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Toward a physics-guided
machine learning approach for
predicting chaotic systems
dynamics

Liu Feng1, Yang Liu1, Benyun Shi2 and Jiming Liu1*

1Department of Computer Science, Hong Kong Baptist University, Hong Kong, China, 2College of

Computer and Information Engineering, Nanjing Tech University, Nanjing, China

Predicting the dynamics of chaotic systems is crucial across various practical

domains, including the control of infectious diseases and responses to extreme

weather events. Such predictions provide quantitative insights into the future

behaviors of these complex systems, thereby guiding the decision-making

and planning within the respective fields. Recently, data-driven approaches,

renowned for their capacity to learn from empirical data, have been widely used

to predict chaotic system dynamics. However, these methods rely solely on

historical observations while ignoring the underlying mechanisms that govern

the systems’ behaviors. Consequently, they may perform well in short-term

predictions by e�ectively fitting the data, but their ability to make accurate

long-term predictions is limited. A critical challenge in modeling chaotic systems

lies in their sensitivity to initial conditions; even a slight variation can lead to

significant divergence in actual and predicted trajectories over a finite number

of time steps. In this paper, we propose a novel Physics-Guided Learning

(PGL) method, aiming at extending the scope of accurate forecasting as much

as possible. The proposed method aims to synergize observational data with

the governing physical laws of chaotic systems to predict the systems’ future

dynamics. Specifically, our method consists of three key elements: a data-driven

component (DDC) that captures dynamic patterns and mapping functions

from historical data; a physics-guided component (PGC) that leverages the

governing principles of the system to inform and constrain the learning process;

and a nonlinear learning component (NLC) that e�ectively synthesizes the

outputs of both the data-driven and physics-guided components. Empirical

validation on six dynamical systems, each exhibiting unique chaotic behaviors,

demonstrates that PGL achieves lower prediction errors than existing benchmark

predictivemodels. The results highlight the e�cacy of our design of data-physics

integration in improving the precision of chaotic system dynamics forecasts.
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1 Introduction

Chaotic systems are ubiquitous, from academic research in physics (Pecora andCarroll,

1990; Grassberger and Procaccia, 1983) and chemistry (Hess, 1990; Field et al., 1993)

to real-world domains such as epidemiology (Aguiar et al., 2008; Mishra et al., 2020)

and climatology (Palmer, 1993; Olsen et al., 2019). By predicting the dynamics of these

systems, we can gain valuable insights into their future behaviors, which can not only
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help us understand the underlying mechanisms of these systems

but, more importantly, effectively inform and guide the decision-

making process in real-world problems within the respective

fields. For example, forecasting the dynamical behaviors in the

spread of epidemics can help us uncover the disease transmission

patterns and, accordingly, deploy effective intervention strategies

to control infectious diseases (Mangiarotti et al., 2016). Predicting

the dynamics of variables in the climate system, such as temperature

and precipitation, can help us be well prepared for extreme weather

events (Toreti et al., 2013).

In recent years, with the availability of large amounts of

data and the advancement of computing power, many studies

have utilized data-driven approaches to analyze and predict the
dynamics of chaotic systems. These methods generally utilize

the given data to learn the mapping function between historical
observations and the future value of the target variable, and then

use the learned mapping function to conduct the prediction.
Typical data-driven methods that have been widely used in

chaotic system dynamics prediction include long short-term
memory networks(LSTM) (Hochreiter, 1997; Chattopadhyay et al.,

2020), reservoir computing (Jaeger, 2001; Pathak et al., 2018),

etc. The above methods have been proven to be effective for
the short-term prediction of chaotic systems, demonstrating an
ability to capture the instantaneous dynamics (Chantry et al.,

2021). However, their ability to make long-term predictions is
limited, especially for those rapidly evolving chaotic dynamical

systems, where even a slight initial variation can result in
significant differences as the evolution over time (Lorenz, 1963).

The reason could be that such data-driven methods rely solely

on historical observations during the learning process but

ignore the underlying mechanisms of chaotic systems, which

are, in fact, of great importance in characterizing the systems’

dynamical behaviors.

To overcome the limitations of pure data-driven models in

predicting chaotic system dynamics and to enhance prediction

performance, several existing studies have combined data with

physical mechanisms. For example, PIESN (Doan et al., 2020)

and its variant (Na et al., 2023) encode the systems’ governing

equations into the models’ loss functions, penalizing predictions

that deviate from physical laws. Furthermore, other methods

utilize physical knowledge to help reconstruct and predict the

dynamics of chaotic systems with unmeasured variables (Racca

and Magri, 2021; Özalp et al., 2023). These methods, however,

typically require complete and precise knowledge of the governing

differential equations of the systems, including the equation

parameters, to effectively guide the predictive models, which

limits their applicability. Meanwhile, the reconciliation between

data-driven approaches and prior physical knowledge remains

an open yet essential problem in the prediction of chaotic

systems’ dynamics.

To effectively extend the capability for chaotic dynamics

prediction, in this paper, we introduce a novel method called

Physics-Guided Learning (PGL). Inspired by a recently developed

physics-informed neural network (PINN), which was originally

designed for solving forward and reverse problems in nonlinear

partial differential equations (Raissi et al., 2019), our PGL method

seeks to synergize observational data with the governing physical

laws of chaotic systems. In our study, we operate under the

assumption that the knowledge of the dynamical system we aim

to predict is partially available. Specifically, we assume familiarity

with the structure of the ordinal differential equations, while

the parameters of these equations remain unknown and will be

inferred throughout the learning process. This modest assumption

has been widely adopted in recent research in physics-informed

machine learning and aligns with many real-world scenarios where

precise governing equations are not accessible (Misyris et al.,

2020; Nath et al., 2023; Ning et al., 2023). For example, in

climate modeling, researchers often rely on the well-established

Navier-Stokes equations, despite the challenges in determining

their exact parameters and solutions (Yang et al., 2023; Gao et al.,

2024). The architecture of PGL is composed of three integral

components: a data-driven component that learns the dynamical

patterns and mapping functions from historical observations, a

physics-guided component that exploits and represents systems’

governing mechanisms, and a nonlinear learning component that

integrates the output from the data-driven component and that

from the physics-guided component in a proper way. The objective

functions of these three components will be jointly optimized to

achieve the desired goal of chaotic dynamics prediction.

Several related works have explored the use of neural

networks to generate chaotic dynamics. Notably, Hopfield Neural

Networks (Hopfield, 1984) with memristors (Chua, 1971) have

attracted much attention due to their flexible network architecture

and bio-inspired characteristics. These models have been employed

to produce a variety of chaotic dynamics, including multi-scroll,

coexisting, and hyperchaotic attractors (Li et al., 2022; Kong et al.,

2024; Deng et al., 2024). In contrast to approaches that generate

dynamics with chaotic characteristics for applications such as image

encryption (Liu et al., 2019) and privacy protection (Hu et al.,

2024), and that do not necessitate reference to a specific dynamical

system, our study seeks to predict the dynamical behaviors of

a particular chaotic system. We employ data-driven methods,

specifically neural networks, leveraging historical observations

and partial knowledge of the chaotic system being modeled. By

integrating data with physical principles, we aim to extend the

scope and accuracy of chaotic dynamics prediction.

The remainder of this paper is organized as follows. Section 2

outlines the proposed methodology, with a detailed explanation of

its core principles, architecture design, and learning processes. In

Section 3, we present the settings and results of our experiments

on six typical chaotic systems, which are designed to validate

the effectiveness of the proposed method in the task of chaotic

dynamics prediction. Finally, we conclude our work in Section 4.

2 Methodology

In this section, wewill outline the formalism and computational

mechanism of the proposed PGL method. We begin by defining

the learning problem and providing an overview of the method.

Subsequently, we present the mathematical definition and

formulation of the proposed method for chaotic system dynamics

prediction, which integrates data and physical understanding. To

enhance the clarity, we detail the method’s structure, workflow,

and objective function.
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2.1 Problem statement

First, we state the definition of chaotic system dynamics

prediction. For a chaotic systemwithN state variables, we represent

the system’s state observations at time t as Xt = [x1t , x
2
t , . . . , x

N
t ].

Xt−L+1 : t = [Xt−L+1,Xt−L+2, . . . ,Xt] denotes the historical data

containing L time steps. Meanwhile, the time point sequence

Tt−L+1 : t = [t − L + 1, t − L + 2, · · · t] corresponding to the

system’s state value sequence Xt−L+1 : t is also recorded. The target

of chaotic system dynamics prediction is to learn the underlying

state transition function and the potential dynamics of the system

based on the historical data and governing physical laws, and

then forecast the subsequent state of the chaotic system, denoted

as X̃t+1. To achieve this goal, we devise a PGL method that

makes use of both the observational data and the underlying

dynamical mechanism of the chaotic system. Specifically, the

proposed method comprises three core components: a data-driven

component (DDC), a physics-guided component (PGC), and a

nonlinear learning component (NLC). In the subsequent section,

we will furnish a more detailed exposition of our design.

2.2 Physics-guided learning

Figure 1 illustrates the architecture of the proposed method

PGL, consisting of DDC, PGC, and NLC. For the DDC, we use

a three-layer LSTM with 20 hidden units each, followed by a

dense layer. For the PGC, we refer to the PINN configuration

(Raissi et al., 2019), using a 10-layer neural network with 32

neurons in each layer. For the third component NLC, note that it

is intentionally designed to affirm the feasibility of the proposed

idea of integrating data-driven and physics-guided components.

Due to the real-world data often exhibits different complex

nonlinear patterns, our model, which can be seen as a physics-

guided learning framework, is designed with flexibility, allowing

for the incorporation of different sophisticated neural network

architectures to accommodate and adapt to these higher levels of

complexity. In this paper, we utilize two typical architectures–the

multi-layer perceptron (MLP)1 and the attention mechanism–as

examples to demonstrate our design of the NLC. Specifically, the

MLP-based NLC has two layers: one input layer and one output

layer. In the attention-based NLC, we utilize the cross-attention

mechanism to capture the nonlinearity in the DDC and PGC’s

outputs (Vaswani, 2017; Shi et al., 2024). Note that other deep

learning modules or architectures can also be flexibly integrated

into our framework as the NLC. Next, we will elaborate in detail

on how these three components work together to predict the

dynamical behaviors of chaotic systems.

2.2.1 Data-driven component
Firstly, we obtain the prediction of the data-driven branch for

the next time step, denoted by Xdata
t+1 = DDC(Xt−L+1 : t). We expect

the long short-term memory (LSTM) structure in the DDC to

1 A preliminary version of this work appeared in the 4th French Regional

Conference on Complex Systems (FRCCS 2024) (Feng et al., 2024).

capture both short-term and long-term temporal dependencies in

the historical state sequence through its unique gating mechanism

and make predictions for the next time step.

2.2.2 Physics-guided component
Afterward, we extend the Tt−L+1 : t , turning it into Tt−L+1 : t+L,

which is further fed into the PGC. The PGC generates the

system state predictions that are of equal length to the extended

time sequence Tt−L+1 : t+L. This process is shown in the

following equation:

X
phy
t−L+1 : t+L = PGC(t − L+ 1, t − L+ 2, ..., t + L), (1)

where X
phy
i =

[

x
phy
i , y

phy
i , z

phy
i

]

. We expect that, with the guidance

of physical knowledge, the PGC can learn the dynamics of the

system and assist the entire model in making predictions. Note that

the design of PGC is general and can be used in various chaotic

systems. Here, for a better explanation, we use the typical Lorenz

system (Lorenz, 1963) as an example to show how the PGC works.

The only information that we have is the form of the system’s

equations shown in the following Equation 2, and we do not know

the crucial initial values and system parameters.

dx

dt
= a(y− x),

dy

dt
= cx− y− xz,

dz

dt
= xy− bz.

(2)

Following the work of physics-informed neural networks in

Raissi et al. (2019), we utilize the automatic differentiation tools

within the deep learning framework PyTorch (Paszke et al., 2017)

to compute the derivative of the PGC’s output X
phy
t−L+1 : t+L with

respect to its input Tt−L+1 : t+L, yielding the following:

∂X
phy
t−L+1 : t+L

∂t
=

[

∂X
phy
t−L+1

∂t
,
∂X

phy
t−L+2

∂t
, · · · ,

∂X
phy
t+L

∂t

]

, (3)

where
∂X

phy
i

∂t =

[

∂x
phy
i
∂t ,

∂y
phy
i
∂t ,

∂z
phy
i
∂t

]

. We expect that the

approximate derivatives conform to the definition of the Lorenz

system, and therefore, we have calculated the residuals with respect

to the physics-guided component, as shown below.

lossphy = λ1lossx + λ2lossy + λ3lossz ,

lossx =

t+L
∑

i=t−L+1

∣

∣

∣

∣

∣

∂x
phy
i

∂t
− ã

(

y
phy
i − x

phy
i

)

∣

∣

∣

∣

∣

2

,

lossy =

t+L
∑

i=t−L+1

∣

∣

∣

∣

∣

∂y
phy
i

∂t
−

(

c̃x
phy
i − y

phy
i − x

phy
i z

phy
i

)

∣

∣

∣

∣

∣

2

,

lossz =

t+L
∑

i=t−L+1

∣

∣

∣

∣

∣

∂z
phy
i

∂t
−

(

x
phy
i y

phy
i − b̃z

phy
i

)

∣

∣

∣

∣

∣

2

,

(4)

where λ1, λ2, and λ3 are hyper parameters which can be selected by

a grid search strategy from a predefined rough range in practice. ã,
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FIGURE 1

Illustration of the architecture of the proposed method PGL, which is composed of three core components: a data-driven component (DDC), a

physics-guided component (PGC), and a nonlinear learning component(NLC).

b̃, and c̃ are trainable parameters of the model. Note that the true

parameters of the chaotic systems remain unidentified for the PGC

and for the proposed PGL model, a scenario that is typical in real-

world applications. It is our expectation that the proposed model

is capable of learning and characterizing the systems’ dynamics

even in the presence of such uncertainties. Additionally, since we

have the ground truth Xt−L+1 : t , we conduct supervised learning

by minimizing the following lossdata:

lossdata =
1

L

t
∑

i=t−L+1

∣

∣

∣
X
phy
i − Xi

∣

∣

∣

2
. (5)

By incorporating penalty terms based on physics and data, we hope

that the PGC can rely on known physical knowledge and work in

collaboration with the DDC to predict chaotic systems.

2.2.3 Nonlinear learning component
Next, a nonlinear learning component will balance the

predicted X
data
t+1 and X

phy
t+1 from DDC and PGC to provide the

final prediction X̃t+1 for the system at the time step t + 1. In

the following, we will introduce the MLP-based NLC and the

Attention-based NLC, separately.

2.2.3.1 MLP-based NLC

In the MLP-based NLC, we utilize a classical structure of MLP

to conduct the nonlinear learning task, which can be described as

the following equation:

X̃t+1 = NLC
(

concatenate
(

X
data
t+1 ,X

phy
t+1

))

, (6)

where X̃t+1 represents the predicted value for the next time step. To

constraints the learning process, we also calculate the loss which is

formulated as follows:

lossNLC =
∣

∣X̃t+1 − Xt+1
∣

∣

2
, (7)

where Xt+1 denotes the ground truth value of the system’s state

variable at time step t+1, which serves as the label in our supervised

learning. It is important to note that the data forXt+1 in Equation 7

is exclusively accessible during the training phase. This information

is not available during the testing phase, where the model must

predict Xt+1 without the aid of ground truth values.

2.2.3.2 Attention-based NLC

In the Attention-based NLC, we use a specifically designed

attention mechanism, i.e. the cross-attention, to learn the

nonlinearity and make the final predictions. First, the attention

mechanism generates the query Qdata, the key Kdata, and the value

Vdata by applying linear transformations to X
data
t+1 , i.e., Qdata =

X
data
t+1 · Wdata

q , Kdata = X
data
t+1 · Wdata

k
, and Vdata = X

data
t+1 · Wdata

v ,

whereWdata
q ,Wdata

k
, andWdata

v are the trainable matrices. Similarly,

we can obtain the query Qphy, the key Kpyh, and the value Vphy by

performing the same calculation for the output of PGCX
phy
t+1. Then,
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we can further calculate the attention feature maps Adata and Aphy

based on these units:

Adata = softmax(
QdataK

T
data

√

dKdata

) · Vdata + X
data
t+1 ,

Aphy = softmax(
QphyK

T
phy

√

dKphy

) · Vphy + X
phy
t+1,

(8)

where dKdata
and dKphy

denote the dimensions of Kdata and Kpyh,

respectively, and somfmax is an activation function. By doing so, we

intend to learn the important information in the outputs fromDDC

and PGC separately, so as to guarantee the prediction performance.

Next, we attempt to capture the nonlinear relationships

between X
data
t+1 and X

phy
t+1 by applying the cross-attention

mechanism. The cross-attention feature map CAdata can be

obtained by using Qphy to query the key-value pair (Kdata,Vdata):

CAdata = softmax(
QphyK

T
data

√

dKdata

) · Vdata + X
data
t+1 . (9)

Similarly, the cross-attention feature map CAphy can be calculated

as follows:

CAphy = softmax(
QdataK

T
phy

√

dKphy

) · Vphy + X
phy
t+1. (10)

Finally, all the feature maps obtained above are concatenated

and fed into the output layer, to make the final prediction X̃t+1:

X̃t+1 = F
(

concatenate
(

Adata,Aphy,CAdata,CAphy
))

, (11)

where F denotes the output layer in the Attention-based NLC.

Same as MLP-based NLC, we also calculate the loss lossNLC =
∣

∣X̃t+1 − Xt+1
∣

∣

2
, to constraint the learning process.

2.2.4 Objective function
The final optimization objective function, which takes account

of both data and physics, is given as follows:

min(w1lossNLC + w2lossdata + w3lossphy), (12)

where w1, w2, and w3 are hyper parameters.

3 Experimental results

In this section, we use six dynamical systems with different

chaotic behaviors, i.e., the Rossler, Aizawa, Lorenz, Chua, Chen,

and Halvorsen systems, which are widely used in chaotic systems

dynamics prediction (Nasiri and Ebadzadeh, 2022; Cheng et al.,

2021; Na et al., 2021; Wu et al., 2024; Kennedy et al., 2024; Gilpin,

2021), to validate the performance of the proposed PGL method

in long-term forecasting of chaotic dynamics. We also perform an

ablation study to analyze the contributions of different components

of the proposed method to the chaotic dynamics prediction.

3.1 Descriptions of chaotic systems

3.1.1 Rossler system
In 1976, Rössler (1976) proposed the well-known Rossler

system, which exhibits chaotic phenomena and nonlinear

dynamical behavior. The system is defined by the following

differential equations:

dx

dt
= −y− z,

dy

dt
= x− ay,

dz

dt
= b+ xz − cz.

(13)

3.1.2 Aizawa system
In 1982, Aizawa and Uezu (1982) introduced a new chaotic

system, which has multiple three-order nonlinear terms. The

Aizawa system can be described by the following equations:

dx

dt
= (z − b)x− dy,

dy

dt
= dx+ (z − b)y,

dz

dt
= c+ az −

z3

3
− (x2 + y2)(1+ ez)+ fzx3.

(14)

3.1.3 Lorenz system
In 1963, Lorenz (1963) discovered the existence of a

peculiar “butterfly effect” in meteorological systems when studying

convective instability. The Lorenz system can be described by the

following equations:

dx

dt
= a(y− x),

dy

dt
= cx− y− xz,

dz

dt
= xy− bz.

(15)

3.1.4 Chua system
In 1986, Chua et al. (1986) introduced the Chua system,

marking an advancement in the study of chaotic systems by linking

chaos and nonlinear circuits. The equations of the Chua system are

given as follows:

dx

dt
= a(y− x− G(x)),

dy

dt
= x− y+ z,

dz

dt
= −by,

G(x) = cx+ (d + c)(|x+ 1| − |x− 1|).

(16)

3.1.5 Chen system
In 1999, Chen and Ueta (1999) identified a chaotic attractor

that bears similarities to the Lorenz system but is topologically
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TABLE 1 The system parameters and initial values of six chaotic systems

used in our study.

System Parameters Initial values

Rossler a = 0.2, b = 0.2, c = 5.7 (x0 , y0 , z0) = (1.0, 1.0, 1.0)

Aizawa a = 0.95, b = 0.7, c = 0.6, d =

3.5, e = 0.25, f = 0.1
(x0 , y0 , z0) = (0.1, 0, 0.1)

Lorenz a = 10.0, b = 8/3, c = 28.0 (x0 , y0 , z0) = (1.0, 1.0, 1.0)

Chua a = 15.6, b = 25.28, c =
−0.75, d = 0.47

(x0 , y0 , z0) = (0.1, 0.1, 0.1)

Chen a = 35.0, b = 3.0, c = 28.0 (x0 , y0 , z0) = (0, 1.0, 0)

Halvorsen a = 1.4 (x0 , y0 , z0) = (1.0, 0, 0)

distinct in their research on chaotic control. The Chen system can

be described by the following equations:

dx

dt
= a(y− x),

dy

dt
= (c− a)x− xz + cy,

dz

dt
= xy− bz.

(17)

3.1.6 Halvorsen System
The Sprott (2010) system, proposed by Arne Dehli Halvorsen,

is a 3-D system of chaotic flows whose governing equations are

cyclically symmetric and can be described as follows:

dx

dt
= −ax− 4y− 4z − y2,

dy

dt
= −ay− 4z − 4x− z2,

dz

dt
= −az − 4x− 4y− x2.

(18)

All the above six dynamical systems have nonlinear and chaotic

behaviors, posing great challenges for long-term prediction.We use

the fourth-order Runge-Kutta method with a step size of 0.01 to

obtain the chaotic time series containing 10, 000 steps, which are

divided into training, validation, and testing datasets in a ratio of

6 : 2 : 2. Specifically, we utilize the data from the initial 6, 000 time

steps for training purposes. This is followed by the subsequent

2, 000 time steps, which are designated for the validation process.

Finally, we employ the data from the concluding 2, 000 time steps

to test the performance of our model. Table 1 provides the details of

system parameters and initial values. For parameters λ1, λ2, and λ3

in Equation 4 of the proposed method, we determine their values

through a grid search strategy. Specifically, the parameter values

are empirically constrained within the range of [0.05, 0.35], with a

search step size of 0.05.

3.2 Comparison models and evaluation
metrics

We select five representative methods as the baselines for

performance comparison in our experiments. They are the

long short-term memory (LSTM) (Hochreiter, 1997), the echo

state network (ESN) (Pathak et al., 2017), the next generation

reservoir computing method (NG-RC) (Gauthier et al., 2021), the

knowledge-based neural ordinary differential equations method

(K-NODE) (Jiahao et al., 2021) and DLinear (Zeng et al., 2023).

Here, LSTM is a classic recurrent neural network model for time

series prediction; ESN and NG-RC are representative methods

specifically designed and widely used for chaotic system dynamics

prediction; DLinear is a state-of-the-art deep learning method

developed for complex time series forecasting; and K-NODE is

a hybrid-learning approach which integrates the first principles

knowledge, specifically the ordinary differential equations, with

data-driven technologies, to predict chaotic systems dynamics. For

LSTM, we use a three-layer architecture with a uniform hidden state

size. To achieve its optimal performance, we experiment with a

variety of hidden state sizes, specifically 8, 16, and 32, and report

the best result. For ESN, we implement it with a spectral radius

of 1.4 and a reservoir size of 300. For NG-RC and DLinear, we

follow the default settings reported in their original papers. For K-

NODE, we set the prior knowledge as the form of the governing

equations with the approximated parameters learned by classic

symbolic regression.

When assessing the effectiveness of the methods in capturing

and forecasting the dynamical behavior of chaotic systems over

the long term, it is a common practice to employ the model’s

own prediction as the input for forecasting subsequent time steps

during the test phase. This iterative process can result in an

increase in errors as the forecast horizon extends, especially in

chaotic systems, where small deviations at the beginning can lead to

significant differences in later outcomes. The mean absolute error

(MAE), the root mean square error (RMSE), and the R2 (Amaranto

and Mazzoleni, 2023) are used as evaluation metrics to measure

the prediction performance. The MAE and RMSE are defined

as follows:

MAE =
1

T

T
∑

t=1

|ŷt − yt|, (19)

RMSE =

√

√

√

√

1

T

T
∑

t=1

(

ŷt − yt
)2
, (20)

R2 = 1−

∑T
t=1

(

ŷt − yt
)2

∑T
t=1

(

ȳ− yt
)2 (21)

where ŷt denotes the predicted value of the model, yt denotes the

ground truth, ȳ represents the average value of the ground truth,

and T is the corresponding forecast horizon.

3.3 Analysis of results

Figures 2 and 3 demonstrate the comparison between the

ground truth of dynamics of the Rossler, Aizawa, Lorenz,

Chua, Chen, and Halvorsen systems in 2, 000 time steps, which

is illustrated in blue in each sub-figure, and the predictions

generated by the proposed PGL-MLP (Figure 2) and PGL-ATT
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FIGURE 2

Comparison between the ground truth of dynamics of (A) Rossler, (B) Aizawa, (C) Lorenz, (D) Chua, (E) Chen, and (F) Halvorsen systems (blue) and

the predictions generated by the proposed PGL-MLP method (red).

(Figure 3) methods, which are shown in red. From these two

figures, we can observe that both PGL-MLP and PGL-ATT can

capture the dynamical patterns of these six chaotic systems.

Although employing an iterative prediction process in the

prediction phase brings great challenges to the task of long-

term forecasting, the integration of data and physics enables

our method to produce predictions that are consistent with

actual dynamics.
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FIGURE 3

Comparison between the ground truth of dynamics of the (A) Rossler, (B) Aizawa, (C) Lorenz, (D) Chua, (E) Chen, and (F) Halvorsen systems (blue)

and the predictions generated by the proposed PGL-ATT method (red).

To further evaluate the performance of our predictions, we

also conduct an analysis by visualizing the temporal evolution

of the ground truth and predictions of the state variables

in these chaotic systems in Figures 4 and 5. Generally, both

PGL-MLP and PGL-ATT can make satisfactory predictions of

the state variables X(t), Y(t), and Z(t) for these chaotic systems.

However, the performance of each method on different systems

varies slightly. For the Rossler system, the predicted curves
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FIGURE 4

Comparison between the ground truth of the state variables of the (A) Rossler, (B) Aizawa, (C) Lorenz, (D) Chua, (E) Chen, and (F) Halvorsen systems

(blue) and the predictions generated by the proposed PGL-MLP method (red) over time.

of both PGL-MLP and PGL-ATT closely match the ground

truth, accurately characterizing even the irregular patterns in

Z(t) component; only one peak was missed by the PGL-ATT.

This indicates that the proposed method successfully captures

the dynamics of this chaotic system and thus is able to

make accurate predictions in such a long-term period. For the

Aizawa system, the PGL-MLP shows very good performance;

its prediction is consistent with the ground truth in all 2, 000

steps. The performance of the PGL-ATT is also acceptable;

the predicted dynamics match well with the actual curve in

the first 1, 000 steps. For the Lorenz system, both PGL-MLP

and PGL-ATT achieve high accuracy up to around 1, 100 time

steps on the component Z(t), and 600 time steps on the

components X(t) and Y(t), respectively. For the Chua system,

PGL-MLP and PGL-ATT have similar performance, making

accurate predictions up to about 1250 time steps, and then

exhibit notable discrepancies in the components X(t), Y(t), and

Z(t). Such discrepancies in Chen and Halvorsen systems appear

earlier, compared with the Chua system. Interestingly, PGL-

MLP’s predictions for both the Chen and Halvorsen systems

initially achieve high accuracy but subsequently exhibit noticeable

disturbances. Fortunately, due to the model’s ability to balance data

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2024.1506443
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Feng et al. 10.3389/fdata.2024.1506443

FIGURE 5

Comparison between the ground truth of the state variables of the (A) Rossler, (B) Aizawa, (C) Lorenz, (D) Chua, (E) Chen, and (F) Halvorsen systems

(blue) and the predictions generated by the proposed PGL-ATT method (red) over time.

and physical knowledge, it regains accuracy in its predictions after

these disturbances.

To quantitatively compare the performance of our methods

(i.e., PGL-MLP and PGL-ATT) with that of existing methods, we

report the MAE and RMSE of all methods for different prediction

horizons in Tables 2, 3, respectively. The results demonstrate

that the proposed methods achieve the lowest prediction errors

in most of the settings, demonstrating the effectiveness of our

methods in making long-term predictions of chaotic system

dynamics. An interesting observation is that the performance

of PGL-MLP is generally better than that of PGL-ATT, despite

the latter employing a more sophisticated attention mechanism.

One potential explanation is that the complexity of the attention

mechanism may lead to overfitting in the predictive model when

compared to PGL-MLP. It is important to note that the task of

predicting chaotic system dynamics differs from natural language

processing, where attention mechanisms have demonstrated

notable effectiveness. The former focuses on capturing the intrinsic,

evolving patterns of dynamical systems, which may change over

time, whereas the latter is primarily concerned with understanding

consistent contextual relationships in input data. Consequently,

a model that is overly complex or overfitted to historical data
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TABLE 2 MAE of LSTM, ESN, NG-RC, DLinear, K-NODE, and the proposed PGL in di�erent prediction horizons on six chaotic systems.

Systems Horizon LSTM ESN NG-RC DLinear K-NODE PGL-ATT PGL-MLP

Rossler 200-horizon 0.295 0.228 0.046 2.374 0.039 0.206 0.055

600-horizon 0.934 1.411 0.865 4.318 0.322 1.264 0.182

1,000-horizon 0.705 3.126 1.084 4.625 0.409 1.539 0.236

1,400-horizon 0.583 3.919 1.199 5.111 0.481 1.341 0.208

2,000-horizon 0.744 4.713 1.942 5.341 0.795 1.044 0.225

Aizawa 200-horizon 0.142 0.396 0.205 1.249 0.022 0.011 0.028

600-horizon 0.198 0.649 0.419 1.104 0.034 0.031 0.049

1,000-horizon 0.337 0.765 0.455 1.188 0.058 0.068 0.067

1,400-horizon 0.444 0.807 0.497 1.292 0.103 0.137 0.061

2,000-horizon 0.529 0.817 0.485 1.456 0.133 0.320 0.060

Lorenz 200-horizon 2.668 0.631 1.105 7.748 1.020 0.245 0.338

600-horizon 4.828 5.462 5.088 6.602 3.618 0.559 0.616

1,000-horizon 5.996 7.103 4.287 7.316 4.828 4.413 1.189

1,400-horizon 6.579 8.110 5.285 7.541 5.964 5.915 3.685

2,000-horizon 7.103 8.174 6.774 7.984 7.169 7.117 5.536

Chua 200-horizon 0.163 0.104 1.057 1.007 0.008 0.035 0.023

600-horizon 1.372 0.999 1.815 1.321 0.095 0.253 0.079

1,000-horizon 1.382 1.417 1.967 1.568 0.563 0.244 0.117

1,400-horizon 1.242 1.855 2.047 1.622 1.042 0.321 0.285

2,000-horizon 1.281 2.187 1.948 1.620 1.535 0.714 0.912

Chen 200-horizon 5.531 3.093 3.770 4.876 0.675 1.033 0.300

600-horizon 8.085 6.480 7.906 6.182 6.017 5.936 4.439

1,000-horizon 7.349 7.859 8.888 6.576 7.441 7.268 4.526

1,400-horizon 8.026 8.323 8.731 6.604 7.682 7.152 5.146

2,000-horizon 7.996 8.012 9.166 6.484 8.263 8.039 6.535

Halvorsen 200-horizon 0.456 1.168 0.434 2.167 0.063 0.044 0.107

600-horizon 1.743 3.937 2.348 3.453 1.635 0.217 3.343

1,000-horizon 1.515 5.155 2.872 3.575 1.241 1.991 0.819

1,400-horizon 2.146 6.040 3.092 3.564 1.297 2.093 1.329

2,000-horizon 3.207 6.642 3.655 3.610 1.769 2.486 2.550

The best performance in each setting is highlighted in bold.

may not yield the expected performance in predicting chaotic

systems dynamics.

In addition to the MAE and RMSE, we further analyze

the performance of the comparison baselines and our proposed

methods using the R2 metric, which ranges from 0 to 1 to indicate

performance quality. As illustrated in Figure 6, we plot the R2

score’s trend with increasing predicted time steps and calculate

the specific Lyapunov Time for different forecasting horizons. The

Lyapunov Time is a critical indicator of a system’s chaotic behavior,

representing the duration over which two initially close trajectories

will diverge significantly (Sangiorgio and Dercole, 2020; Sangiorgio

et al., 2021, 2022; Pathak et al., 2018; Patel et al., 2021; Vlachas

et al., 2020). Our results show that the proposed methods achieve

improved performance across the six chaotic systems. However, the

performance of all methods varies across different chaotic systems.

This variability is likely due to each system’s unique Lyapunov

Time, presenting different levels of prediction difficulty.

3.4 Ablation study

In this subsection, we conduct an ablation study to understand

the individual contributions of the different components within

our proposed method to predict chaotic dynamics. Specifically,

we examine the performance of the Lorenz system dynamics

prediction using four distinct configurations of our method:

(1) employing only the DDC, which is an LSTM network;
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TABLE 3 RMSE of LSTM, ESN, NG-RC, DLinear, K-NODE, and the proposed PGL-ATT and PGL-MLP in di�erent prediction horizons on six chaotic systems.

Systems Horizon LSTM ESN NG-RC DLinear K-NODE PGL-ATT PGL-MLP

Rossler 200-horizon 0.354 0.277 0.053 3.103 0.046 0.279 0.064

600-horizon 1.692 2.435 1.483 5.370 0.546 2.117 0.315

1,000-horizon 1.371 5.050 1.637 5.562 0.610 2.295 0.373

1,400-horizon 1.186 5.789 1.723 5.963 0.690 2.011 0.331

2,000-horizon 1.352 6.670 3.209 6.133 1.318 1.175 0.341

Aizawa 200-horizon 0.187 0.508 0.242 1.597 0.029 0.014 0.043

600-horizon 0.245 0.758 0.525 1.361 0.044 0.045 0.064

1,000-horizon 0.451 0.907 0.563 1.416 0.077 0.099 0.088

1,400-horizon 0.587 0.964 0.620 1.543 0.164 0.238 0.081

2,000-horizon 0.673 0.975 0.600 1.741 0.202 0.513 0.079

Lorenz 200-horizon 4.511 0.922 1.624 9.884 1.733 0.380 0.561

600-horizon 7.834 8.372 8.693 8.550 7.113 1.101 0.891

1,000-horizon 8.900 9.667 7.773 9.410 8.131 8.266 2.864

1,400-horizon 9.401 10.560 8.689 9.638 9.214 9.799 7.405

2,000-horizon 9.967 10.595 10.067 10.050 10.15 10.632 8.982

Chua 200-horizon 0.209 0.123 1.398 1.274 0.010 0.040 0.027

600-horizon 2.021 1.617 2.274 1.569 0.142 0.372 0.111

1,000-horizon 1.992 2.038 2.402 1.854 1.162 0.339 0.162

1,400-horizon 1.800 2.515 2.468 1.919 1.753 0.503 0.535

2,000-horizon 1.795 2.855 2.350 1.918 2.264 1.174 1.495

Chen 200-horizon 8.174 5.487 5.591 6.229 1.071 1.536 0.483

600-horizon 10.476 8.944 9.890 7.649 8.975 8.945 7.298

1,000-horizon 9.738 10.251 10.824 8.165 10.134 9.915 6.953

1,400-horizon 10.448 10.593 10.778 8.138 10.093 9.568 7.680

2,000-horizon 10.151 10.322 11.147 7.910 10.641 10.335 9.124

Halvorsen 200-horizon 0.600 1.966 0.633 2.761 0.102 0.064 0.142

600-horizon 2.686 5.912 3.323 4.342 2.822 0.389 0.529

1,000-horizon 2.283 7.207 3.785 4.418 2.289 3.624 1.427

1,400-horizon 3.142 7.999 3.953 4.414 2.234 3.449 2.260

2,000-horizon 4.573 8.431 4.638 4.429 2.698 3.666 4.019

The best performance in each setting is highlighted in bold.

(2) integrating both DDC and PGC through a simple linear

combination, referred to as PGL-Linear; (3) implementing the

proposed method with attention-based NLC as described in this

manuscript, referred to as PGL-ATT; and (4) implementing the

proposed method with MLP-based NLC as described in this

manuscript, referred to as PGL-MLP. In this ablation study, all

experimental settings remain consistent with those used in previous

experiments, including the initial conditions, the ratio of training

and testing sets, and the prediction horizons.

Table 4 presents the results of the ablation study with

respect to MAE and RMSE across various forecast horizons.

The results obtained from the DDC alone exhibit relatively

high MAE and RMSE across all prediction horizons. When

integrating the DDC with the PGC using a simple linear

combination (denoted as PGL-Linear), there is an observable

improvement in performance compared to the DDC results.

However, the enhancement achieved by PGL-Linear falls short

of our expectations. One potential reason for this is that the

relationship between the observational data and the physical

principles governing the system’s dynamics is likely nonlinear. As

a result, a straightforward linear combination may be insufficient

to capture the complexity of these interactions. This highlights

the necessity of the proposed nonlinear combination (NLC)

design for effectively integrating the DDC and PGC to enhance

prediction accuracy. This necessity is further supported by

the results from PGL-ATT and PGL-MLP, which demonstrate

improved performance in terms of MAE and RMSE across all

prediction horizons.
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FIGURE 6

R2 of LSTM, ESN, NG-RC, DLinear, K-NODE, and the proposed PGL-ATT and PGL-MLP in di�erent prediction horizons on six chaotic systems. (A)

Rossler, (B) Aizawa, (C) Lorenz, (D) Chua, (E) Chen, and (F) Halvorsen.

4 Conclusion and discussion

In this paper, we proposed a physics-guided learning approach

to predict the dynamics of chaotic systems. We experimentally

evaluated the performance of our method on the Rossler, Aizawa,

Lorenz, Chua, Chen, and Halvorsen dynamical systems. The

experimental results demonstrated that our method outperforms

other baselines in terms of prediction accuracy.

To our knowledge, PINN is among several representative

techniques that employ neural networks to solve ordinary and

partial differential equations. Other noteworthy methods include

those based on the Deep Galerkin Method (DGM) (Sirignano and

Spiliopoulos, 2018; Aristotelous et al., 2023) and Neurodifferential

approaches (Lagaris et al., 1998; Ramuhalli et al., 2005), each

offering unique contributions to the field. In our work, we utilize

PINN as a typical example to demonstrate the efficacy of integrating

data-driven structures with physical knowledge to accurately

predict the dynamics of chaotic systems. This exemplification

paves the way for further exploration into the integration of other

physics-guided modules with data-driven components, potentially

leading to enhanced predictive capabilities.

In our future work, we aim to extend our framework

to scenarios where observations are noisy and the underlying

governing differential equations are not fully known in advance.

Moreover, in our current study, we used only six representative

chaotic systems that exhibit distinct dynamical patterns such
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TABLE 4 MAE and RMSE of DDC, PGL-Linear, PGL-ATT, and PGL-MLP in di�erent prediction horizons on the Lorenz system.

Metrics Horizon DDC PGL-Linear PGL-ATT PGL-MLP

MAE 200-horizon 2.668 1.691 0.245 0.338

600-horizon 4.828 3.389 0.559 0.616

1,000-horizon 5.996 4.619 4.413 1.189

1,400-horizon 6.579 5.506 5.915 3.685

2,000-horizon 7.103 6.839 7.117 5.536

RMSE 200-horizon 4.511 2.823 0.380 0.561

600-horizon 7.834 5.829 1.101 0.891

1,000-horizon 8.900 7.540 8.266 2.864

1,400-horizon 9.401 8.395 9.799 7.405

2,000-horizon 9.967 9.493 10.632 8.892

The best performance in each setting is highlighted in bold.

as the spiral-type chaos in the Rossler system (Rössler, 1977),

the butterfly-shaped pattern in the Lorenz system (Li and Yin,

2009), and the double-scroll attractor in the Chua system (Chua,

2007) to demonstrate the feasibility of the proposed idea. Moving

forward, we plan to conduct more comprehensive tests on 131

diverse chaotic systems across various domains (Gilpin, 2021)to

further validate the robustness of our learning framework. Further,

we intend to apply the proposed method to various real-world

applications, such as infectious disease risk prediction, climate

forecast, and traffic flow prediction. Additionally, we plan to

conduct a comprehensive theoretical analysis of the proposed

learning framework, attempting to quantitatively characterize its

learning capacity and prediction error bounds using a series of key

properties of chaotic systems, such as the Lyapunov Exponent and

the Hurst Exponent.
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