVID-19 variant

emergence

Variant-dynamics-informed GNN Developed a comprehensive benchmarking tool covering 87

countries and 36 variants; outperformed baseline models in

predicting variant emergence

Song et al. (2023) Predicting COVID-19

infection patterns

GCNs and graph attention networks (GAT) Demonstrated significant improvements in predicting

infection spread compared to traditional machine learning

models
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with improvements in area under the curve for second, third,

and fourth order spreading predictions by 0.200, 0.269, and

0.190, respectively. This research underscores the importance

of incorporating relational data between infected individuals

in epidemiological modeling and suggests that graph-based

approaches can substantially enhance the effectiveness of automatic

epidemiological surveys.

Harnoune et al. (2021) proposed constructing KGs from

clinical data using the Bidirectional Encoder Representations

From Transformers (BERT) model. This approach focused on

creating biomedical knowledge graphs by leveraging BERT’s

contextual understanding capabilities to process biomedical text

data, including clinical records and scientific literature, extracting

meaningful and contextually rich information. Domingo-

Fernández et al. (2021) developed a multi-modal cause-and-effect

COVID-19 knowledge model using biological expression language

(BEL) as a triple (i.e., source node-relation-target node) with

metadata about nodes. This model utilized GraphML, NDEx,

and SIF representations for network visualization and was made

accessible through a web platform to enhance its visibility and

utility.

Deep learning has significantly influenced a wide range of

domains, with genomic studies being particularly impacted. For

instance, Liu et al. (2020) introduced DeepCDR, a method

using deep learning to predict cancer cells’ response to different

drugs, facilitating effective cancer treatment. Another innovative

approach was proposed by Lanchantin and Qi (2019), who

developed ChromeGCN for predicting epigenetic states using

sequences and 3D genome data. ChromeGCN leverages GCNs

to predict the epigenetic states of genomic regions, representing

genomes as graphs where nodes are genomic regions and edges

represent relationships between them. This method’s predictive

power enables the identification of functional genomic elements

and regulatory regions, providing insights into gene regulation and

cellular function.

Al-Obeidat et al. (2020) focused on extracting and utilizing

knowledge from COVID-19-related news articles, providing a

platform for researchers, data analysts, and data scientists to

investigate and recommend strategies to address global challenges.

Finally, Sun et al. (2018) proposed kernelized generalized

Bayesian rule mining with support vector machines (KGBSVM),

a method to analyze high-dimensional genome data, aiming to

improve classification accuracy on general tasks, whether binary or

multi-class. This method enhances the accuracy and efficiency of

genomic data classification, contributing to better data analysis and

interpretation in the field.

A summary of closely related work on KGs and GML is shown

in Table 1.

3 Design and implementation of
VariantKG

In this section, we present the overall design and

implementation of VariantKG. First, we explain the data processing

pipeline, followed by the construction of KGs using a new ontology

and other relevant metadata. Then, we elaborate on the use of

GML for node classification tasks.

3.1 Data preprocessing pipeline

COVID-19 RNA sequences IDs were first collected from the

ENA. The workflow is shown in Figure 1.

• FASTQ files (part A): These IDs were utilized to download

the RNA sequences, that were in FASTQ (Li et al., 2008; Li

and Durbin, 2009) format. The FASTQ file format consists of

a series of records, each of which contains four lines of text:

the first line starting with “@” contains a sequence identifier,

the second line contains the actual nucleotide sequence, the

third line starts with ‘+’ and may optionally contain additional

information about the sequence, and the fourth line contains

quality scores encoded as ASCII 10 characters. The quality

scores indicate the confidence in the accuracy of each base call

and are typically represented as Phred scores.

• uBAM files (part B): The FASTQ files were then converted

to unmapped binary alignment map (uBAM) files for storing

aligned sequencing data. A uBAM file contains unmapped

reads. These reads can be used for downstream analysis, such

as de novo assembly, quality control, and identification of

novel sequences.

• GATK workflow (part C): The uBAM files were passed

through the genomic analysis toolkit (GATK) workflow

(McKenna et al., 2010) that converts the files into variant

calling format (VCF) (Danecek et al., 2011) files. It is a

comprehensive toolkit developed by the Broad Institute that

includes various tools and algorithms for processing genomic

FIGURE 1

Workflow for preparing the genomic variants dataset from raw genome sequences.
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data, such as read mapping, local realignment, base quality

score recalibration, variant calling, and variant filtering.

• Pipeline output (part D, part E): The unannotated VCF

files that were obtained as the result of the workflow have

been shown in part D. For each VCF file, there is also a

corresponding CADD Scores file that was obtained using

genome reference (GrCh37) through the workflow, as shown

in part E.

We have implemented several optimizations to enhance the

efficiency and scalability of our data processing pipeline. By

leveraging the ThreadPoolExecutor, we have parallelized the

SNP annotation process, significantly improving performance for

complex and large datasets. Our pipeline has been rigorously tested

with varying numbers of VCF files, ranging from 50 to 1000, with

file sizes between 1 and 17MB. These tests have demonstrated

robust performance across different scales. For more details, refer

to Section 4. The parallelization of workflow steps allows for

more efficient utilization of computational resources, enabling the

processing of larger and more intricate datasets. While our current

tests have shown excellent performance with up to 1000 VCF

files, the architecture is designed to scale further, limited only by

the available computational resources. These enhancements ensure

that our pipeline can effectively handle the increasing volume and

complexity of genomic data, providing a solid foundation for future

expansions in data processing capabilities.

3.2 Data annotations

Once the workflow was executed, twomain files were generated

for each RNA sequence ID: a VCF file and a CADD Scores file.

For further annotations, SnpEff (Cingolani et al., 2012), a

command-line, variant annotation, and effect prediction tool

was utilized. This tool annotates and predicts the effects of

genetic variants. SnpEff classifies variants as single nucleotide

polymorphisms (SNPs), insertions, deletions, multiple-nucleotide

polymorphisms (MNPs), or an InDel. SnpEff takes the predicted

variants (SNPs, insertions, deletion, and MNPs) as input and

produces a file with annotations of the variants and the effects

they produce on known genes. While the original VCF file contains

the INFO field, SnpEff adds additional annotations to this field to

describe each variant further. In the process, it also updates the

header fields. This field is tagged by “annotations (ANN)”, which

is pipe symbol separated and provides a summary of the predicted

effects of a genetic variant on each affected transcript. Figure 2

shows the ANN field highlighted in bold.

A variant may have one or more annotations, and multiple

annotations are comma-separated. There are several fields within

the ANN tag, mainly:

• Allele (ALT): information on alternate alleles that are

predicted to cause a functional impact on a gene or protein.

• Annotation (effect): type of effect caused by the variant on

the transcript.

• Putative impact: qualitative measure of the impact of the

variant on the transcript.

• Gene name: name of the affected gene.

• Gene ID: unique identifier of the affected gene.

3.3 Ontology

A KG is represented using an ontology, which can be

represented using a formal language such as RDF, OWL (web

ontology language), or another domain-specific language. The

ontology in this study has been represented using RDF. Each node-

edge-node is represented as a triple by RDF. In a triple, the subject

defines the first node, and the object defines the second node. The

predicate defines the edge or relation joining the two nodes. A triple

always ends with a period (“.”).

An ontology mainly consists of classes, properties, and

relationships. We have explicitly defined an ontology to provide

structure to genomic data in the KGs. This ontology can be easily

expandable and flexible with additional variant information. In

Figure 3, the sub-classes are depicted by red nodes, the classes

are depicted by yellow nodes, and the relations by blue nodes.

The description of the classes has been given in Table 2, and the

description of the properties has been given in Table 3.

In the defined ontology, chromosome and variant are both

domain classes, and a chromosome has an associated chromosome

number to connect all similar chromosomes as an extension, and a

variant has an associated variant ID. A variant has a reference and

alternate genome.

The ontology also explicitly defines CADD as a class where

a variant has CADD Scores represented by both raw score and

Phred-scale score, as properties of the CADD class. The ontology

description is provided in Table 4.

3.4 Metadata

The metadata was downloaded from the Sequence Read

Archive (SRA)1 web tool of NCBI. The metadata for each patient

are also stored. We leveraged the SRA web tool over Entrez to

extract a broader range of metadata information such as disease

stage, age, sex, and tissue. The obtained metadata was then

converted to N-Quad (NQ) triples to facilitate the use of RDF

named graphs to link this information to the variant information

obtained. An example of the metadata obtained for the accession

ID SRR12570493 is as follows:

SRR12570493 , 6 5 ( Age ) , ,RNA−Seq , 1 1 9 , 1 4 73875214 ,

PRJNA661032 , SAMN15967295 , 5 8 2 4 2 2 9 4 1 , ,GEO, S e v e r e

COVID , A l i v e , pub l i c , " f a s t q , s r a , run . zq " , " gs ,

ncbi , s3 " , " s3 . us−e a s t −1 , g s . US , ncb i . p u b l i c " ,

SRX9058173 , NextSeq 500 , GSM4762164 , , PAIRED , cDNA

,Homo s ap i en s , TRANSCRIPTOMIC , ILLUMINA

,2021−01−27T00 : 0 0 : 0 0 Z, ,2020−09−02T12 : 0 6 : 0 0 Z , 1 ,

GSM4762164 , male , 6 , P a t i e n t 14 blood , SRP279746 ,

P a t i e n t 14 , Blood , , , , , , , , , , , ,

The NQ triple for the age attribute for the same accession ID

run is as follows:

1 https://www.ncbi.nlm.nih.gov/sra
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FIGURE 2

Additional annotations produced by the SnpE� tool.

FIGURE 3

The ontology for modeling the genomic variants as a KG.

< h t t p s : / / www. ncb i . nlm . n ih . gov / s r a / ? term=

SRR12570589 > < h t t p s : / / www. w i k i d a t a . org / w i k i

/ Q11904283 > "61 . 0 "^^ < h t t p : / / www. w3 . org

/ 2 0 0 1 / XMLSchema# f l o a t > < sg : / / SRR12570589 > .

3.5 Conversion of VCF files to KGs

To transform the VCF data into RDF, SPARQLing Genomics

(Di Bartolomeo et al., 2018) was utilized. SPARQLing Genomics

is an open-source platform for querying and analyzing genomic

data using the Semantic Web and Linked Data technologies.

The platform has been built to support SPARQL queries and

various SPARQL query features, including sub-queries, filters,

and aggregates along with an easy-to-use interface. SPARQLing

Genomics provides several in-built, ready-to-use tools, one of

which is vcf2rdf that converts VCF data into RDF triples.

The triples generated by the tool consist of uniquely identifiable

names with symbolic and literal values like numbers or text. The

subject and object are typically represented as uniform resource

identifiers (URIs). The following is an example of a variant from

the VCF file.

TABLE 2 Description of the classes in the ontology.

Class Definition

Chromosome number Identifier of the chromosome; values can be “1”, “2”,

. . . , “22”, “X”, “Y”, “MT”

Origin Unique identifier of the variant annotated by

SPARQLing Genomics tool

Variant Encapsulates the different types of genomic alterations

that can occur

CADD Encapsulates the different types of scores that can occur

xref_link Type of annotation that provides a link between

different resources or databases

url_link Access link to experiment label

study_attribute Metadata that describes the experimental design, data

processing, and other aspects of a sequencing study

run_attribute Metadata that describes the sequencing run

experiment_attribute Metadata that describes the overall experimental design

and goal of the experiment

#CHROM POS ID REF ALT QUAL FILTER INFO sample
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TABLE 3 Description of the properties in the ontology.

Property Definition Domain Range

has_pos Variant position Variant Integer

has_ref_genome Reference genome at

that position

Variant String

has_alt_genome Alternate genome at

that position

Variant String

has_variant_id Unique identifier of

the variant

Variant String

has_variant Unique name given to

the variant

Variant String

has_cadd_scores Variant has associated

CADD Scores

Variant CADD

has_chromosome

_number

Chromosome has a

chromosome number

Chromosome String

phred Phred-scaled score CADD Long

raw_score Raw CADD Score CADD Long

1 16963 . G A 45 . 6 4 SnpC lu s t e r AC=1 ;AF

= 0 . 5 0 0 ;AN=2 ; BaseQRankSum =1 . 4 6 5 ;DP−8;

Exce s sHe t = 3 . 0 1 0 3 ; FS = 0 . 0 0 0 ;MLEAC=1 ;MLEAF

=0 . 5 0 0 ;MQ=6 0 . 0 0 ;MQRankSum=0 . 0 0 0 ;QD=5 . 7 0 ;

ReadPosRankSum=−0.366 ;SOR=0 .169GT :AD:D:GQ:

PL0 / 1 : 6 , 2 : 8 : 5 3 : 5 3 , 0 , 2 2 8

The following shows the final triple output by SPARQLing

Genomics for a variant position in the example shown above.

< o r i g i n : / / 4 a37140cdc877d90 f f e258a8151 f27e@0 > <

h t t p : / / b i ohacka thon . org / r e s o u r c e / f a l d o #

po s i t i o n > "16963"^^ < h t t p : / / www. w3 . org

/ 2 0 0 1 / XMLSchema# i n t e g e r > .

As seen in the above example, the variant position is described

with feature annotation location description ontology (FALDO)

(Bolleman et al., 2016). For other features not defined by FALDO,

the URI is customized by the tool.

Each VCF file eventually corresponds to one large KG that

was originally stored in the N3 format, which is one of several

formats supported by RDF and can be considered a shorthand non-

XML serialization of RDF models. However, to accommodate the

accession ID that would map to a de-identified patient, the N3

serialization was converted to NQ format with the accession ID

as the named graph. An example of a triple from an N3 file is

given below. The ontology was extended to accommodate the new

relations generated by the tool.

< o r i g i n : / / 4 a37140cdc877d90 f f e2b58a8151 f27e@0 >

< sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / v a r i a n t / REF> < sg

: / / 0 . 9 9 . 1 1 / v c f 2 r d f / s equence /G> .

The triple was then converted to the NQ format, which yielded

the following:

< o r i g i n : / / 4 a37140cdc877d90 f f e2b58a8151 f27e@0 >

<sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / v a r i a n t / REF> <sg

: / / 0 . 9 9 . 1 1 / v c f 2 r d f / s equence /G> <sg : / /

SRR13112995 > .

TABLE 4 Domain, properties, and ranges for the ontology.

Entity RDF:
property

Domain Range

Chromosome Type N/A Wiki:Q37748

SubClassOf N/A Wiki:Q37748

has_chromosome

_number

Type N/A Property

Domain Chromosome N/A

Range chromosome

_number

N/A

chromosome

_number

Type N/A Class

has_number Type N/A Property

Domain chromosome

_number

N/A

Range xsd:int N/A

Variant Type N/A Class

has_variant Type N/A Property

Domain Chromosome Variant

Range Variant N/A

has_pos Type N/A Property

Domain Variant xsd:string

Range xsd:int N/A

has_ref_genome Type N/A Property

Domain Variant xsd:string

Range xsd:string N/A

has_alt_genome Type N/A Property

Domain Variant xsd:string

Range xsd:string N/A

CADD Type N/A Class

has_cadd_score Type N/A Property

Domain Variant CADD

Range CADD N/A

raw_score Type N/A Property

Domain CADD xsd:long

Range xsd:long N/A

phred Type N/A Property

Domain CADD xsd:long

Range xsd:long N/A

3.6 Conversion of CADD Score files to KGs

The SnpEff and vcf2rdf tools were useful for converting VCF

files to triples. However, the CADD Scores obtained through the

pipeline were in tab-separated (TSV) format. To enrich the KGs,

the CADD Scores had to be translated to RDF triples as well.

Therefore, the ontology for CADD Scores was explicitly defined.
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FIGURE 4

The ontology for modeling the CADD scores.

To visualize the graph, GraphDB was utilized, and the ontology

that was defined for CADD Scores is shown in Figure 4.

These scores have been represented with respect to the fields

described in the VCF files, such as the chromosome, position,

reference genome, and alternate genome. The raw scores and

Phred-scale scores were obtained from the original TSV files.

The following is an example of a record in a TSV file for

which the raw and Phred scores map to Chromosome 1 with

position 16963, reference base(s) “G” and alternate base(s) “A” in

the VCF file:

#Chrom Pos Ref Alt RawScore PHRED

1 16963 G A 0.900784 12.72

Each data record, like the above example, was converted to

a Turtle triple (TTL), another format supported by RDF. A TTL

format writes a graph in a compact textual form. A triple has three

parts - subject, predicate, and object followed by the period. An

example of the above data record converted to a TTL triple is given

below:

<h t t p : / / sg . org / SRR13112995 / 1 / v a r i a n t 1 > a ns1 :

v a r i a n t ;

ns1 : ha s_a l t _genome "A" ;

ns1 : h a s _ c add_ s c o r e s < h t t p : / / sg . org /

SRR13112995 / 1 / v a r i a n t 1 / cadd > ;

ns1 : has_pos 16963 ;

ns1 : has_re f_genome "G" .

3.7 Graph storage and database

Each VCF file is represented as a single KG. So to unify several

KGs into one single large graph, Blazegraph DB (2024) has been

leveraged.

BlazeGraph is a high-performance, horizontally scalable, and

open-source graph database that can be used to store and manage

large-scale graph data. It has been designed to provide efficient

graph querying and supports the RDF data model which allows

it to store and process both structured and semi-structured data.

BlazeGraph uses a distributed architecture that can be easily

integrated with other big data tools, such as Hadoop2 and Spark,3

to perform complex analytics on large-scale graph data.

BlazeGraph has been leveraged to efficiently query the KGs to

generate the dataset for GML node classification tasks. Other tools

such as RIQ (Katib et al., 2017, 2016; Slavov et al., 2015) can be used

to index and query RDF-named graphs.

The total number of triples in the KG, after aggregating only 511

VCF files on a single machine, was 3.1 billion. Hence, an efficient

system such as BlazeGraph is necessary.

3.8 Deep graph library

To enable GML tasks, Deep Graph Library (DGL) (Wang

et al., 2019), an open-source library supporting graph-based deep

learning was utilized. DGL provides a set of high-level APIs for

building scalable and efficient graph neural network models. With

DGL, we can create, manipulate, and learn from large-scale graphs

with billions of nodes and edges.

There are three main tasks supported by DGL:

• Node classification: Predict the class or label of a node in a

graph based on its features.

• Link prediction: Predict if there is a relation or an edge

between two nodes.

• Graph classification: Classify an entire graph into one or more

classes or categories.

DGL represents a graph as a DGLGraph object, which is a

framework-specific graph object. It takes two input parameters,

namely, the number of nodes, and a list of source and destination

nodes, where nodes and edges must have consecutive IDs starting

from 0. Since DGL only accepts numeric input, all strings, such

as URI, were mapped to integers. In this work, node classification

was used to classify variants into CADD Score categories based on

their features.

3.9 Node classification task

For this task, GCN (Zhang et al., 2019), GraphSAGE (Hamilton

et al., 2017), and Graph Transformer DGL Team (2024) have been

used. Each node is associated with a feature vector.

GCNs use node embeddings and adjacency matrices to

compute new embeddings while training. Similar to convolutional

neural networks (CNNs), the model weights and biases are first

initialized to 1, and then a section of the graph is passed through

the model. A non-linear activation function is used to compute the

predicted node embeddings for each node. Cross entropy loss is

calculated to quantify the difference between the predictions and

the ground truth. For this task, loss gradients are then computed

2 https://hadoop.apache.org/

3 https://spark.apache.org/
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FIGURE 5

Architecture of GCN.

FIGURE 6

Architecture of GML.

to update the model using the ADAM optimizer (Kingma and Ba,

2014). These steps are repeated until convergence.

GraphSAGE uses SAGEConv layers where for every iteration,

the output of the model involves finding new node representation

for every node in the graph. Mean is used as the aggregation

function along with ReLU activation function. The ADAM

optimizer was used for this model as well. One of the most noted

properties of GraphSAGE is its ability to aggregate neighbor node

embeddings for a given target node. This property was observed

through the experiments conducted. GraphSAGE also generalizes

better to unseen nodes because of its ability to perform inductive

learning on graphs.

The architecture of GCN is shown in Figure 5. The

general architecture of GML, shown in Figure 6, differs in

the property of message passing between the nodes. This

was crucial as the nodes in the input graph relied on several

pieces of information from their neighboring nodes. The

ability to capture long-range dependencies in graphs while

maintaining computational efficiency makes Graph Transformer a

promising approach.

3.10 Model interpretability for GNN

GNNmodels are regarded as interpretable models because they

facilitate learning about entities, relations, and rules for composing

them. Entities are discrete and represent high-level concepts or

knowledge items, and it is easier to find the explicit reasoning

path or subgraph that contributes to the prediction. In VariantKG,

users can see the variants that impact model decisions and use

them for further downstream analysis. This will be demonstrated

in Section 4.
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FIGURE 7

Architecture of VariantKG.

3.11 Overall architecture

The architecture of our tool, shown in Figure 7 has been

designed to facilitate the extraction, processing, and analysis of

variant-level genomic data using GML. The workflow integrates

custom data inputs, feature selection, storage in a graph

database, graph creation, model training for inferencing genomic

information andmodel interpretation. Given the rapidly expanding

repository of genomic data globally, VariantKG offers a robust

platform for researchers or users to extract relevant information

and train GML models such as GraphSAGE, GCN, or Graph

Transformer for inference purposes. Users have the flexibility to

upload one ormore VCF files, whichmay include associated CADD

Scores for specific variants. Alternatively, users can select from our

preexisting datasets that have been structured into the large-scale,

comprehensive KG.

The first part of our tool, shown as A: KG Enrichment

handles data upload and preprocessing, where users can upload

one or more VCF with the associated CADD Scores or select

from the preexisting database that contains genomic variants and

annotations. If the user chooses to upload the files, the VCF and

CADD Scores files are processed using the SnpEff tool to provide

additional variant-level annotation and SPARQLing-Genomics for

transforming the data into RDF using the vcf2rdf tool. The

processed data is then stored along with the existing data on

BlazeGraph, which is a scalable graph database. The data from

the VCF files is stored as NQ RDF-quads, and the data from

the CADD Scores files is stored as TTL (turtle) RDF-triples. This

data is essentially incorporated into our existing knowledge base,

enriching the KG with new information. The ontology defined for

the KGs allows for this extensibility. Users also have the option

to select the accession IDs corresponding to de-identified patients

from our existing large-scale KG. This feature has been provided

by utilizing an efficient, well-formed SPARQL query that fetches all

the unique accession IDs that are available in the KG. This will be

further discussed in Section 4.3.

The second part in the workflow of our tool, shown as B: Graph

Creation, is the availability of feature selection and creation of the

subgraph or graph suitable for model training. The user can select

the features that are available in the NQ VCF files, which are passed

through a well-formed SPARQL query that retrieves the selected

features. The query results are temporarily stored in a columnar

storage format optimized for analytical queries. The user can then

assign a feature as the class label, facilitating supervised learning

tasks such as node classification. Once the user selects one or more

accession IDs from the KG, the user will then have an option to

select the features based on the patient’s variant-level information.

The data along with the selected features and class labels is used to

create aDGLGraph object that represents the graph as integers. This

is essential as DGL necessitates that the input data be formatted into

a framework-specific graph object. This will be further discussed

in Section 4.4.

Once the graph has been constructed, users can then train

the DGL GML models to gain a better understanding of the
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model performance through inferencing, shown as C: Graph ML

Training & Inference. In our current implementation, we support

GraphSAGE, GCN, and Graph Transformer models and intend

to extend the support to other GML models in the future. The

training process can be customized based on user-defined model

hyperparameters. Existing data that have been prestructured as

DGL graphs can also be loaded directly for model training. The user

can observe the training process through the displayed charts and

gain knowledge from the confusion matrices to assess the model

performance during inference. This will be further discussed in

Section 4.5. The users can also view the top features of trained

model and explore the adjacency nodes of predicted node through

model interpretability feature of the tool.

TheUI was developed using Gradio (Abid et al., 2019), HTML5,

and JavaScript, and the backend code was developed using Python

3.8.

4 Case study

In this section, we present a case study of howVariantKG can be

used on a genomic dataset obtained from COVID-19 patients (Rao

et al., 2021). We also report the performance evaluation of

VariantKG by increasing the number of VCF files.

4.1 Experiment setup

The experiments were run on CloudLab (Ricci et al., 2014),

an experimental testbed for cloud computing research. They were

conducted on a bare metal machine with 2 Intel E5-2660 v2 (10

cores per CPU), 256 GB RAM, and two 1 TB disk drives. The

machine ran Ubuntu 18.04.

4.2 Performance evaluation

We evaluated the performance of VariantKG using three GNN

models: GraphSAGE, GCN, and Graph Transformer. As detailed

in Table 5, we maintained consistent hyperparameters across all

models, with 16 layers and a learning rate of 0.001. Themodels were

trained for varying numbers of epochs (500, 1000, and 1500) to

assess their performance over extended training periods. In general,

GraphSAGE demonstrated significantly higher and more stable

performance, maintaining an accuracy of 0.69 across 500, 1000, and

1500 epochs. This suggests that GraphSAGEmay be more robust to

extended training in the context of our VariantKG framework. It is

important to note that all models utilized default features extracted

from VCF files as input, with Variant Impact considered as the

target label.

Table 6 presents a comparative analysis of VariantKG’s

performance with and without parallelization for VCF annotation

and uploading to BlazeGraph. Essentially, we create a separate

thread to process each VCF file independently. As a result, we can

exploit many cores on the processor. The results demonstrate a

significant improvement in processing time when parallelization

was employed. For a small dataset of 10 VCF files, parallelization

reduced the processing time from 546 seconds to 156.41 seconds,

TABLE 5 A comparison of di�erent GML models for VariantKG.

Epochs No. of
layers

Model Learning
rate

Accuracy

500 16 GraphSAGE 0.001 0.69

500 16 GCN 0.001 0.67

500 16 Graph Transformer 0.001 0.61

1000 16 GraphSAGE 0.001 0.69

1000 16 GCN 0.001 0.61

1000 16 Graph Transformer 0.001 0.60

1500 16 GraphSAGE 0.001 0.69

1500 16 GCN 0.001 0.69

1500 16 Graph Transformer 0.001 0.62

Best value shown in bold.

TABLE 6 VariantKG’s performance with and without parallelization.

No. VCF files VCF annotation/uploading to
BlazeGraph

Without
parallelization

With parallelization

10 546 s 156 s

50 2,750 s 775 s

100 6,450 s 1,646 s

500 47,101 s 8,230 s

1,000 134,342 s 29,460 s

TABLE 7 Execution time for di�erent stages in VariantKG.

No. VCF
files

VCF
annotation +
DB storage

Feature
extraction

(SPARQL-based)

DGL
graph

creation

10 156 s 450 s 4 s

50 775 s 523 s 10 s

100 1,646 s 1,022 s 28 s

500 8,230 s 8,322 s 189 s

1,000 29,460 s Failed to complete in

24 h

-

marking a 71.4% improvement. This efficiency gain becomes

more pronounced as the dataset size increases. For instance, with

1000 VCF files, the processing time was reduced from 134,342

s (approximately 37.3 hours) without parallelization to 29,460.9

s (about 8.2 hours) with parallelization, representing a 78.1%

reduction in processing time. The data consistently shows that

parallelization offers substantial time savings across all dataset sizes,

with the relative efficiency improvement ranging from 71.4% to

82.5%. This trend underscores the scalability of the parallelized

approach, which is particularly beneficial for large-scale genomic

data processing in VariantKG.

Table 7 provides a comprehensive analysis of execution times

for VariantKG across its different stages, showcasing its efficiency

in handling increasing number of VCF files. The considered
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FIGURE 8

Screenshot showing how a user can upload new VCF files to enrich the KG.

stages include VCF annotation and uploading to BlazeGraph

and creating a DGL graph for ML. The creation of the DGL

graph involves executing a SPARQL query followed by additional

processing steps to create the necessary DataFrames. For instance,

with 10 VCF files, the total execution time for VCF annotation

and database storage was 156.41 s. As the number of VCF files

increased, VariantKG achieved good performance. Even with 500

files, the VCF annotation and database storage stage completes in

a reasonable 8,230 s, reflecting the robust design of VariantKG

to scale with larger datasets. The DGL graph creation stage also

showed good performance, with times increasing from 454 s

for 10 files to 8,511 s for 500 files, indicating that VariantKG

can handle large number of VCF files. For 1,000 VCF files, the

SPARQL query did not finish even after 24 h when all the 30

features were selected. For such situations, we would recommend

using a distributed RDF indexing and querying framework instead

of BlazeGraph.

4.3 Scenario 1: KG enrichment

The first part of the VariantKG tool focuses on KG enrichment.

A user can upload one or more VCF files containing variant-

level information and CADD Scores in a TSV format as shown

in Figure 8 or the user can select patients from the existing KG.

If the user uploads VCF files, the information in the files is

first run through the SnpEFF tool. SnpEFF adds new annotated

information to each variant in the VCF file and also updates the

headers of the file to reflect the annotations. These annotations

are functional information that is added to the ‘INFO’ field using

the ‘ANN’ tag. This ANN field, in turn, consists of several bits

of information, such as allele, annotation using Sequence and

Ontology terms, putative impact, gene name, gene ID, feature

type, feature ID, transcript biotype, exon or intron rank, cDNA

position, protein position and several types of distances to

the feature.

Once the files have been annotated, we then utilize the vcf2rdf

tool provided by SPARQLing-Genomics to efficiently translate the

information on each variant into several triples in an RDF-suitable

N3 format. These N3 triples were converted to NQ format for

several reasons. Converting to NQ format allows for the use of

a named graph, which provides a robust way to group triples

into distinct sets, considerably enhancing data organization and

management. Another advantage of using named graphs is the

support it provides to associate new metadata to specific data

subsets easily. Additionally, named graphs also enable more precise

and efficient SPARQL queries, improving data extraction quality

and speed.

The RDF data are stored in BlazeGraph, a high-performance

graph database. To prepare the data for GML tasks, users can

select patients using age groups as shown in Figure 9, or using the

accession IDs, as shown in Figure 10, which are internally fetched

using another SPARQL query that is, for efficiency purposes, only

executed when the user wishes to prepare data for downstream

GML tasks.

The user can then select the features from a list consisting of the

original headers from the VCF files and the annotated features by

SnpEff. Once the user hits the “Fetch from KG” button, another

SPARQL query is then executed in the backend. If the user has

selected from an age group, the SPARQL query consists of a filter

that fetches all the accession IDs, which is passed as a list to the

final query. If the user selects the accession IDs, it is passed as a

list, similar to the previous query and the final query, shown below,

fetches all the features selected for those patients or accession IDs.

PREFIX sg_b i oha cka thon : < h t t p : / / b i ohacka thon .

org / r e s o u r c e / f a l d o #>

PREFIX s g _ v a r i a n t : < sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / >

PREFIX s g _ v c f : < sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / v a r i a n t / >

PREFIX s g _ i n f o : < sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / i n f o / >

PREFIX sg_ fo rma t : < sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f / fo rmat

/ >

PREFIX s g_ f o rma t _ g t : < sg : / / 0 . 9 9 . 1 1 / v c f 2 r d f /

fo rmat /GT/ >

PREFIX ns1 : < h t t p : / / sg . org / >

SELECT DISTINCT ? a c c e s s i o n _ i d ? o r i g i n (

COALESCE ( ? v a r i a n t _ i d , " None " ) AS ?

v a r i a n t _ i d ) ? chromosome ? p o s i t i o n ?

re f_genome ? a l t_genome ? q u a l i t y ? ann ?

a nn _ s p l i t _ 1 ? f i l t e r _ s t a t u s ? a l l e l e _ c o u n t ?

a l l e l e _ f r e q u e n c y ? t o t a l _ n umb e r _ o f _ a l l e l e s

? baseqranksum ? depth ? e x c e s s h e t ? f s ? mleac

? mlea f ? RMS_mapping_qual i ty ? qd ?

readposranksum ? so r ? combined_depth ?

c o n d i t i o n a l _ g e n o t y p e _ q u a l i t y ? geno type ?

r aw_s co r e ? ph r ed_ s co r e

WHERE {

GRAPH ? a c c e s s i o n _ i d {
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FIGURE 9

Screenshot showing how a user can select data from the KG based on age.

OPTIONAL { ? o r i g i n s g _ v a r i a n t : v a r i a n t I d ?

v a r i a n t _ i d . }

BIND (COALESCE ( ? v a r i a n t _ i d , " None " ) AS ?

v a r i a n t _ i d )

? o r i g i n s g_b i oha cka thon : r e f e r e n c e ?

chromosome .

? o r i g i n s g_b i oha cka thon : p o s i t i o n ? p o s i t i o n

.

? o r i g i n s g _ v c f : REF ? re f_genome .

? o r i g i n s g _ v c f : ALT ? a l t_genome .

? o r i g i n s g _ v c f :QUAL ? q u a l i t y .

? o r i g i n s g _ i n f o :ANN ? ann .

BIND ( IF ( STRLEN ( ? ann ) − STRLEN(REPLACE ( ?

ann , " , " , " " ) ) = 0 , ? ann , STRBEFORE ( ?

ann , " , " ) ) AS ? a nn _ s p l i t _ 1 )

OPTIONAL { ? o r i g i n s g _ i n f o : FILTER_STATUS ?

f i l t e r _ s t a t u s . }

OPTIONAL { ? o r i g i n s g _ i n f o : ALLELE_COUNT ?

a l l e l e _ c o u n t . }

OPTIONAL { ? o r i g i n s g _ i n f o :

ALLELE_FREQUENCY ? a l l e l e _ f r e q u e n c y . }

OPTIONAL { ? o r i g i n s g _ i n f o :

TOTAL_NUMBER_OF_ALLELES ?

t o t a l _ n umb e r _ o f _ a l l e l e s . }

OPTIONAL { ? o r i g i n s g _ i n f o :BASEQRANKSUM ?

baseqranksum . }

OPTIONAL { ? o r i g i n s g _ i n f o :DEPTH ? depth .

}

OPTIONAL { ? o r i g i n s g _ i n f o : EXCESSHET ?

e x c e s s h e t . }

OPTIONAL { ? o r i g i n s g _ i n f o : FS ? f s . }

OPTIONAL { ? o r i g i n s g _ i n f o :MLEAC ? mleac .

}

OPTIONAL { ? o r i g i n s g _ i n f o :MLEAF ? mlea f .

}

OPTIONAL { ? o r i g i n s g _ i n f o :

RMS_MAPPING_QUALITY ?

RMS_mapping_qual i ty . }

OPTIONAL { ? o r i g i n s g _ i n f o :QD ? qd . }

OPTIONAL { ? o r i g i n s g _ i n f o :READPOSRANKSUM

? readposranksum . }

OPTIONAL { ? o r i g i n s g _ i n f o : SOR ? so r . }

OPTIONAL { ? o r i g i n s g _ i n f o :COMBINED_DEPTH

? combined_depth . }

OPTIONAL { ? o r i g i n s g _ i n f o :

CONDITIONAL_GENOTYPE_QUALITY ?

c o n d i t i o n a l _ g e n o t y p e _ q u a l i t y . }

OPTIONAL { ? o r i g i n s g _ i n f o :GENOTYPE ?

geno type . }

OPTIONAL { ? o r i g i n s g _ i n f o :RAW_SCORE ?

r aw_s co r e . }

OPTIONAL { ? o r i g i n s g _ i n f o : PHRED_SCORE ?

ph r ed_ s co r e . }

}

? o r i g i n s g_b i oha cka thon : p o s i t i o n ? p o s i t i o n .

OPTIONAL { ? v a r i a n t < h t t p : / / sg . org / has_pos >

? p o s i t i o n . }

? o r i g i n s g _ v c f : REF ? re f_genome .

OPTIONAL { ? v a r i a n t < h t t p : / / sg . org /

has_re f_genome > ? re f_genome . }
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FIGURE 10

Screenshot showing how a user can select data from the KG based on existing patients.

? o r i g i n s g _ v c f : ALT ? a l t_genome .

OPTIONAL { ? v a r i a n t < h t t p : / / sg . org /

has_a l t_genome > ? a l t_genome . }

OPTIONAL { ? v a r i a n t < h t t p : / / sg . org /

h a s_ c add_ s co r e s > ? c add_ s c o r e s . }

OPTIONAL { ? c add_ s c o r e s < h t t p : / / sg . org /

ha s_ raw_score > ? r aw_s co r e . }

OPTIONAL { ? c add_ s c o r e s < h t t p : / / sg . org /

has_phred > ? ph r ed_ s co r e . }

FILTER ( ? a c c e s s i o n _ i d IN ( a c c e s s i o n _ i d _ l i s t )

)

} ORDER BY ? v a r i a n t _ i d

4.4 Scenario 2: graph creation

Once the data has been fetched in the backend, the user is

redirected to ‘Graph Creation’ where the user can select node

features in the graph and select the class label from a subset of the

meaningful features to be classified as a part of the classification

task. The user is then given complete control of the graph

construction where the user can select the edge type, which can

be Gene Name (default) or fully connected. It is important to

note that the graphs are homogeneous in nature, containing only

one edge type. The weight of the edges can be 1 (default), the

number of incoming edges to a node, or a user-defined value.

The user can then select if the edges should be bidirectional and

the train:validation splits. The default is 80:10 with the remaining

10% calculated in the backend to minimize user clicks. Using this

information, the graph is created for the node classification task.

This is shown in Figure 11.

4.5 Scenario 3: GML training and inference

The graph for the node classification task needs to be in a DGL-

specific input format. The data is thus converted to a “DGLGraph”

object that consists of only integers that are mapped to the actual

string values. The user can view the summary of the graph once

created. This summary consists of all the selected features, the class

label, the number of classes, graph properties, and the number of

nodes and edges. The user is given a choice to download the DGL

graph or continue with the GML task. For the GML task, the user

can select between GraphSAGE, GCN, and Graph Transformer

models for the classification task and set the hyperparameters to

train the model as shown in Figure 12. This includes the number

of layers other than the input and output layers that constitute the

primary architecture of the model, the number of hidden layers,

the dropout rate, the learning rate, and the number of epochs

for training.
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FIGURE 11

Screenshot showing how a user can create the DGL graph for the GML classification task.

FIGURE 12

Screenshot during GML training.
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FIGURE 13

Display of GML training and validation loss, validation accuracy, and CPU usage in the tool.

Once the training begins, the user can view the training and

validation loss plots, the validation accuracy plot, and the CPU

memory usage as shown in Figure 13.

If the user wants to infer the GML task, they can navigated

to the “Inference” tab shown in Figure 14, which displays the

evaluation metrics and confusion matrix. The model is evaluated

on accuracy, macro- and weighted-precision, recall and F1

score, and support, which is the number of samples for the

given class.

4.6 Scenario 4: model interpretation and
important features

For interpretability, VariantKG uses the graph visualization and

model interpretation capabilities of GNNExplainer (Ying et al.,

2019) in DGL. VariantKG offers a Model Interpretation feature

that allows users to customize their analysis by specifying three

key parameters:

• Degree/hops per node: this determines the number of

connected nodes.

• Number of subgraphs to display: given the potentially large

number of possible subgraphs, users can select howmany they

wish to view.

• Node ID: this option enables users to focus on and explore the

features of a specific target node.

These parameters provide flexibility in visualizing the model’s

interpretability, allowing for a tailored examination of the graph

FIGURE 14

Display of GML inference results in the tool.

structure and node relationships relevant to the prediction task.

Figure 15 shows an example of interpretability for a node shown

in red.

Frontiers in BigData 16 frontiersin.org

https://doi.org/10.3389/fdata.2024.1466391
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Prasanna et al. 10.3389/fdata.2024.1466391

FIGURE 15

Screenshot showing GML model interpretation.

5 Conclusion

In this article, we demonstrated that representing genomic

data as knowledge graphs enables integrating diverse information

to understand complex human diseases better. We effectively

organized and integrated genomic variant data from COVID-

19 patients. Using our tool, VariantKG, which consists of

several important components. Firstly, through a detailed data

collection pipeline, we can extract large amount of genetic

information on de-identified COVID-19 patients, followed by

variant annotation using the SnpEff tool and then conversion

into RDF format with the SPARQLing Genomics tool. We

developed an ontology to standardize and collate the gathered

information, which was used to construct a comprehensive

KG. This large KG, further enriched with patient metadata

such as age, sex, and disease stage, enables efficient querying

and indexing through a scalable database, such as BlazeGraph.

Additionally, we showcased the utility of this KG for node

classification tasks by leveraging DGL within VariantKG’s

framework. Through a series of user scenarios, we successfully

demonstrated how the tool allows for data extraction, training,

and testing of KG subsets, thereby offering an easy-to-use

and efficient tool for researchers. As a part of future work,

we aim to further enlarge our KG by consuming more

data and then performing graph machine learning tasks in a

distributed setting.
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Vrandevcić, D., and Krötzsch, M. (2014). Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 78–85. doi: 10.1145/2629489

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., et al. (2019).
Deep graph library: a graph-centric, highly-performant package for graph
neural networks. arXiv [preprint] arXiv:1909.01315. doi: 10.48550/arXiv.1909.
01315

Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. (2019). GNNexplainer:
Generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst.
32:9240. doi: 10.48550/arXiv.1903.03894

Zhang, S., Tong, H., Xu, J., and Maciejewski, R. (2019). Graph
convolutional networks: a comprehensive review. Comp. Soc. Netw. 6, 1–23.
doi: 10.1186/s40649-019-0069-y

Frontiers in BigData 19 frontiersin.org

https://doi.org/10.3389/fdata.2024.1466391
https://doi.org/10.1016/j.patter.2020.100155
https://doi.org/10.1186/s13073-021-00835-9
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1016/j.websem.2022.100760
https://doi.org/10.48550/arXiv.1506.01333
https://pcingola.github.io/SnpEff/snpeff/introduction/
https://pcingola.github.io/SnpEff/snpeff/introduction/
https://doi.org/10.1038/s41598-023-38314-3
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1145/2629489
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.48550/arXiv.1903.03894
https://doi.org/10.1186/s40649-019-0069-y
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning
	1 Introduction
	2 Related work
	2.1 Prior studies on KGs
	2.2 Prior studies on GML

	3 Design and implementation of VariantKG
	3.1 Data preprocessing pipeline
	3.2 Data annotations
	3.3 Ontology
	3.4 Metadata
	3.5 Conversion of VCF files to KGs
	3.6 Conversion of CADD Score files to KGs
	3.7 Graph storage and database
	3.8 Deep graph library
	3.9 Node classification task
	3.10 Model interpretability for GNN
	3.11 Overall architecture

	4 Case study
	4.1 Experiment setup
	4.2 Performance evaluation
	4.3 Scenario 1: KG enrichment
	4.4 Scenario 2: graph creation
	4.5 Scenario 3: GML training and inference
	4.6 Scenario 4: model interpretation and important features

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


