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Artificial intelligence (AI) technologies (re-)shape modern life, driving innovation
in a wide range of sectors. However, some AI systems have yielded unexpected
or undesirable outcomes or have been used in questionablemanners. As a result,
there has been a surge in public and academic discussions about aspects that AI
systems must fulfill to be considered trustworthy. In this paper, we synthesize
existing conceptualizations of trustworthy AI along six requirements: (1) human
agency and oversight, (2) fairness and non-discrimination, (3) transparency
and explainability, (4) robustness and accuracy, (5) privacy and security, and
(6) accountability. For each one, we provide a definition, describe how it
can be established and evaluated, and discuss requirement-specific research
challenges. Finally, we conclude this analysis by identifying overarching research
challenges across the requirements with respect to (1) interdisciplinary research,
(2) conceptual clarity, (3) context-dependency, (4) dynamics in evolving systems,
and (5) investigations in real-world contexts. Thus, this paper synthesizes and
consolidates a wide-ranging and active discussion currently taking place in
various academic sub-communities and public forums. It aims to serve as a
reference for a broad audience and as a basis for future research directions.

KEYWORDS

trustworthy AI, artificial intelligence, fairness, human agency, robustness, privacy,

accountability, transparency

1 Introduction

From sophisticated chatbots like Chat-GPT to AI-driven recommender systems
enhancing our entertainment experiences on platforms like Netflix and Spotify (Anderson
et al., 2020), the impact of AI on our lives is significant. AI-based decision support systems
are proving invaluable in critical fields such as life science and healthcare (Rajpurkar
et al., 2022). Similarly, AI is reshaping hiring and human resources practice (Van den
Broek et al., 2021) and transforming the banking and finance landscape with innovative
solutions (Cao, 2022). However, in the past, some AI systems have been used in
questionable manners, which has led to unexpected or undesirable results. Examples
include biased algorithms perpetuating discrimination in recruitment processes (Chen,
2023) or AI-driven recommender systems favoring popular content and, with this, users
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interested in popular content (Kowald et al., 2020; Kowald
and Lacic, 2022). Alongside biases in algorithms, AI systems
rely on training data, including personal and private user
information, which raises concerns for potential privacy and
security breaches. One example is the Equifax data breach,
in which private data records of millions of users were
compromised (Zou and Schaub, 2018). Additionally, when
thinking of self-driving cars, unreliable AI-based systems could
even cause physical harm, as demonstrated by the unfortunate
Uber car crash in 2018, in which a malfunctioning algorithm did
not detect and, as a consequence, killed a pedestrian on the road
(Kohli and Chadha, 2020).

As a consequence, there has been an increase in public and
academic discussions about the essential requirements AI systems
must fulfill to be considered trustworthy. There is also a growing
consensus on the necessity of setting up standards and regulations
to ensure and validate the trustworthiness of AI. In this respect, the
European Commission (EC) has proposed the AI Act (Madiega,
2021), a comprehensive regulatory framework for supporting
the responsible development and deployment of AI technologies
within the EuropeanUnion. The AI Act seeks to establish clear rules
governing the development and deployment of AI systems while
imposing strict requirements for high-risk AI applications. The
various interpretations of trustworthy AI add further complexity to
this discourse by encompassing not just technical requirements but
also human-centered and legal considerations. Another important
framework proposed by the European Commission has been
the “Assessment List for Trustworthy AI (ALTAI)” (Ala-Pietilä
et al., 2020; Radclyffe et al., 2023), which enables organizations
to self-assess the trustworthiness of AI solutions based on a
checklist.

This paper contributes insights into this discourse by analyzing
the state-of-the-art regarding six aspects of AI systems that
are typically understood as requirements for systems to be
viewed as trustworthy. These requirements are: (1) human
agency and oversight, (2) fairness and non-discrimination, (3)
transparency and explainability, (4) robustness and accuracy, (5)
privacy and security, and (6) accountability (see Figure 1). We
define each of these six requirements, introduce methods to
establish and implement these requirements in AI systems, and
discuss corresponding validation methods and evaluation metrics.
Such validation efforts are crucial from scientific and practical
perspectives and might serve as a prerequisite for certifying AI
systems and models (Winter et al., 2021). Finally, for each of these
requirements, we outline ongoing research challenges and future
research perspectives.

The contributions of our work are two-fold: firstly, we give a
comprehensive overview of the requirements of trustworthy AI, in
which we cover different viewpoints on trustworthy AI, including
technical and also human-centered and legal considerations.
Secondly, we discuss open issues and challenges in defining,
establishing, and evaluating these requirements of trustworthy AI.
Therefore, the guiding research question of this work is defined
as follows: What is the current state of research regarding the

establishment and evaluation of comprehensive - technical, human-

centered, and legal - requirements of trustworthy AI? To address

FIGURE 1

An illustration of the six requirements of trustworthy AI investigated
in this paper.

this research question, we follow the methodology described in
Section 2.3.

Our work complements existing surveys and articles on
trustworthy AI in two main ways. Firstly, existing overview articles
such as Chatila et al. (2021); Thiebes et al. (2021); Akbar et al.
(2024); Díaz-Rodríguez et al. (2023) tend to focus on definitions
of trustworthy AI and neglect evaluation aspects, which is one key
aspect of our article. Specifically, related surveys such as Liang et al.
(2022); Wing (2021); Emaminejad and Akhavian (2022) focus on
specific aspects of trustworthy AI implementation and evaluation,
namely data, formal methods, and robotics, respectively. In
contrast, our article aims to provide a domain- and method-
independent overview of trustworthy AI, which reflects the whole
AI-lifecycle, including the evaluation phase. Secondly, concerning
validation and evaluation schemes for trustworthy AI, existing
technical conceptualizations of trustworthy AI such as Floridi
(2021); Kaur et al. (2022); Li et al. (2023) have focused on technical
and reliability-oriented requirements such as transparency, privacy,
and robustness. In contrast, in our paper, we discuss methods and
open challenges toward establishing and evaluating trustworthy
AI also through the lens of human-centric and legal requirements
such as fairness, accountability, and human agency. Therefore, to
the best of our knowledge, our paper is the first to investigate all
six requirements of trustworthy AI in a unified way by discussing
implementation and evaluation aspects across the whole lifecycle of
trustworthy AI and outlining open research challenges and issues
for all six requirements.

Our article shows that while evaluation and validation
methodologies for technical requirements like robustness may rely
on established metrics and testing procedures (e.g., for model
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accuracy), the assessment of human-centric considerations often
requires more nuanced approaches that consider ethical, legal, and
cultural factors. As such, our article emphasizes the need for further
research to develop robust evaluation schemes that can be applied
in research and practice across a variety of AI systems, particularly
in high-risk domains where human values and rights are at stake
(e.g., healthcare).

Next, in Section 2, we describe the relevant background for
this article, including general definitions of AI and its lifecycle, and
introduce the six requirements of trustworthy AI covered herein.
After discussing each requirement separately in Section 3, the
paper closes with a conclusion and an outlook into future research
directions in Section 4.

2 Background

In this section, we give a short overview of definitions and
preliminaries relevant to our article, introduce the six requirements
of trustworthy AI discussed, and describe the methodology of our
investigation.

2.1 Definitions and preliminaries of
trustworthy AI

For our understanding of AI in the context of this work,
we adhere to the definition outlined in the EU AI Act (adopted
text, Art 3(1),1), in which AI is defined as “a machine-based

system designed to operate with varying levels of autonomy and

that may exhibit adaptiveness after deployment and that, for explicit

or implicit objectives, infers, from the input it receives, how to

generate outputs such as predictions, content, recommendations,

or decisions that can influence physical or virtual environments.”
This definition encompasses a broad spectrum of algorithmic
implementations, from simple logistic regression models to
complex machine-learning approaches. In the article at hand, we
consider this spectrum of AI systems, recognizing the diverse
challenges and requirements that are associated with ensuring
its trustworthiness.

Additionally, we aim to consider the trustworthiness of AI
from a holistic perspective that can be influenced in all phases
of the AI-lifecycle, as thoroughly described in Haakman
et al. (2021) (see Figure 2). These phases encompass the
design, development, and deployment of AI-based systems
and their designated tasks. While discussing the requirements
of trustworthy AI, we refer to the phases where needed in this
article. To comply with trustworthy AI, special attention should
be paid to considering AI requirements in the design phase

throughout requirements engineering, problem understanding,
and data collection strategies, the development phase, comprising
model implementation (e.g., optimizing feature weights),
documentation, and evaluation, and finally, the deployment phase

including the integration of the AI model into a production

1 https://www.europarl.europa.eu/doceo/document/TA-9-2024-

0138_EN.pdf

FIGURE 2

The AI-lifecycle. The trustworthiness of AI can be conflicted in all
phases—the design phase, the development phase, and the
deployment phase.

environment, and the continuous monitoring and updating of
the model.

2.2 Requirements of trustworthy AI

Over the last years, various frameworks, guidelines, survey
articles, and collections of requirements of trustworthy AI have
been developed and published by researchers, governments,
and private organizations (Smuha, 2019; Kaur et al., 2021;
Floridi, 2021; Kaur et al., 2022; Li et al., 2023; Yeung,
2020). Although these investigations differ with respect to the
exact wordings, they agree on four fundamental principles
that need to be considered when developing and validating
trustworthy AI: (1) respect for human autonomy, (2) fairness,
(3) explicability, and (4) prevention of harm (Smuha, 2019;
Kaur et al., 2021, 2022). In the following, we describe six
requirements of trustworthy AI that are manifested within these
principles.

Hereinafter, principle 1 (respect for human control) is mainly
associated with human agency and oversight (requirement 1,
see Section 3.1), which refers to sustaining the autonomy of
humans affected by AI systems, given different levels of human-
AI interaction. The second principle (fairness) aims for the
equal treatment of all affected individuals and subpopulations
(i.e., defined by age, gender, education, ...). Fairness and non-

discrimination (requirement 2, see Section 3.2) describes the
absence of bias in AI decisions that could result in unfair, unequal
treatment that negatively affects certain people. Next, principle 3
(explicability) ensures the AI system is transparent and explainable.
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FIGURE 3

The number of publications per requirement included in this paper across publication years. We investigate 183 publications: 20 publications for
human agency and oversight, 35 publications for fairness and non-discrimination, 47 publications for Transparency and explainability, 21
publications for robustness and accuracy, 37 publications for privacy and security, and 23 publications for accountability.

In particular, transparency and explainability (requirement 3,
see Section 3.3) is defined as the understandability of an AI
system and the provision of information to explain the AI model’s
decisions.

Finally, principle 4 (prevention of harm) should ensure that
the AI system does not cause any harm to humans, society, or the
environment. For example, it should be prevented that AI-based
systems harm or, even worse, kill humans, which unfortunately
has happened, e.g., in the aforementioned Uber car crash in
2018, in which a pedestrian was killed by a malfunctioned self-
driving car (Kohli and Chadha, 2020). This principle includes a
range of requirements, including technical and legal concerns. An
essential technical requirement within this principle is robustness
and accuracy (requirement 4, see Section 3.4), which is related
to the performance of AI models and their ability to function in
unexpected circumstances. Additionally, the principle “prevention
of harm” is linked to privacy and security (requirement 5, see
Section 3.5) that focuses on protecting the personal and sensitive
information of users in AI systems and on preventing malicious
attacks on AI models. Concerning legal aspects, accountability
(requirement 6, see Section 3.6) entails the understanding of who
is responsible for the decisions of AI systems and to ensure that
mechanisms are in place to interfere with negative consequences.
The literature (e.g., Kaur et al., 2021; Smuha, 2019) also discusses
other important requirements of trustworthy AI within this
principle, such as safety, reproducibility, sustainability, societal
and environmental wellbeing, and data governance. While we
highlight these requirements’ significance, we believe they serve
as overarching aspects that underpin the six other requirements
of trustworthy AI discussed in this article. However, we strongly
suggest a foundational commitment to safety, reproducibility,
sustainability, societal and environmental wellbeing, and data

governance when developing and validating trustworthy AI. In
the next section, we discuss in detail these six requirements
outlined above.

2.3 Methodology

To collect relevant resources, we conduct an exploratory
approach to define the research field and, for the main part,
follow a semi-structured literature review (Snyder, 2019). This
allows the consideration of interdisciplinary literature to (1)
specify a comprehensive set of aspects of trustworthiness in AI,
(2) synthesize available knowledge regarding these aspects that
is relevant when aiming to design, implement, and evaluate
trustworthy AI, and (3) identify open challenges and knowledge
gaps in these regards. Thus, we conducted exploratory literature
research on trustworthy AI in general, which resulted in the
six herein-discussed requirements. Then, the following procedure
was completed for each requirement: (1) a Scopus search for
conference papers, articles, and reviews, (2) the screening of the
100 most relevant abstracts as ranked by Scopus, (3) the screening
of the remaining papers, and the extraction of relevant content,
(4) snowballing and additional search in Google Scholar to close
information gaps.

The goal of this paper was not to cover all existing
publications of the field but rather to generate a comprehensive
understanding of relevant research directions and their
existing challenges. Therefore, we excluded articles with over-
specialization, such as solutions only applicable to specific
use cases or domains, and articles with limited contributions.
This resulted in a collection of 183 papers as illustrated in
Figure 3.
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TABLE 1 Problem definitions of the six trustworthy AI requirements

investigated in this paper.

Trustworthy AI
requirement

Problem definition

Human agency and oversight Sustaining the autonomy of
humans affected by AI systems

Fairness and non-discrimination Mitigating bias in AI decisions to
prevent unfair treatment

Transparency and explainability Improving the understandability of
an AI system and its decisions

Robustness and accuracy Sustaining the model’s
performance (in unexpected
circumstances)

Privacy and security Protecting personal information of
users in AI systems

Accountaibility Understanding who is responsible
for the decisions of AI systems

3 Overview and discussion of
trustworthy AI requirements

In the following, we discuss six requirements an AI-
based system should meet to be considered trustworthy. Each
requirement is first defined, then we describe methods to establish
and evaluate it, and finally, we debate open issues and research
challenges. Table 1 provides a complementary illustration of the
problem definitions of these six requirements.

3.1 Requirement 1: human agency and
oversight

3.1.1 Definition of human agency and oversight
The principle of human agency and oversight refers to the idea

that AI systems should uphold individual autonomy and dignity,
and need to operate in a way that allows for substantial human
control over the AI system’s impact on people and society. This
principle further postulates that AI systems should contribute to a
democratic, flourishing, and equitable society and allow for human
supervision to foster fundamental rights and ethical norms (High-
Level Expert Group on AI, 2019).

Although the terms human agency and human oversight are
very alike and sometimes used as synonymous, they are not
interchangeable (Bennett et al., 2023). In this paper, we understand
the term and concept human agency as referring to the very
broad idea that humans as intentional actors should be in control,
particularly with respect to substantial and important parts of their
lives (High-Level Expert Group on AI, 2019). AI systems shall not
restrict this agency; rather, it would be desirable that through AI
systems, human agency is increased. AI systems could, for instance,
limit human agency by deceiving or manipulating users. However,
users should be able to influence automated decisions and to fairly
evaluate or question the AI system. Consequently, users who are
impacted by AI systems or who oversee AI systems need to be
able to acquire or to be equipped with related competencies and

skills (AI Literacy) to understand and engage with AI systems to a
satisfying degree (Long andMagerko, 2020; Pammer-Schindler and
Lindstaedt, 2022).

The term and concept of human oversight is more specifically
related to how AI systems are used and suggests that AI systems
do not operate entirely autonomously, but instead, humans should
oversee the way AI systems “work” within a more extensive process.
This concept, therefore, is concerned with forms of human-AI
interaction or collaboration, postulating that humans should be in a
supervisory and decision-making role. Human oversight activities
include observing, interpreting, and interfering in AI operations.
Human oversight can be understood as a specific approach to
facilitating human agency.

Long and Magerko (2020) define AI literacy as "a set of

competencies that enables individuals to evaluate AI technologies

critically; communicate and collaborate effectively with AI; and use

AI as a tool online, at home, and in the workplace." Being AI literate
means having a basic understanding of AI that empowers users
to better interact with AI systems as they are able to judge the
outcomes provided and, at the same time, to retain autonomy and
agency (Hermann, 2022). Facilitating AI literacy on a large scale is
currently a subject both of research (Ng et al., 2021) and of public
endeavor.

3.1.2 Methods to establish human agency and
oversight

Very broadly speaking, socio-technical and human-centric
design methods (Baxter and Sommerville, 2010) are approaches
for designing (AI-based) systems that can systematically consider
human users and people impacted, from the very early stage of
designing the systems (Dennerlein et al., 2020). The consideration
of human factors in the design phase of the AI-lifecycle (see
Figure 2) responds well to the complex dynamics of the issues.
Humans can interact with AI in various ways, which may require
different levels of human agency and oversight. Anders et al. (2022)
propose to think of different patterns of human engagement with
AI-based operations and decisions as follows, sorted along the
decreasing involvement of humans:

• Human-in-command: Humans manage and oversee an AI
system’s overall operation, including its wider impact on
society, economy, law, and ethics. Decisions at a high level
are made on when and how to use an AI system (Anderson
and Fort, 2022). For example, regulatory bodies set ethical
guidelines for the deployment of AI systems in healthcare to
ensure patient safety and data privacy.

• Human-in-the-loop: Humans can intervene in AI-based
decisions as well as in different steps of the underlying
(typically machine learning based) algorithms (Mosqueira-
Rey et al., 2023; Munro, 2021). In medical diagnostics,
for example, an AI system can suggest potential diagnoses,
but a physician reviews and decides on the diagnosis and
treatment plan. Note that often, this kind of human-computer
collaboration is not possible or even desired (High-Level
Expert Group on AI, 2019).
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• Human-on-the-loop: Humans can intervene through
(re-)designing the AI system or through involvement
in system operations, where their role is primarily on
monitoring (Anderson and Fort, 2022). For example, a
human operator may remotely monitor the performance of
an autonomous vehicle and intervene only in emergency
situations.

• Human-out-of-the-loop: Humans do not intervene. This could
mean allowing an AI-based system to work without human
involvement for specific tasks or in a completely automated
manner. For example, in fully automated sections of vehicle
production assembly lines, car parts can be assembled without
human interaction.

Other authors categorize the spectrum of involvement in
the design and operations of AI-based systems differently. For
instance, Fanni et al. (2020) suggests a distinction between active
and passive agency. Passive agency occurs when there are limited
or no communication features that provide explanations for the
decisions made by the AI system, or when users are uninformed
about the potential consequences of AI interventions. This passive
agency relates to the concepts of human-out-of-the-loop and
human-on-the-loop. In contrast, active agency refers to situations
where humans play a critical role in the design and operations of the
AI-based system. This relates to human-in-the-loop and human-in-
command approaches. Wang B. Y. et al. (2023) proposes the level
of involvement to be defined by decisions and actions undertaken
by humans and by AI-based systems. The author provides an
example pattern of human-AI interaction as “AI Suggests, Human
Intelligence (HI) Decides”, which can be interpreted such that
the AI is providing recommendations, but humans are taking
the role of final decision makers. Overall, thinking about such
patterns of human-AI interaction allows deciding—at the time of
designing and using an AI-based system—what kind of interaction
is desirable or possible. Finally, we introduce the notion of AI
literacy as positively contributing to human agency and oversight.
This applies to both the users of AI-based systems and the decision-
makers responsible for regulating and deciding which systems are
used and how or what AI-related competencies users need to deal
with AI systems.

AI literacy can be obtained in two dominant ways. First,
through education in AI, particularly about everyday activities
and technology (Zimmerman, 2018). Such education can also be
mediated by technology. For instance, researchers are engaging
young learners in creative programming activities, including
AI (Kahn and Winters, 2017; Zimmermann-Niefield et al., 2019).
Secondly, everyday AI systems could be designed to support
users in being or becoming AI literate. Long and Magerko
(2020) outlined 15 concrete design considerations to promote
users’ understanding and learning when interacting with AI
systems. For example, AI systems could provide visualizations
and explanations of decision-making processes to enhance users’
comprehension. They could also offer users the opportunity to
learn about the system’s reasoning processes by putting themselves
“in the agent’s shoes”; to encourage users to investigate the used
data in terms of source, data collection processes, and known
limitations or encourage users “to be critical consumers of AI

technologies by questioning their intelligence and trustworthiness”.
Such support of AI literacy by AI systems is precious, as
complex knowledge is highly context- and activity-dependent, and
transferring knowledge from one context or activity to another can
be quite challenging (Eraut, 2004).

Overall, systems need to be designed to be understandable for
humans (Long and Magerko, 2020; Ng et al., 2021). This relates to
the long-standing concepts of usability and learnability of systems.
Finally, some of the above-described concepts, such as explaining
decision-making, are essential for supporting transparency and
explainability (see Section 3.3).

3.1.3 Methods to evaluate human agency and
oversight

Building upon the previous discussion of human agency,
human oversight, and AI literacy and their interrelations, we
propose considering evaluation as moving upward the hierarchy of
dependencies:

• AI literacy: AI literacy of relevant stakeholders is considered
a prerequisite for human agency and oversight. This level can
be assessed, for instance, through knowledge or competency
tests, by checking certifications and formal degrees, or
by investigating educational opportunities that relevant
stakeholders have accessed or utilized.

• System understandability: It is critical to evaluate whether
the AI-based system or functionality communicates
understandably how it operates and what effects user
actions might have. This relates to established concepts of
usability and learnability and newer, AI-specific concepts like
transparency and explainability (see Section 3.3).

• Human oversight: It needs to be established whether and how
the intended interaction pattern of human oversight is present
in the evaluation setting. This evaluation level concerns
observing the designed activity, with a focus on establishing
whether humans are, reasonably and in an engaged manner,
involved in the process, either in-the-loop, on-the-loop, or
in-command.

• Human agency: This is probably the most challenging concept
to verify. One could argue that the existence and evaluation
of a human-centric and socio-technical (AI) design process
implies a certain level of human agency. The discussions led
during this process could provide insights into how human
agency is conceptualized and implemented in the AI-based
system. In the inverse, it may be possible to establish its
absence, i.e., when it becomes noticeable that human agency
is limited through an AI-based system or functionality.

3.1.4 Open issues and research challenges
Challenges concern the conceptualization of human agency,

oversight, and AI literacy as interwoven concepts, and the
operationalization in design patterns of (interfaces for) AI. Such
developments will need to be made in relation to maturing
technology such as increasing shop-floor automation at the
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conjunction of Internet of Things and AI-enabled data analytics,
or the usage of generative AI across many sectors of knowledge-
based and creative work. Additionally, more and better synthesized
design-oriented knowledge that captures how to design for human

agency, oversight, and AI literacy is pending. To date, research is
revisiting the value of these design principles, e.g., in the context
of AI (Long and Magerko, 2020) or generative AI (Simkute et al.,
2024; Weisz et al., 2024). However, these design principles need
clearer examples of how to operationalize them concretely within
applications. Finally, due to the unclear conceptualization and the
plethora of different designs with little grouping into overarching
design patterns, the evaluation of human agency, oversight, and

AI literacy will remain challenging. Evaluations will also need to
uncover how these concepts interact with design patterns, ethics,
and trust in AI systems (High-Level Expert Group on AI, 2019),
actual decisions made in the domain of interest, and the overall
socio-technical system performance (i.e., how good are decisions
in the broader context and for whom).

3.2 Requirement 2: fairness and non-
discrimination

3.2.1 Definition of fairness and non-
discrimination

As AI products are being increasingly used in various fields
and domains, their influence and impact on society are discussed
not only in the machine learning community (e.g., Righetti et al.,
2019) but also among the general public. AI may negatively
impact individuals and society by reproducing existing societal
stereotypes that can adversely affect vulnerable groups (Dubal,
2023). The unjust treatment of specific populations or individuals
is particularly concerning in sensitive fields such as criminal justice,
employment, education, or health, as it can result in significant
consequences such as being refused medical care (Seyyed-Kalantari
et al., 2021) or educational opportunity (Chang et al., 2021).
Previous instances of such misconduct have been documented,
including Google Ads showing lower-paid jobs to women and
minority groups,2 Apple Card granting lower credit limits to
women than equally qualified men,3 and commercial facial
recognition systems performing poorly for women with black skin
(Buolamwini and Gebru, 2018).

People’s perception of fairness strongly depends on the context,
which can include various factors, such as socio-political views,
personal preferences, or the particular context and use case (Saxena,
2019). Especially in AI systems, achieving fairness is a multifaceted
problem. Algorithmic fairness describes the absence of bias in AI
decisions that would favor or disadvantage a person or group in
a way that is considered unfair in the context of the application
(Ntoutsi et al., 2020; Srivastava et al., 2019). Bias, often also
called “discriminatory” or “unfair” bias, refers to outcomes of
disproportionate advantage or disadvantage for a specific group of
individuals, i.e., “systematic discrimination combined with an unfair

outcome is considered bias” (Bird et al., 2019). Consequently, we

2 https://incidentdatabase.ai/cite/19/#r184

3 https://incidentdatabase.ai/cite/92/#r2037

refer to fairness as the absence of discriminatory or “unfair” bias
toward individuals, items, or groups.

Although ethical concerns are often at the forefront of public
discourse, “unfair” bias can significantly impact society and
businesses, even in seemingly non-critical domains. Therefore, it
is crucial to consider the various risks from a business perspective.
According to a report by Fancher et al. (2021), biased AI bears risk
for several negative consequences. These include missing out on
potential business opportunities, damaging reputation, and facing
regulatory and compliance issues. One example of missing out
on opportunities is when a recommender system only benefits
a particular user group (Kowald and Lacic, 2022). While the
members of the advantaged group may find the system useful,
other groups don’t experience the same level of system performance
and stop using the product. This results in a loss of potential
customers for the platform provider. Another consequence of
biased AI is reputational damage, especially when the technology
fails to address sensitive societal issues. For instance, using face
recognition software that only works well for parts of the ethnicities
in the user population will likely lead to negative public perception
and backlash against the company. Finally, in cases where anti-
discrimination laws govern the use of AI, such as in the job market,
unfair algorithms can lead to legal problems. For example, an
HR system that discriminates based on gender, age, or race can
result in fines and penalties for the company. More information on
accountability can be found in Section 3.6.

Furthermore, the issue of bias and fairness is complex because
bias is naturally inherent in human behavior (Houwer, 2019)
and thus, “unfair” bias can be introduced in every stage of the
AI-lifecycle, as illustrated in Section 2. This problem becomes
even more challenging in evolving AI systems because they can
potentially reinforce bias between the user population, data, and
algorithm (Baeza-Yates, 2018). Thus, monitoring and addressing
“unfair” bias throughout the entire AI-lifecycle is essential.

3.2.2 Methods to establish fairness and non-
discrimination

A wide range of methods has been proposed to increase
fairness in AI models (Bellamy et al., 2019; Barocas et al., 2021).
Because fairness strongly depends on the context, making AI
models fair means making them fair in a particular context, i.e.,
according to an appropriate definition of fairness (Srivastava et al.,
2019). Depending on their application level in the AI-lifecycle,
“bias mitigation approaches” or “fairness enhancing methods”, are
commonly grouped into three categories (Bellamy et al., 2019;
Pessach and Shmueli, 2023; Barocas et al., 2023):

1. Pre-processing concerns improving the training data’s quality
and balancing its composition in regard to protected groups.
This can be applied independent of the AI algorithm. Pre-
processing can regulate fairness in acceptance rates but does
not cater to other fairness constraints. Examples of pre-
processing algorithms include reweighting (Calders et al., 2009),
optimized preprocessing (Calmon et al., 2017), learning fair
representations (Zemel et al., 2013), and disparate impact
removal (Feldman et al., 2015).
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2. In-processing describes the design and optimization of an AI
algorithm toward an explicitly defined, fair solution. Thus, it
incorporated fairness in the training algorithms themselves and
can only be applied to specific algorithms/models that are well-
understood (Srivastava et al., 2019).

3. Post-processing aims to adapt the AI model’s results toward a
balanced distribution for protected groups. Examples thereof
include methods for calibration, constraint optimization, or
setting thresholds for the maximum accuracy differences
between groups (Pleiss et al., 2017).

While each approach has its particular pros and cons, all
of them potentially negatively affect the models’ accuracy (see
Section 3.4).

3.2.3 Methods to evaluate fairness and non-
discrimination

The auditing or evaluation of algorithmic fairness can, similar
to the mitigation strategies, be approached according to the three
main phases of the AI-lifecycle, i.e., design, development, and
deployment (Koshiyama et al., 2021). Examples of what can be
assessed are (1) population balance and fair representation in data
(design), (2) the implementation of fairness constraints inmodeling
or the adherence to fairness metrics in evaluation (development),
and (3) the adherence to fairness metrics in real-time monitoring
(deployment) (Akula and Garibay, 2021).

Measures of algorithmic bias are a quantitative evaluation of
the result set of the system at hand (Pessach and Shmueli, 2023).
The highest level of separation between different definitions of
fairness is between individual and group fairness, which are related
to the legal concepts of disparate treatment and disparate impact,
respectively (Barocas and Selbst, 2016).

• Individual fairness considers fairness on an individual level
and requires treating similar individuals similarly.

• Group fairness calculates fairness on a group level, requiring
different groups to be treated equally.

Furthermore, one can differentiate between three principal
approaches: fairness in acceptance rates, fairness in error rates,
and fairness in outcome frequency (Barocas et al., 2021). Verma
and Julia (2018) provides an overview of the 20 most prominent
definitions. One challenge, however, is selecting the “right”
definition and metrics, as many different definitions of algorithmic
fairness and relatedmetrics exist. Inmany settings, these definitions
contradict each other—thus, it is usually not possible for an AI
model to be fair in all three aspects. The appropriate metrics must
be selected for a given application and its particularities. Several
software packages are available that implement important metrics.
Popular open-source frameworks include AIF 360 (Bellamy et al.,
2019), Fairlearn (Bird et al., 2020), and Aequitas (Saleiro et al.,
2018).

3.2.4 Open issues and research challenges
Fairness is a concept highly context-dependent that, in

practice, may require ethical consultation (John-Mathews, 2022).

No fairness definition applies to all contexts, and it seems an
intrinsic—and unsolvable—challenge of the field to formulate
legally compliant measurements mathematically (Wachter et al.,
2021). What is perceived as fair or unfair also varies between
different cultural and legal settings. It remains unclear how to
tune the fairness of an AI application intended to be used in
multiple cultural or legal contexts (Srivastava et al., 2019) and, more
generally, how to apply and assess existing regulations, standards,
and ethical constraints in practice (Costanza-Chock et al., 2022).

From a more technical perspective, ensuring fairness when
combining different AI components poses a significant challenge.
This can be particularly difficult when reusing AI tools or
algorithms with limited access to code, or when exchanging data
audited only for a specific use case or application context. In
fact, it has been shown that measures of algorithmic fairness are
sensitive to any alterations in the input data and to even simple
changes in train-test splits (Friedler et al., 2019). In principle,
monitoring fairness in AI systems that are in production is possible
(e.g., Vasudevan and Kenthapadi, 2020). However, it is still much
more demanding to define when fairness criteria are met and
when not because the algorithm’s performance may change over
time (e.g., Lazer et al., 2014). The application of generative AI
models presents additional challenges, especially in the context of
language. Despite a significant body of research, it is still unclear
how to effectively measure and evaluate their bias and how to
transform these measurements to be suitable for application in
various contexts or to consider different minority characteristics
(Nemani et al., 2023).

Finally, there is no standard to determine the adequate trade-
off between different fairness metrics nor between fairness and
accuracy. While there have been attempts to show that the fairness-
accuracy trade-off is rather an issue of historical bias in data (Dutta
et al., 2020), it remains unclear how to generate an ideal, unbiased
dataset as a standard in practice.

3.3 Requirement 3: transparency and
explainability

3.3.1 Definition of transparency and explainability
Transparency and explainability are two related but distinct

concepts. Explainability aims to enhance comprehension, build
trust, and facilitate decision-making (Adadi and Berrada, 2018). In
contrast, the goal of transparency is to ensure understandability
and accountability (Lepri et al., 2018; Arias-Duart et al., 2022;
McDermid et al., 2021). With transparent and explainable AI,
users can better estimate the trustworthiness of AI systems since
they can understand their inner workings and, consequently, their
opportunities and limitations (Naiseh et al., 2023). However, there
is no final consensus on the definition and scope of transparency
to date. Therefore, in this paper, we will focus on explainability as a
means to achieve transparency in AI models.

Furthermore, including explainability methods in an AI system
offers additional benefits, such as allowing for debugging and expert
verification of the AI system, which can foster task accuracy and
efficiency (Weber et al., 2023) [e.g., in healthcare (Albahri et al.,
2023; Hulsen, 2023)]. For example, Anders et al. (2022) improved
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a model’s prediction accuracy by utilizing explainability methods
to identify dataset samples that led the model to learn spurious
correlations. Young et al. (2019) used explainable AI to help
experts verify that models for melanoma detection relied on the
correct data aspects for their predictions. Other researchers have
developed explainability methods to facilitate iterative learning and
improvement of AI models by identifying patterns, biases, or errors
in the model’s decision-making processes (Ribeiro et al., 2016;
Mehdiyev and Fettke, 2021).

3.3.2 Methods to establish transparency and
explainability

Methods to make AI systems explainable are often summarized
under the umbrella term “Explainable AI (XAI)” (Holzinger et al.,
2022), and sometimes also interpretable AI (Molnar, 2020). XAI
aims to increase transparency and explainability in AI systems
to ensure trust, understanding, and accountability. With respect
to the AI-lifecycle (see Section 3), XAI is relevant in all three
phases: in the design phase, for understanding and incorporating
stakeholders’ explainability requirements; in the development
phase, for understanding important data aspects, performing error
analysis andmodel refinement; and finally, in the deployment phase
for continuous model verification and enhancing user trust. XAI
methods vary in their approach toward achieving these goals and
can be categorized based on their scope andmodel dependence. The
term scope refers to whether XAI methods can produce global or
local explanations (Samek et al., 2021). Global explanations aim to
explain the AI model as a whole and, thus, provide insight into
themodel’s general decision-making process, e.g., SHAP (Lundberg
and Lee, 2017). In contrast, local explanations focus on the model’s
decision-making process in regard to a single sample, making the
explanation more specific [e.g., LIME (Ribeiro et al., 2016)]. Global
explanations tend to be computationally more expensive, as they
need to consider the entire training input space, whereas local
explanations might work on one input sample.

Furthermore, XAI methods can be classified as “model-
agnostic" or “model-specific" methods (Arrieta et al., 2020),
according to theirmodel dependence. Model-agnostic XAI methods
can provide explainability and transparency for any AI system.
In contrast, model-specific XAI methods are tailored to a single
AI architecture, which may limit their compatibility with other
AI systems. However, they tend to create more accurate and
translucent (i.e., the extent to which the explanations rely on
particularities of the inner workings of the AI system) explanations
than model-agnostic methods (Carvalho et al., 2019). Additionally,
model-specific XAI methods can not be implemented for every
AI system. Meanwhile, model-agnostic XAI methods can be
implemented on every AI system, as they often use the AI system
as an oracle. They do so by probing the model many times
to estimate the effects of the input on the model prediction,
which can lead to expensive computations. Examples of model-
agnostic XAI methods are SHAP (Lundberg and Lee, 2017), LIME
(Ribeiro et al., 2016) and the broader category of counterfactual
explanations (Guidotti, 2022); model-specific XAI methods are
DeepLIFT (Shrikumar et al., 2017) and Integrated Gradients
(Sundararajan et al., 2017).

It is a common belief that “white-box” models—models whose
“inner workings” can be inspected—are immediately interpretable
and transparent. However, they often have lower prediction
accuracy than more complex models (Moreira et al., 2022). In
addition, white-box models, e.g., Linear Regression and Decision
Trees, often need extra steps to be used or treated as “full-fledged”
XAI methods because in order to be most effective, XAI methods
are required to be understandable and not overwhelming to their
target users, meaning that they are specifically tailored to meet their
requirements (Miller et al., 2017). Social science research regards
high-quality explanations as a form of conversation and proposes
explanation theories like temporal causality, social constructivism,
and attribution theory (Mendoza et al., 2023).

Deep learning models have succeeded across various domains
by utilizing computational units called neurons, ordered in
sequential layers forming neural network (NN) models. NNs can
autonomously learn meaningful internal features without manual
feature engineering (LeCun et al., 2015). Consequently, to train
the models, we often use raw data directly or include all features,
regardless of complexity (Roy et al., 2015). However, while NNs
map inputs directly to outcomes, they do not disclose how features
are weighted in relation to the model’s output (Zhao et al., 2015).

XAI methods can provide explanations in many different ways.
Feature attribution methods generate values for each input feature,
highlighting its importance to the AI model’s predictions. However,
these methods can be sensitive to input noise and correlated
features, resulting in misleading conclusions (Adebayo et al., 2018).
They are commonly presented textually (numerically), via bar
charts (Ribeiro et al., 2016), or via heatmaps (Sundararajan et al.,
2017). XAI methods can also provide explanations by visualizing
the models’ internals, e.g., activation maps in Convolutional
Neural Networks, which can quickly become too complex when
dealing with many neurons (Carter et al., 2019). Counterfactual
explanations are a category of explanations that aims to answer
the “why” question with “because if it was something different, it
would be this other thing instead” (Guidotti, 2022). Counterfactuals
are typically computationally intensive, and generating meaningful
counterfactual examples depends on the task context (Artelt and
Hammer, 2019).

Undoubtedly, explaining AI requires numerous considerations.
Despite inherent limitations, each explanation technique enhances
the explainability and transparency of AI systems, thereby
advancing the overarching objective of fostering trustworthy
and accountable AI applications. Many software libraries exist
that make employing XAI methods straightforward. For Python,
the libraries SHAP (Lundberg and Lee, 2017), LIME (Ribeiro
et al., 2016), Captum (Kokhlikyan et al., 2020), and scikit-learn
(Pedregosa, F. et al., 2011) are widespread and cover most XAI
method categories. TheDALEX (Biecek, 2018) library offersmodel-
agnostic explanations for the programming language R.

3.3.3 Methods to evaluate transparency and
explainability

Evaluating explanation methods is vital for assessing their
correctness, efficacy, and practical utility. Various approaches for
estimating the effectiveness and quality of explanations have been
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introduced and can be divided into the following categories (Doshi-
Velez and Kim, 2017):

• Application-grounded evaluations that involve human
participants performing realistic tasks and offer insights into
how XAI methods work in real-world scenarios.

• Human-grounded evaluations that use simplified tasks for
human participants to assess the comprehensibility and
usefulness of explanations provided by the AI systems.

• Functionally-grounded evaluations that rely on proxy tasks
without human involvement, focusing on XAI algorithms’
functionality and their scores against a pre-defined metric of
interpretable quality.

While application and human-grounded approaches focus
on the plausibility and usefulness of explanations to users,
functionally-grounded evaluations estimate the correctness of XAI
algorithms. Various properties of explanation methods can be
examined to determine if they function correctly (Hedström et al.,
2023). Some of these properties are:

• Faithfulness (Alvarez-Melis and Jaakkola, 2018b; Samek et al.,
2016; Šimić et al., 2022) estimates how accurately explanation
methods identify features in the input driving the model
prediction.

• Robustness (Montavon et al., 2018; Alvarez-Melis and
Jaakkola, 2018a) measures an explanation method’s sensitivity
to input perturbations.

• Localization (Selvaraju et al., 2017; Fong and Vedaldi, 2017)
identifies if the explanation method focuses correctly on the
desired regions of interest.

• Complexity (Bhatt et al., 2020; Nguyen and Martínez, 2020)
measures the conciseness of explanations, where less complex
explanations are deemed more interpretable than more
complex ones.

• Randomization quantifies an explanation method’s sensitivity
to modifications of model parameters.

• Axioms (Adebayo et al., 2018; Kindermans et al., 2019) define
criteria that an explanation method has to fulfill.

Hence, careful identification of evaluation aspects is necessary
to address context-specific concerns, such as faithfulness,
robustness, or comprehensibility. For a detailed overview of
evaluation metrics for transparency and explainability, please
also see Hulsen (2023), in which metrics such as simulatability,
decomposability, coherence, or comprehensiveness are mentioned.
Unfortunately, software libraries that offer metrics for validating
explanation methods are scarce; among the few existing ones are
Quantus (Hedström et al., 2023) and AI Explainability 360 (Arya
et al., 2019).

3.3.4 Open issues and research challenges
The requirement for transparency and explainability of AI

faces several open challenges. First and foremost, the research
community needs to fully agree on a common, clear, and precise
definition for transparency in AI systems, which currently leads to

ambiguity regarding what explanations should entail. For instance,
properly calibrating AI explanations to instill the correct amount
of trust in AI models is crucial but complex (Wang et al.,
2019), as it requires a balance between providing understandable
insights without oversimplifying or overwhelming users and, at
the same time, without over or underselling the explained AI
model’s capabilities. Additionally, tailoring explanations for diverse
user groups and individuals remains challenging, as different
stakeholders require different explanations at varying levels of
granularity and detail (Miller et al., 2017; Mendoza et al., 2023).
Furthermore, the evaluation of transparency and explainability of
AI models is challenging, and developing intuitive user interfaces
for explanations poses a design challenge, requiring informative yet
user-friendly interfaces that follow “XAI UI guidelines” (Liao et al.,
2020; Wolf, 2019).

Finally, ensuring transparency and explainability in large
language models and generative AI systems presents unique
difficulties due to their complexity, and it is also unclear how their
explanations should look like (Schneider, 2024).

3.4 Requirement 4: robustness and
accuracy

3.4.1 Definition of robustness and accuracy
Robustness and accuracy are key properties of any AI

system, and ensuring them is an essential part of the AI model
development. Robustness and accuracy—in loose terms—refer to
how “adequate” or “correct” the outputs of an AI model are. In
contrast to other requirements—such as fairness or transparency—
sufficient robustness and accuracy are required for any AI model,
independent of its specific purpose (Huber, 2004).

AI training algorithms are typically designed for general
problem settings (e.g., image-classification tasks). A specific AI
model is then developed for a particular problem. In many problem
settings, various models can be employed. However, in complex
settings, identifying a suitable model becomes challenging, often
requiring the application of a model despite uncertainties regarding
its suitability. In such a case, it is important to use models that
produce reasonable results even if they are used in settings they
were originally not designed for. Under challenging conditions,
some models may behave unpredictably and produce unstable
outputs, whereas other models exhibit more constant behavior, and
the quality of their outputs differs only slightly from the optimal
setting. Clearly, it is preferable to use the latter class of models.
More concretely, Huber (2004) outline three key properties an
AI model should ideally possess. The model should: (1) achieve
optimal or near-optimal results if it is applied in exactly the setting
it was designed for; (2) degrade the quality of the results only
slightly if it is subject to small deviations from the assumed setting;
(3) not trigger nonsensical or dangerous outputs if it is applied
in settings with large deviations from the assumed setting. An AI
model is considered robust if it meets properties (2) and (3), while
property (1) is essential to ensure a sufficiently accuratemodel.

It is optimal to achieve high values in both, accuracy and
robustness, but this is rarely possible. Instead, there is typically
a trade-off between robustness and accuracy. While some models

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2024.1467222
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Kowald et al. 10.3389/fdata.2024.1467222

are more robust and can be applied across different settings, they
come at the cost of lower accuracy. For example, a face detection
algorithm could have very high accuracy in a highly specific setting,
e.g., fixed camera type, fixed angle, and fixed lightning conditions,
but might fail as soon as one of those parameters changes. A
different model, on the other hand, might show slightly lower
accuracy but perform similarly in various settings, e.g., different
camera types and lighting conditions.

Considering robustness and accuracy are crucial in all phases of
the AI-lifecycle (see Section 2). In the design phase, it is important
to make choices that do not compromise the accuracy of the model,
for example, in the selection of appropriate training and testing
data. The development phase is particularly essential, where one
of the core tasks of every AI system development is to ensure
these qualities. Finally, in the deployment phase, robustness and
accuracy metrics need constant monitoring—especially in the case
of continuously changing systems—to ensure a well-working AI
model (Hamon et al., 2020).

3.4.2 Methods to establish robustness and
accuracy

Ensuring accuracy is the core of AI model development and
part of all best practices. Additional core considerations are the
appropriate choice of (1) target metrics the model is trained
on, (2) data splitting techniques (e.g., train-test-splits), and (3)
model selection methods. These three points are part of AI model
developments that, in practice, are often done properly but not
documented in a sufficient manner. To generate trust in AI models,
it is essential to both deliver quality and document all relevant
choices made in the process. These include, for example, the
choice of suitable evaluation metrics, i.e., not only is it necessary
to document the choice (e.g., “F1-score”), but also the reasoning
for that choice (e.g., “classification problem with unbalanced
data”) (Huber, 2004; Hamon et al., 2020).

Ensuring robustness can be done in two principal ways: (1)
by restricting potential models to model types shown to be more
robust (e.g., multilinear regression is generally more robust than
deep learning), or (2) by explicitly evaluating model robustness and
incorporating it in the model selection process. In the process of
model selection, certain model types can be adapted to increase
robustness. For example, fragile models can improve robustness by
introducing mechanics that ignore certain data points or limit their
effect, e.g., a drop-out layer in neural networks (Krizhevsky et al.,
2012), or thresholds (Kim and Scott, 2012). This has the advantage
that the model learns to rely less on specific data points and focus
more on the general information depicted in the majority of the
data. However, “reserved” data usage has a cost: The model has
less data to work with, which puts it at a statistical disadvantage
compared to fragile models that use all data. This cost is particularly
high when the model is used in a setting where accuracy is more
important than robustness (Fisher, 1922).

3.4.3 Methods to evaluate robustness and
accuracy

In the AI literature, there are many different forms of
robustness, e.g., robustness to domain shift (Blanchard et al., 2011;

Muandet et al., 2013; Gulrajani and Lopez-Paz, 2020), adversarial
robustness (Nicolae et al., 2019; Xu et al., 2020), robustness to
noise (Zhu and Wu, 2004; Garcia et al., 2015), robustness to non-
adversarial perturbations (Hendrycks and Dietterich, 2019; Rusak
et al., 2020; Scher and Trügler, 2023), and others. While some
generic robustness scores have been proposed (Weng et al., 2018;
Sharma et al., 2020), they do, in fact, only measure specific types
of adversarial robustness. Therefore, there is no single unified
notion of robustness. Accordingly, as with most other aspects of
trustworthy AI, the type of robustness to be considered depends on
the context.

Accuracy can be measured with a wide variety of metrics. In
technical terms, accuracy is simply the fraction of correct outputs
of an AI model (Naidu et al., 2023). The goal of measuring accuracy
is to measure how “good” or “correct” the outputs of the AI
model are. How “good” or “correct” is defined in practice and
highly depends on the application at hand. Therefore, there is no
single generally applicable accuracy metric. The choice of which
metric or metrics are applicable depends on the type of problem
the AI model attempts to solve (e.g., regression, classification,
ranking, translation), and on the particular properties of the
application. For instance, for classification tasks with balanced
classes, accuracy is a useful metric. However, classification tasks
with highly imbalanced data, this can be misleading, and metrics
such as precision and recall are more appropriate. Regression
tasks require very different evaluation metrics than classification
tasks. Examples are root-mean-square error ormean absolute error.
Which one is more appropriate again depends on the application at
hand. The same holds for ranking tasks, which require yet other
types of metrics (such as mean reciprocal rank or mean average
precision). An overview of these commonly used metrics can be
found in Poretschkin et al. (2023).

3.4.4 Open issues and research challenges
The ongoing surge in generative AI models has opened a

new challenge for existing models with respect to accuracy and
robustness. It has been shown that generative models are, to a
certain extent, capable of producing adversarial examples that cause
catastrophic outputs in existing fragile AI models (Han et al., 2023).
Moreover, some of these examples are transferable from one system
to the next and can be re-used to cause failure in a number of
different AI systems (Wang Z. et al., 2023). Currently, there is
no widely applicable easy strategy to address these issues. Existing
fragile models need to be replaced with more robust models, and
higher accuracy needs to be established for robust models, which
are currently not able to compete with their fragile counterparts.

Providing accuracy is the core of machine learning and AI,
and thus, methods ensuring AI applications are accurate need
to be integrated with the development and improvement of
the models. Accuracy evaluation metrics are well-established in
statistics and machine learning, and their computation is generally
straightforward. However, the choice of a proper metric and the
definition of its thresholds are much more complex. While best
practices exist, no formal guidelines are available. Also, despite
a wide range of established accuracy metrics, there is a need for
additional, new accuracy metrics that are specifically developed and
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tailored to the particularities of distinct applications (Naidu et al.,
2023) —and perhaps also tailored to permit robust solutions.

The field of robustness faces a variety of open issues and
limitations. Robustness is a broad concept that current research
strands do not necessarily cover in all aspects. In part, no
specific methods—besides best-practice examples—are available
for increasing robustness (e.g., robustness against noise). Especially
the problem of adversarial attacks is constituted in a “cat and
mouse game”: if a specific attack strategy is known, AI systems
can be made robust against it by incorporating the attack in
the training procedure—known as adversarial training. However,
this does not guarantee robustness toward a new attack that
has not yet been part of the training. Another open issue is
caused by composite systems, where multiple AI components
are combined or in situations where AI evaluation is part of
a larger product/solution. Moreover, yet unanswered, is how to
assess accuracy and robustness in evolving (learning) AI systems
that are constantly updated (in some cases with every single user
interaction) (Hamon et al., 2020). In general, data quality, as
well as model training and selection, are very important for AI
systems, as these aspects influence accuracy and robustness, among
other qualities such as fairness. Nonetheless, currently, no unified
quality concept is available, even though basic automated tests
are feasible.

3.5 Requirement 5: privacy and security

3.5.1 Definition of privacy and security
Privacy and security are indispensable pillars supporting the

trustworthiness and ethical use of AI systems. Privacy refers to the
data used as input for the AI model and to protecting information
that belongs to the data owner. This information must not be
disclosed to any third parties and may only be disclosed to parties
that the data owner defines. Security, on the other hand, pertains
to the AI model itself and is linked to defending it against any
malicious attacks that aim to impact or manipulate it in an
undesired or harmful way. Both privacy and security risks can
arise along the whole life cycle of AI systems (see Section 2).
Existing countermeasures span a broad spectrum, encompassing
methods from manipulating the input data of AI models for
ensuring privacy and security and designing AI models that are
by themselves private and secure to recent advances that allow the
protection of AI models during the inference process, i.e., during
deployment (Elliott and Soifer, 2022).

If AI is utilized in critical areas such as healthcare, autonomous
vehicles, or national security, it may even endanger human
safety. Incidents like the unintended memorization of sensitive
information by large language models4 highlight the tangible
privacy and security risks associated with AI. These examples
serve as a reminder of AI models’ potential to compromise
privacy and security inadvertently. In response, regulatory bodies,
particularly in the European Union, have been proactive in
updating legal frameworks to address these challenges: The General
Data Protection Regulation (GDPR) and the AI Act are prime

4 https://incidentdatabase.ai/cite/357

examples of such regulatory efforts, aiming to establish clear
guidelines for AI design, development, and deployment (Zaeem
and Barber, 2020).

3.5.2 Methods to establish privacy and security
Understanding the weaknesses of AI systems and identifying

the diverse kinds of attacks on privacy and security is critical
for developing defense strategies and, consequently, evaluating
their effectiveness. Attacks can be classified based on several
aspects, including the attacker’s capabilities and the attack goal.
For example, attackers can deviate from the agreed protocol
(active/malicious) or try to learn as much as possible without
violating the protocol (passive/semi-honest/honest-but-curious).
Moreover, an attacker may be assumed to have finite or infinite
computational power. Based on the attacker’s knowledge, one can
differentiate between black-box attacks (which only access the
model’s output), white-box attacks (which access the full model),
and gray-box attacks (which gain partial access). In the following,
we classify attacks based on the attack goal, i.e., evasion attacks,
poisoning and backdoor attacks, and privacy attacks (BSI, 2022; Bae
et al., 2018):

1. Evasion attacks (including adversarial attacks) aim to mislead
AI models through carefully crafted inputs, forcing incorrect
predictions.

2. Poisoning attacks corrupt the training process, while backdoor

attacks insert hidden triggers into models.
3. Privacy attacks seek to extract sensitive information from AI

models. The most common privacy attacks include:

• Membership inference attacks aim to determine whether a
specific data sample was used in the training phase of the
AI model.

• Attribute inference attacks aim to infer sensitive attributes,
e.g., the gender of individual records.

• Model inversion attacks aim to infer features that
characterize classes from the training data.

• Model extraction and stealing attacks aim to reconstruct
the model’s behavior, architecture, and/or parameters.

Adilova et al. (2022) list best practices to defend against
the aforementioned attacks. In the following, we briefly provide
examples for each class of attacks. Countermeasures against evasion
attacks include: (1) certification or verification of output bounds,
i.e., utilizing certification methods to calculate guarantees on
the output distribution to certify the AI model’s robustness, (2)
adversarial retraining, i.e., incorporating perturbed samples into
the training process, (3) injection of randomness into training,
i.e., using random transformations to protect against attacks, (4)
use of more training data, i.e., enhancing adversarial robustness
with larger and more diverse training datasets, (5) multi-objective
optimization, i.e., not only optimizing for accuracy but balancing
between adversarial robustness and task-specific accuracy, and
(6) attack detection, i.e., implementing detection methods for
malicious inputs. The risk of backdoor and poisoning attacks can
effectively bemitigated by the following strategies: (1) use of trusted
sources, i.e., ensuring reliability and trustworthiness of datamodels;
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(2) random data augmentation, i.e., employing data augmentation
techniques to mitigate the effect of poisoned samples; (3) use of
an auxiliary pristine dataset, i.e., supporting training with trusted
data to dilute the impact of poisoned samples; (4) attack detection,
i.e., applying techniques to identify poisoned samples or models,
including analysis of data distributions and model inspections; (5)
model cleaning, i.e., utilizing methods like pruning, retraining,
or differential privacy to eliminate the influence of triggers or
poisoned data; and (6) adversarial training, i.e., adapting adversarial
training approaches to counter poisoning attacks, enhancingmodel
resilience.

Overall, defending the security of AI models against a variety
of attacks involves a multifaceted approach that combines diverse
techniques and practices, highlighting the need for AI practitioners
to continuously assess and update their defense strategies. Similarly,
the development of privacy-enhancing technologies (PETs) has
been instrumental in protecting AI models from privacy attacks.
The following (incomprehensive) list of PETs details the most
important technologies, which currently form the forefront of
research in private and secure AI computations.

• Homomorphic encryption (HE) (Gentry, 2009; Rechberger
and Walch, 2022; Smart, 2016; Phong et al., 2018) supports
the performing of certain operations on encrypted data
(i.e., without decrypting it). This allows privacy in cloud-
based AI services to be maintained without exposing private
data or model details. However, HE requires substantial
computational resources and entails high computational costs.

• Secure multi-party computation (MPC) (Rechberger and
Walch, 2022; Evans et al., 2018) allows collaborative
computation without revealing individual inputs. In the
context of AI, MPC is especially useful for collaborative
learning and private classification, though it requires
significant communication overhead for many participants.

• Differential privacy (DP) (Dwork, 2008; Dwork and Roth,
2014) bounds the maximum amount of information that
an AI model’s output discloses about an individual data
point by incorporating curated noise into the computation.
Specifically, noise can be added either to the input data,
during the training process, or to the output (Friedman
et al., 2016). While effective in various AI applications,
including deep learning (Abadi et al., 2016) and recommender
systems (Müllner et al., 2023), DP’s main challenge is the
trade-off between privacy protection and accuracy.

• Federated learning (FL) (Zhang et al., 2021; Li et al., 2020) is a
machine learning approach that allows multiple clients, like
mobile phones, to collaboratively learn a model by training
locally and sharing updates with a central server. This method
enhances privacy by keeping data local, although there is a risk
of data reconstruction from model updates (Yin et al., 2021;
Nasr et al., 2019; Ren et al., 2022).

• Synthetic data (Slokom, 2018; Liu et al., 2022) mimics
real data’s statistical features to enable the AI model to
still learn the real data’s features, but without using the
real data. This offers a way to preserve privacy in data
sharing, yet it is not immune to reconstruction risks
(Stadler et al., 2022).

• Transfer learning (Zhuang et al., 2020), while not a PET per

se, contributes to privacy by fine-tuning pre-trained models
on new tasks with minimal data, reducing the need for large
private datasets (Gao et al., 2019). Similar ideas are also
employed by PETs based on meta-learning (Muellner et al.,
2021).

The described defense methods can also be combined to
increase privacy and security. For example, DP canmitigate the risk
of reconstruction in FL (Wei et al., 2020) and synthetic data (Tai
et al., 2022; Stadler et al., 2022).

3.5.3 Methods to evaluate privacy and security
The vulnerability of AI models to privacy and security

attacks can be assessed using two complementary approaches:
mathematical analysis and attack-based evaluation. Mathematical

analysis offers formal proofs of privacy and security features within
a system, much like cryptography, guaranteeing system security
under certain assumptions (e.g., DP). This method is crucial,
especially when introducing new privacy or security techniques,
as it requires thorough checks for implementation errors and
the appropriate selection of parameters. On the other hand,
attack-based evaluation gives us practical insight into how an
AI model reacts to various attack strategies. This method tests
the model’s vulnerability to different attacks and determines its
resilience by using various metrics (Wagner and Eckhoff, 2018;
Pendleton et al., 2016). These metrics might include the attacks’
success rate, the effort required to breach the model (measured in
iterations), the precision of the attack, and the smallest necessary
data alterations to compromise the model successfully (BSI, 2022).
The choice of metrics depends on the nature of the attack
and on assumptions about the attacker’s skills and knowledge.
It is tailored to each specific scenario and model based on
potential threats and existing literature. However, it is important
to acknowledge the limitations of attack-based evaluations. While
they can pinpoint specific weaknesses and vulnerabilities, they
do not offer a comprehensive guarantee of privacy or security.
Additionally, these evaluations only cover known attack scenarios,
leaving the potential for undetected vulnerabilities against new or
complex attack techniques.

3.5.4 Open issues and research challenges
Despite the existing countermeasures, the AI privacy and

security field still faces numerous unresolved challenges. Many
defense strategies cannot fully mitigate the models’ vulnerability
to attacks, especially not to adversarial and poisoning attacks.
Additional challenges emerge with the increasing advancement
of generative AI, particularly in models that rely heavily on
unstructured data such as text. For example, establishing clear
boundaries on what constitutes private information becomes
increasingly difficult due to the inherent complexities of
unstructured data (Brown et al., 2022). PETs often introduce
trade-offs, such as increased computational demands (HE and
MPC) (Moore et al., 2014), reduced prediction accuracy and
increased unfairness (DP) (Abadi et al., 2016; Bagdasaryan et al.,
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2019; Müllner et al., 2024), or a surge in communication overhead
while having no privacy guarantees (FL) (Almanifi et al., 2023;
Bagdasaryan et al., 2020). Therefore, integrating PETs smoothly
into AI systems without compromising performance remains
complex and requires further research. Just as for fairness and
robustness, evaluating privacy and security when combining
multiple AI components is challenging. Adding components
that protect against one identified risk can even introduce new
vulnerabilities (Debenedetti et al., 2023).

In general, fostering secure model sharing and privacy-
preserving collaboration, developing standardized evaluation
metrics, and preparing for advanced AI threats necessitate
a collaborative approach among researchers, developers, and
policymakers. Ongoing research and shared best practices will be
crucial for building a secure, privacy-conscious AI ecosystem.

3.6 Requirement 6: accountability

3.6.1 Definition of accountability
Another key requirement for trustworthy AI is accountability.

At its heart, accountability is the obligation to notify an authority
of one’s conduct and to justify it (Bovens, 2007; Brandsma and
Schillemans, 2012; Novelli et al., 2023; Hauer et al., 2023; Wieringa,
2020), whereas responsibility includes explicit obligations defined
in advance (Bivins, 2006) and can be seen as a subcategory of
accountability (Gabriel et al., 2021). Liability is closely related to
accountability and means legal responsibility, including sanctions
for misbehavior. In this article, we, therefore, see liability as a sub-
concept of accountability and solely use the term accountability.

From a conceptual perspective, accountability can also
be defined as a virtue or as a mechanism (Bovens, 2010).
Accountability “refers to the idea that one is responsible for their
action—and as a corollary their consequences—and must be able
to explain their aims, motivations, and reasons”.5

The definition of Bovens (2007) is widely used as the basis for
addressing accountability and identifies the following key elements
of accountability: actor, forum, relationship between these two,
account, and consequences. The actors, as natural persons, groups
or organizations (e.g., developers, deployers, manufacturers, or
users of AI systems), shall be able to explain their actions (e.g., used
models and data, intended use, planned outcomes, and potential
malfunctions of AI systems) by certain criteria to the forum (e.g.,
a court, a supervisor, an auditor), that can “pose questions and
pass judgments”. The relationship between actor and forum can
vary and involves individual, hierarchical, collective and corporate
accountability. Finally, there will be consequences (e.g., fines for
non-compliance with rules).

3.6.2 Methods to establish accountability
When addressing accountability features such as context, the

range of actions taken, the acting entity, the forum as the bearer of
interests and imposed standards, processes, and implications must
be considered (Bovens, 2007) to be able to achieve compliance,

5 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-

trustworthy-ai

report, oversight, and enforcement (Novelli et al., 2023). Thus,
accountability is always relational (Bovens, 2007), contextual
(Lewis et al., 2020) and involves single persons, other entities, as
well as groups and societies. Depending on impacts, different levels
of accountability are required (Cech, 2021).

Accountability systems range from hard law regulations
over functional roles within organizations (Novelli et al., 2023)
to social norms that, in turn, form the basis for decision-
making and behavior (Gabriel et al., 2021). In the field of
software development, responsibility involves maintaining quality
in the design process (Eriksén, 2002), implementing tools for
characterizing system failure (Nushi et al., 2018), as well as using
transparency and inspection mechanisms (Hauer et al., 2023).
So called “algorithmic accountability” is also described as the
expectation that people along the AI-lifecycle (see Section 2)
will comply with legislation and standards to ensure the proper
and safe use of AI and involves not only the use, design,
implementation, and consequences but the whole “socio-technical
process” (Hauer et al., 2023; Novelli et al., 2023; Wieringa, 2020).
Thus, accountability shall ensure compliance with requirements
such as fairness, transparency, and robustness (Durante and
Floridi, 2022; Novelli et al., 2023). Therefore, it also requires
that mechanisms for auditability, minimization, and reporting of
negative impacts, trade-offs, and redress are in place. Therefore,
accountabilitymust be ensured along the whole AI-lifecycle—in the
design phase, the development phase, and the deployment phase.

3.6.3 Methods to evaluate accountability
Due to the versatility of accountability, its evaluation is

challenging. Numerous approaches for evaluating accountability
regarding AI systems are put forth.6 For example, Tagiou
et al. (2019) suggest a “a tool-supported framework for the
assessment of algorithmic accountability” that focuses on both
algorithmic and organizational aspects and Cech (2021) proposes
the “Accountability Agency Framework (A3)” as an analytic lens
as a qualitative, explorative, and complementary tool to assess
algorithmic accountability, which is based on Bovens (2007)’s
definition of accountability. Their framework encompasses
four steps: requesting information, providing account,
imposing consequences, and effective change. Additionally, it
provides a series of guiding questions for assessing algorithmic
accountability (Cech, 2021). Xia et al. (2024) proposed a granular
AI Metrics catalog that includes process, resource, and product
metrics and is specially designed for generative AI. Besides,
numerous other, mainly contextualized frameworks, which range
from accountability in organizations (Buhmann and Christian,
2019), public reason (Binns, 2018) and public service (Brown et al.,
2019) to “AI robots accountability” (Toth et al., 2022) frameworks
have been proposed. From a qualitative perspective, approaches
that, for instance, take human rights into account are discussed
(McGregor et al., 2019).

In general, Brandsma and Schillemans (2012) suggest a
so-called “accountability cube” as a quantitative assessment tool
for assessing accountability, considering three dimensions

6 In this article, we only present individual approaches as examples without

any claim to completeness.
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of accountability processes: information, discussion, and
consequences/sanctions. Accordingly, accountability is “high”
if there is much information, intensive discussions, and several
opportunities to impose consequences. This approach can be
applied in various contexts along the AI-lifecycle. Without any
closer examination of the approach itself, we use the accountability
cube to exemplify possible evaluation criteria of algorithmic
accountability.

To start with, much information is given if people are aware of
basic technical outlines, chances, and risks of AI in the respective
context and know their obligations along the lifecycle of AI,
including, for instance, information, documentation, and risk-
assessment obligations. From our point of view, AI literacy is
essential to this. Discussion is intensive if an informed exchange of
views on AI systems and regulation—whether formal or informal—
takes place between multiple stakeholders (e.g., policymakers,
NGOs, technical experts, civil society, as well as companies and
individuals). Besides, there shall be meaningful opportunities to
explain actions (e.g., using certain design concepts/training data
or using AI systems in certain situations). Finally, effective and
proportionate consequences (e.g., penalties for non-compliance
with rules and effective redress) shall be in scope. This, in turn,
creates a need for clear and feasible rules.

Notably, the weight of these principles can vary. To exemplify,
the “accountability rate” might still be high if there are clear non-
binding standards with no legal consequences that are widely
adhered whereas it is lower if there are binding rules that are not
being followed due to societal rejection or inefficient enforcement.
The weight of the principles might also vary in different contexts.
For instance, in policymaking, intensive discussion might have a
higher priority than in company internal processes.

3.6.4 Open issues and research challenges
In practice, evaluating algorithmic accountability poses severe

problems. One of the biggest challenges is that algorithmic
accountability is a “multifaceted and context-sensitive challenge”
(Cech, 2021). At present, standards, standardized methods, and
metrics covering different aspects of the AI-lifecycle, from design
to deployment, are still incomplete and, therefore, do not provide
sufficient legal security. Vague terms confront norm addressees
with legal uncertainty when interpreting these norms. In turn,
organizations are unable to implement sufficient accountability
mechanisms within their organization.

On the one hand, accountability gaps arise if rules are
inconsistent, unclear, or not feasible, and therefore, they lead to
ineffective redress of victims. On the other hand, rules which are
too strict generate accountability surpluses, which in turn decrease
technological and economic growth (Bovens, 2007; Novelli et al.,
2023). AI policymakers aim to close these accountability gaps that
might arise due to the unpredictable, opaque nature of AI systems
(Novelli et al., 2023; Busuioc, 2020). Several measures, like model
certification, algorithmic impact assessments, real-world testing,
and third-party audits, could foster accountability (Busuioc, 2020).
Such measures are also included in the AI Act. For example, there
are documentation, information, and transparency obligations for
providers of high-risk AI systems, there are third-party checks,
and testing in real-world laboratories is enabled. Rules are also

amendable according to technical changes, demonstrating effective
change if needed.

Notably, developing sufficient rules, including ethical and
technical standards, that cover the whole AI-lifecycle is challenging,
as AI systems are complex and based on various programming
methods, developing rapidly and can have wide-ranging effects on
people (Cech, 2021). Generative AI systems seem to exacerbate this
problem due to their large scale, complexity, and adaptability (Xia
et al., 2024). Consequently, it is particularly difficult to find
suitable metrics for evaluating the trustworthiness of generative
AI. To ensure “actionable” accountability, both technical and non-
technical aspects, among them legal and ethical aspects, must be
considered (Stix, 2021). When creating rules and standards on
AI, it is crucial to weigh up technical and economic aspects. An
informed dialogue between policymakers, (technical) experts, and
civil society is essential to reaching sufficient rules and avoiding
unnecessary bureaucracy.

4 Conclusion and future research

In this paper, we investigated the following six requirements
of trustworthy AI: (1) human agency and oversight, (2) fairness
and non-discrimination, (3) transparency and explainability, (4)
robustness and accuracy, (5) privacy and security, and (6)
accountability. With respect to our guiding research question
introduced in Section 1 (i.e., What is the current state of research

regarding the establishment and evaluation of comprehensive—

technical, human-centered, and legal—requirements of trustworthy

AI?), our findings confirm that ensuring AI systems meet these
criteria is a complex endeavor requiring technical solutions, policy
frameworks, and interdisciplinary collaboration. Additionally,
our article demonstrates that while evaluation and validation
methodologies for technical requirements, such as robustness, can
often rely on well-established metrics and testing procedures (e.g.,
model accuracy), assessing human-centric considerations demands
more nuanced approaches that take into account ethical, legal, and
cultural factors. Therefore, we believe that our article complements
existing surveys and assessment lists [e.g., ALTAI (Ala-Pietilä et al.,
2020; Radclyffe et al., 2023)] of trustworthy AI.

This section further synthesizes our key observations across
these very different aspects of AI systems in relation to their
trustworthiness and discusses the implications of this overarching
analysis. Additionally, Figure 4 visualizes these overarching
research challenges in relation to the phases of the AI-lifecycle
mentioned in Section 2.

• Interdisciplinary research. The interdisciplinary nature of
trustworthy AI research becomes apparent when considering
the different scientific foundations necessary to discuss the
design, development, and deployment of trustworthy AI.
This demand for interdisciplinarity is also recognized by
initiatives like the human-centered AI (HCAI) workshops
and sessions at AI conferences such as NeurIPS,7 as well
as the FAccT community’s work on fairness, accountability,
and transparency in AI.8 However, broader collaboration is

7 https://hcai-at-neurips.github.io/site/

8 https://facctconference.org/
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FIGURE 4

Overarching research challenges identified in this paper in relation
to the AI-lifecycle phases.

needed. In particular, insights from social scientists, ethicists,
and policymakers can complement technical research, for
example, in fairness definitions, explainability, or human
oversight. At the same time, interdisciplinary research comes
with its own challenges, such as distinct disciplinary-specific
jargon. Thus, agreeing on standardized, cross-disciplinary
terminology remains an ongoing challenge in various subjects.

• Conceptual clarity and interdependencies. Across
all trustworthy AI requirements, we see the need to
sharpen definitions and to consider interdependencies and
relationships between concepts. This involves understanding
the potential trade-offs between requirements, such as
fairness and accuracy or explainability and privacy. Such
conceptual clarity and knowledge of interdependencies will
help in designing trustworthy AI with regard to specific
requirements while allowing for informed discussions of
trade-offs. Therefore, it is essential to consider potential
trade-offs and interdependencies already when designing
trustworthy AI systems.

• Context-dependency of trustworthiness. Our research
indicates that AI requirements are very context-dependent.
This means that any insights for developing trustworthy AI
are challenging to transfer across different contexts due to
cultural and application-specific aspects. Different interaction
patterns between humans and AI will be appropriate in
different contexts, and definitions of trustworthiness vary
between societies and applications. This raises questions
about the sufficiency of existing evaluation frameworks
and suggests the need for new approaches that can better
adapt to contextual differences. Additionally, if an audited
algorithm is reused and fails to meet requirements in a
different context, assigning responsibility becomes complex.
Even more difficult is the handling of AI solutions that
consist of multiple interacting components, i.e., composite
systems. Understanding how different components interact
and affect each other is crucial when algorithms are reused
in conjunction with other components. Even if single

components are considered trustworthy, the results of their
interplay potentially violate the requirements of trustworthy
AI. Such uncertainties affect the licensing and use of software
frameworks, which emphasizes the importance of developing
licensing models that clearly outline accountability while
promoting the responsible use of AI.

• Dynamics in evolving systems.One of the emerging issues in
trustworthy AI is the potential of learning unintended facets
during deployment. In evolving systems (i.e., systems that
learn during deployment), in particular, the capturing of biases
may lead to trustworthiness issues, especially with respect
to fairness and non-discrimination. Such biases are often
cognitive biases of users, which are acquired through ongoing
learning cycles and require more sophisticated research
to form a deeper understanding of related patterns and
furthermore, develop approaches for detection andmitigation.
This concern also highlights the necessity of dynamic and
adaptive evaluation and simulation frameworks. Since the
majority of trustworthy AI evaluation schemes operate in a
static manner, additional research is needed to investigate,
monitor, and capture long-term dynamics of trustworthiness.

• Investigating trustworthy AI in real-world contexts. Due
to the complexity of AI systems and their contextual
dependencies, it is crucial to study their functionality in real-
life contexts to gain a deeper understanding of their impact.
The involvement of human factors, such as how a system is
used by different people and how this fits into a complex
socio-technical context, makes real-world investigations very
challenging from a methodological standpoint. However,
for some requirements on AI systems, such as fairness or
human agency, this may be particularly important to the
extent that fully valid statements about these concepts may
only be made after investigation in real-world contexts.
Thus, monitoring the trustworthiness of AI is an ongoing
investigation, especially after the system has been deployed in
a real-world context.

Finally, and as outlined in Sections 3.1–3.6, the current
developments around generative AI and LLMs introduce new
challenges for establishing and evaluating trustworthy AI.
Therefore, future research also needs to investigate how existing
trustworthy AI methods and definitions (e.g., fairness metrics
for binary classification problems) can be transformed into more
general settings provided by generative AI and LLMs. We hope
that our paper provides a reference point for both researchers and
practitioners in the field of trustworthy AI and a starting point for
future research directions addressing the open research challenges
identified in this work and discussed in this section.
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