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Prediction model of middle
school student performance
based on MBSO and
MDBO-BP-Adaboost method

Rencheng Fang, Tao Zhou*, Baohua Yu, Zhigang Li, Long Ma,

Tao Luo, Yongcai Zhang and Xinqi Liu

School of Information Science and Technology, Shihezi University, Xinjiang, China

Predictions of student performance are important to the education system as a

whole, helping students to know how their learning is changing and adjusting

teachers’ and school policymakers’ plans for their future growth. However,

selecting meaningful features from the huge amount of educational data is

challenging, so the dimensionality of student achievement features needs to

be reduced. Based on this motivation, this paper proposes an improved Binary

Snake Optimizer (MBSO) as a wrapped feature selection model, taking the Mat

and Por student achievement data in the UCI database as an example, and

comparing the MBSO feature selection model with other feature methods, the

MBSO is able to select features with strong correlation to the students and the

average number of student features selected reaches a minimum of 7.90 and

7.10, which greatly reduces the complexity of student achievement prediction.

In addition, we propose the MDBO-BP-Adaboost model to predict students’

performance. Firstly, the model incorporates the good point set initialization,

triangle wandering strategy and adaptive t-distribution strategy to obtain the

Modified Dung Beetle Optimization Algorithm (MDBO), secondly, it uses MDBO

to optimize the weights and thresholds of the BP neural network, and lastly, the

optimized BP neural network is used as a weak learner for Adaboost. MDBO-

BP-Adaboost After comparing with XGBoost, BP, BP-Adaboost, and DBO-BP-

Adaboost models, the experimental results show that the R2 on the student

achievement dataset is 0.930 and 0.903, respectively, which proves that the

proposed MDBO-BP-Adaboost model has a better e�ect than the other models

in the prediction of students’ achievement with better results than other models.

KEYWORDS

feature selection, MBSO, MDBO, Adaboost, student performance prediction

1 Introduction

With the introduction of big data-related research and applications in various

industries, the big data industry has gained momentum in recent years. Data mining (DM)

(Romero and Ventura, 2013) has tremendously helped develop fields such as IT, healthcare,

and transport, tourism, and power and oil sectors (Cui et al., 2021). Additionally, DM

techniques benefit the education sector, one of the areas with large amounts of data.

For example, the extraction of implicit and useful educational data from a large amount

of educational data contributes to predicting student performance, analyzing teaching

deficiencies, and analyzing students’ adaptive learning capabilities at the educational level.

It can help students adjust their own learning statuses and study plans, help teachers
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adjust their lesson preparations according to their students’

learning situations, and help schools and education policy makers

design new teaching programmes (Asselman et al., 2023). Many

studies have been carried out by a wide range of researchers, and in

student performance prediction tasks, it is especially vital to extract

data from themassive amount of available educational data that has

a beneficial impact on student performance.

Yang and Li (2018) collected student educational data from 60

high schools and used Backpropagation (BP) neural networks as

classification methods to predict student performance; the study

showed that BP neural networks could correctly predict student

performance. Shreem et al. (2022) proposed an Enhanced binary

genetic algorithm (EBGA) as a wrapper selection algorithm and

used five different classifiers to classify students’ grades, and all

of the classifiers yielded performance improvements between 1%

and 10%. Yuan et al. (2024) proposed an integrated framework

that combines learning behavior analysis andML algorithms, which

identifies different learning patterns of students by employing

cluster analysis and uses ML algorithms to predict the performance

in each pattern, and the results show that the integrated framework

has a good predictive performance for the performance in the

student’s patterns. Bharara et al. (2018) used K-means clustering

to extract the features that were most relevant to students

and captured the hidden correlations between these features to

improve the overall performance of the students. Turabieh et al.

(2021) proposed an improved Harris hawk optimization (HHO)

algorithm for discovering the most valuable features in the student

performance prediction problem and used a combination of the

improved HHO algorithm and a Layered recurrent neural network

(LRNN) to attain 92% accuracy. Akour et al. (2020) used a model

to predict the validity of student grades, which contribute to when

a student will be able to complete a degree. Babu et al. (2023)

used the monarch Butterfly optimization algorithm (BOA) to select

features with high relevance, low complexity, and good student

performance and then used Sailfish optimization (SFO) to optimize

the coherence parameters of a Stacked sparse autoencoder (SSAE).

Experimental tests demonstrated the effectiveness of the suggested

classification model in terms of predicting students’ performance,

with an accuracy of 96.49%. Christou et al. (2023) wanted to

predict the future performance and study time of the students

by using the data from the past courses, thus collecting the data

from the students in chemistry, mathematics, primary education

history, philosophy and physics at the University, and proposing

the FSC4RBF model for predicting the future performance of the

students as well as the study time in the middle of each year,

and all the experiments with regression and classification problems

have yielded the best results. Asselman et al. (2023) proposes a

Performance factor analysis (PFA) method based on XGBoost so as

to improve the student performance prediction. It is evaluated on

three student datasets, and the prediction performance is improved

with the original (PFA). Although a wide range of researchers

have made many contributions to big data education, it is still

difficult to accurately select data features that have strong relevance

to students, and the current methods achieve low classification

and prediction accuracies. At the same time, student performance

prediction can actively help students understand changes in their

own learning situation and make timely adjustments throughout

the entire education system and personalized learning systems; It

can also help teachers understand students’ learning status and

improve their teaching work in a timely manner; It can also help

school decision-makers plan the overall plan for students’ learning.

Therefore, in order to further handle the huge amount of data in

the field of middle school, features with strong correlation with

students are selected and redundant features are eliminated. This

paper proposes a binary MBSO-based feature selection model,

which selects features with strong correlation with students and

inputs them into a BP network that is optimized by the MDBO

model and uses it as a weak learner, which is integrated with

Adaboost to reduce the error with respect to the actual values of

the students’ grades and to attain improved prediction accuracy.

The main contributions of this study are as follows:

(1) In this paper, we propose the MBSO feature selection model,

which uses reflexive backward learning, variable spiral search,

and golden sine strategy to improve SO and greatly reduce the

possibility of the SO algorithm falling into a local optimum.

(2) A binary MBSO-based feature selection model is proposed

to verify the superior performance of the MBSO model by

comparing it with five feature selection algorithms, where

the accuracy rate, the quantity of the selected features and

the fitness value are employed as the evaluation metrics.

And 7 features were selected from 32 student features,

which were completely superior to the other five feature

selection algorithms.

(3) The proposed Multistrategy fusion-based improved dung

beetle optimization algorithm (MDBO) uses three strategies.

First, a triangular wandering strategy is incorporated into a

dung beetle population to reduce the likelihood of falling into

local optima; second, adaptive t-distribution variability and

greedy strategies are added late in the iterative process to

enhance the ability of the model to jump out of local optima;

and third, the triangular wandering strategy is added to the

dung beetle breeding process to balance its local exploitation

and global exploration capacities. Benchmarking functions

are used to compare six optimization techniques, and the

Wilcoxon rank sum test is used to confirm the performance of

MDBO. Compared with existingmethods,MDBOhas stronger

global search and local development capabilities, which can

avoid falling into local optima and optimize relevant machine

learning parameters.

(4) Based on the above research results, the MBSO feature

selection model can select features with strong correlation with

students, while the MDBO validated by the benchmark test

functions and Wilcoxon rank sum test can accurately optimize

the weights and thresholds of the BP network. After Adaboost

integration, it can achieve the prediction of middle school

students’ grades.

The structure of the paper is as follows. The Adaboost and BP

models utilized in this work are explained in Section 2. In Section

3, the enhancement provided by MBSO is explained in detail, and a

binary version of MBSO is proposed as a feature selection method

for choosing features from a Portuguese student dataset that are

highly relevant to students. MDBO is proposed in Section 4, and

its performance is evaluated using Wilcoxon’s rank sum test and

the results of nine benchmark test functions. In Section 5, the

MDBO-BP-Adaboost model is used to conduct prediction on a
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Portuguese student performance dataset and to demonstrate its

superior performance to that of other related models in terms of

evaluationmetrics. Section 6 provides a concluding summary of the

entire paper.

2 Introduction to the model and its
general framework

2.1 The maximum-minimum normalization

Data normalization is a common data preprocessing technique

that maps data to a specific range by performing a mathematical

transformation of the data, making the data comparable between

different features, and the goal of data normalization is to eliminate

quantitative differences in the data, making it easier to compare

and analyze the data. The maximum-minimum normalization is a

commonly used normalization method that maps the data linearly

to the interval [0, 1], thus making the data easier to analyze

and operate.

2.2 The BP model

BP is a multilayer feedforward model with input, hidden,

and output layers that is typically utilized for supervised learning

applications (Wang et al., 2015). Each neuron accepts the input

from the previous layer and calculates a weighted sum, which

is converted by the activation function before being output to

the subsequent layer. Along with capabilities such as self-learning

and self-adaptation, the model computes the error between the

expected and actual outputs, which is then sent backwards through

the network via backpropagation. The weights are also updated

based on the contribution of each neuron to the error using the

chain rule. Multiple iterations are used to decrease the error value

and make the network output value close to the desired actual

output value.

2.3 The XGBoost model

XGBoost is a powerful gradient boosting algorithm that is

widely used in reality for classification and regression tasks. Its

main idea is to improve the predictive performance of a model by

combining multiple weak learners. Its core idea is to train a weak

model first, and then adjust the training process of the subsequent

models according to the wrong prediction of that model, so as

to gradually reduce the prediction error. XGBoost has good and

efficient performance and scalability, and reduces overfitting by

controlling the complexity of the model through early stopping

strategy and regularization. Therefore, it is chosen as the baseline

model in this paper.

2.4 Adaboost algorithm

Adaboost is an integrated learning algorithm that improves

the predictive performance of a model by minimizing policy

probabilities (Zhao et al., 2023). Through iterative training, the

weight of the next weak learner is computationally adjusted based

on the last prediction error value, and then the weights of the given

samples are dynamically adjusted according to the weight of the

weak learner so that the next weak learner pays more attention to

the samples with large prediction differences. Ultimately, weighting

is used to merge several weak learners into a strong learner that

provides robust performance, has great generalizability, and is

better able to address gradient explosion and overfitting issues than

other models.

2.5 Student performance prediction
modeling frameworks

The MDBO-BP-Adaboost model is proposed to predict

student performance; this approach includes processing a student

performance dataset and selecting features from the student dataset

using a binary MBSO algorithm. The subset of features selected

by the binary MDBO algorithm, which have high relevance, low

complexity, and good student performance, are input into the

BP model, which is then optimized by the MDBO algorithm to

form a weak learner for integration with Adaboost. The framework

diagram of the MDBO-BP-Adaboost model is shown in Figure 1.

3 Binary MBSO-based feature
selection

3.1 Snake optimizer

Optimization algorithms have always been moving forward

(Yang et al., 2024), and the use of a Snake optimizer (SO) (Hashim

and Hussien, 2022) is mainly based on the tendency of snakes to

mate under low-temperature and food-sufficient conditions, and

the SO process can be divided into two phases: exploration and

exploitation. All the individuals are divided into females and males,

and the position update formulas of the two populations are exactly

the same throughout the algorithmic process.

3.1.1 Population initialization
As with all optimization algorithms, the SO requires the

generation of uniformly distributed random populations, enabling

the optimization process to be carried out, and the individual

position initialization model is as follows:

Xi = Xmin + rand× (Xmax − Xmin) (1)

Xmax and Xmin are the maximum and minimum values of the

problem being solved, and take a random value at [0,1] is selected

and assigned to rand.

The environmental temperature coefficients Temp and food

quantities Q associated with snake activity are displayed below:

{

Temp = exp(−t/T)

Q = c1 ∗ exp
[

(t − T)/T
] (2)

The division of exploration and exploitation during SO search

is controlled by food quantity Q and temperature Temp.
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FIGURE 1

Model framework diagram.

When Q < 0.25, the algorithm is in the exploratory phase,

where males search for food by moving their positions, their

positions are updated via the following equation:

Xi,m(t + 1) = Xrand,m(t)± c2 × Am ×
[

(Xmax − Xmin)× rand + Xmin

]

(3)

A value of 0.05 is assigned to c2, and Am is the food seeking

capacity of a male, which it is computed by the following formula:

Am = exp

(

−frand,m

fi,m

)

(4)

frand,m is the random fitness value for male individuals, and fi,m
is the fitness value for male search agents.

When Q ≥ 0.25, the algorithm enters the exploitation phase.

In this phase, when Temp > 0.6, the males exploit the area near

the food, and males only move in the direction of the food. Their

positions are updated as follows:

Xi,m(t + 1) = Xfood(t)± c3 × Temp ×
(Xfood(t)− Xi,m(t))× rand (5)

Xfood(t) is the position of the food at iteration t, and a value of 2

is assigned to c3.

For Q ≥ 0.25 and Temp ≤ 0.6, males choose either the fighting

mode or the mating mode for positional updating purposes based

on the randomly generated probability p ∈ [0, 1].

If p > 0.6, males and females select the fightingmode according

to Equation 6, otherwise, they select the mating mode according to

Equation 7, as shown below:

Xi,m(t + 1) = Xi,m(t)± c3 × Fm × rand

×
[

Q× Xbest,f (t)− Xi,m(t)
]

(6)

Xi,m(t + 1) = Xi,m(t)± c3 ×Mm × rand

×
[

Q× Xi,f (t)− Xi,m(t)
]

(7)

Where Xbest,f (t) is the optimal position of a female individual at

the tth iteration and Fm andMm are the fighting andmating abilities

of a male individual at position Xi,m(t), respectively. The associated

formulas are shown as follows:







Fm = exp
(−fbest,f

fi

)

Mm = exp
(−fi,f

fi,m

) (8)

The random quantity egg ∈ {−1, 1} determines whether the

mating process is successful; if egg = 1, mating is successful,

and the male individual Xworst,m(t) with the largest fitness value is

updated to the following position:

Xworst,m(t) = Xmin + rand × (Xmax − Xmin) (9)

3.2 Improved SO

According to the “there is no such thing as a free lunch”

theorem (Wolpert and Macready, 1997), the SO has the drawback

of eventually sliding into local optima at a later stage of the

optimization process despite its great optimization accuracy and
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FIGURE 2

Refractive reverse learning.

quick convergence when solving optimization problems. Therefore,

the following improvement measures are suggested to increase the

accuracy of the SO when solving particular problems.

3.2.1 Refractive reverse learning strategy
The SO easily falls into local optimal solutions in the later

part of the optimization search process. A refractive reverse

learning mechanism is used to expand the search space for both

male and female snake individuals. The search range is expanded

by calculating the inverse solution of the current solution to

determine a better alternative solution for the given problem. At

the same time, to solve the problem of the SO easily falling into

a local optimum in the late stage of reverse learning, a refraction

mechanism is integrated into reverse learning. Figure 2 illustrates

the primary idea of this strategy.

where the solution range on the x − axis is [k, z], the y − axis

is the normal direction in the refractive inversion process, α and

β denote the incidence and refraction angles, respectively, l and

l∗ denote the lengths corresponding to the incident and refracted

rays, respectively, and O is the origin. The associated formulas are

shown below:
{

sin α = ((k+ z)/2− x)/l

sin β = (x∗ − (k+ z)/2)/l∗
(10)

The refractive index formula is defined as n = sinα/ sinβ ,

which gives the following refractive index formula:

n =
l∗((k+ z)/2− x)

l(x∗ − (k+ z)/2)
(11)

By substituting the scaling factor k = l/l∗, n = 1 into

Equation 11 and generalizing it within the high-dimensional SO

space, the following equation is obtained:

x∗i,j =
kj + zj

2
+

kj + zj

2k
−

xi,j

k
(12)

xi,j is the position of the ith snake individuals in the j dimension

of the population, and x∗i,j is the refractive inverse position of xi,j.

3.2.2 Variant spiral search strategy
A spiral search approach is incorporated into the position

update formulation for the SO exploration phase, drawing

inspiration from the whale optimization algorithm (WOA)

(Mirjalili and Lewis, 2016). The spiral search formula of theWOA is

a fixed helix (Chang et al., 2023). This paper proposes an improved

variable spiral search strategy to adjust the shape of the helix

during the search process as the iterations proceed and to enhance

the exploration capabilities of individual snake males; the specific

formulas for doing so are given below:

β = ekl × cos(2πk) (13)

l = e2 cos(
t
T π) (14)

Where l progressively changes with the quantity of repetitions,

a random value within [0, 1] is selected and assigned to k, and

the cosine function controls the spiral. As the iterative process

proceeds, the spirals gradually change from large to small, searching

for targets with larger spiral shapes in the early stage of the

algorithm, searching for as many better individuals as possible, and

enhancing the global search capability of the SO. This strategy also

reduces the quantity of ineffective searches in the later stage of the

iterative process by searching for targets with small spiral shapes

to improve the optimization search accuracy and convergence

efficiency of the algorithm. The following is the new position

update equation:

Xi,m(t + 1) = Xrand,m(t)± β × c2 × Am

×
[

(Xmax − Xmin)× rand + Xmin

]

(15)

3.2.3 Golden sine strategy
To force male individuals to deviate from a local optimum,

a golden sine method is presented in this study. To obtain a

potentially better search region, this strategy reduces the solution

space via the golden section coefficient and forces the sinusoidal

function to traverse all positions within the circular search range

in accordance with the angular relationship between the unit circle

and the sinusoidal function. Utilizing the golden sine technique,

the location of the male individual from the previous iteration is

updated. The formula for updating a position is displayed below:

Xi,m(t + 1) = Xi,m(t)×
∣

∣sin(r1)
∣

∣ − r2 × sin |r1|
×

∣

∣r3Xpos − r4Xi,m(t)
∣

∣ (16)

A random value within [0, 2π] is selected and assigned it to

r1 and r2, and r3 and r4 are the golden section coefficients, whose

expressions are displayed below:

{

r3 = aτ + b(1− τ )

r4 = a(1− τ )+ bτ
(17)

where τ = (
√
5 − 1)/2 ≈ 0.6183, a takes the value of −π and b

takes the value of π .
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3.3 Binary MBSO for feature selection

3.3.1 Binary MBSO
Feature selection is a method that reduces data from high

to low dimensions, and the combination of the encapsulation-

based feature selection method with optimization algorithms can

effectively reduce the quantity of data dimensions and further

improve the accuracy and efficiency of data classification results

(Mostafa et al., 2023; Houssein et al., 2024). Therefore, in this paper,

we convert MBSO to binary MBSO, describe the search space in a

binary form and use the K-nearest neighbors (KNN) classifier to

evaluate the metrics yielded by the obtained features (Arora and

Anand, 2019). The binary MBSO process is described as follows.

In the initialization phase of the algorithm, a set of 0, 1 vectors

are randomly generated through Equation 18. During the iteration

process, the updated snake population individuals are converted

into binary vectors through Equation 19.

Xi,j =

{

1 Xi,j > 0.5

0 Xi,j ≤ 0.5
(18)

Xt+1
i,j =

{

1 rand < S
(

Xt+1
i,j

)

0 others
(19)

S(Xt+1
i,j ) =

1

1+ e
−Xt+1

i,j

(20)

3.3.2 Fitness function
Fitness functions are typically used to assess the quality of

each solution during the iterative procedure of an algorithm. An

outstanding classification outcome is obtained when there are

few feature selection subsets, a low average fitness value, and a

high classification accuracy. Therefore, the quantity of the selected

feature subsets is selected based on the classification accuracy and

features of the solution obtained by the KNN classifier (where K =
5). The designed fitness function is shown below:

Fitness = α × error + β (1− R/N) (21)

Where error is the classification error rate; R and N are the

quantity of features selected by the binary MDBO feature selection

process and the quantity of features that have not undergone feature

selection, respectively; and 0.9 is assigned to parameter α. The

parameter β = 1− α is the importance of the selected features.

Figure 3 is the overall flowchart of the binary MBSO for

feature selection.

4 Multistrategy fusion-based improved
dung beetle optimizer

4.1 Dung beetle optimizer

The DBO classifies beetles into four subpopulations,

rolling, breeding, foraging, and stealing groups, with a strong

optimality-seeking ability and fast convergence (Xue and Shen,

2023). The DBO model is described below.

4.1.1 Rolling dung beetles
Because light intensity affects the travel of a dung beetle and the

sun is required for it to continue rolling a dung ball along a straight

path in the absence of obstacles, the changes of the location of X is

shown in the following equation:

Xi(t + 1) = Xi(t)+ a× k× Xi(t − 1)+ b× 1X (22)

1X =
∣

∣Xi(t)− Xw
∣

∣ (23)

where k ∈ (0, 0.2] denotes the deflection coefficient, a random value

within (0,1) is selected and assigned to b, a is associated with either

−1 or 1, 1X is the variation in the light intensity, and the global

worst position is represented by XW .

The position update equation for an obstruction encountered

by a dung beetle is displayed below:

Xi(t + 1) = Xi(t)+ tan(θ)
∣

∣Xi(t)− Xi(t − 1)
∣

∣ (24)

θ ∈ [0,π], but when θ equals 0, π/2, or π , the position of the

dung beetle is not updated.

4.1.2 Breeding dung beetle
A dung beetle will select an appropriate location to lay its eggs

after rolling its dung ball back to a safe location. Therefore, a

boundary selection strategy is proposed to model the region where

female dung beetles deposit their eggs:

Lb∗ = max
(

X∗ × (1− R), Lb
)

Ub∗ = min
(

X∗ × (1− R),Ub
) (25)

where Lb∗ and Ub∗ denote the lower and upper boundaries of the

spawning area, respectively, and R = 1− t/Tmax.

The positions of breeding dung beetles are dynamic during the

iterative process since a female will select a point in the spawning

area once it is established. The changes of the location of breeding

dung beetle is shown in the following equation:

Xi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗)+ b2 ×
(

Bi(t)− Ub∗
)

(26)

b1 and b2 denote two independent random 1 × D vectors, and

D is the dimension of the optimization problem.

4.1.3 Foraging dung beetles
The optimal foraging zones must be determined when the

juvenile dung beetles hatch to direct them toward food sources. The

borders of these regions are displayed below:

Lbb = max
(

Xb × (1− R), Lb
)

Ubb = min
(

Xb × (1− R),Ub
) (27)

where the global best position is represented by Xb. The

following formula can be used to update the location of

a juvenile dung beetle once its optimal feeding region has

been identified:

xi(t + 1) = xi(t)+ C1 × (xi(t)− Lbb)+ C2 × (xi(t)− Ubb)

(28)
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FIGURE 3

Binary MBSO for feature selection.

4.1.4 Stealing dung beetles
A few dung beetles obtain their food from other dung beetles.

From Equation 27, the neighborhood ofXb is a good representation

of the finest place to compete for food. Thus, the following

equation describes the process of updating the location of a stealing

dung beetle:

xi(t + 1) = Xb + S× g ×
(

∣

∣xi(t)− X∗∣
∣ +

∣

∣

∣
xi(t)− Xb

∣

∣

∣

)

(29)

g is a random vector with a size of 1 × D that obeys a normal

distribution, and S denotes a constant.

4.2 The proposed MDBO algorithm

The DBO has issues with its limited global search ability and

its propensity to settle for local optima. To improve the ability of

the DBO to conduct local exploitation, and conduct global searches,

MDBO is proposed.

4.2.1 Good point set initialization strategy
The dung beetle population is initialized by the DBO in a

randomly dispersed manner, which makes it difficult to obtain a

uniformly distributed population. To increase the accuracy and

convergence speed of the DBO, we use a good point set strategy to

initialize the dung beetle population in this paper, which allows the

initial dung beetle population to be spread more evenly (Hua and

Wang, 2012). Additionally, the population of the good generated

dung beetle point set is denoted as P and is described by the

following equation:

Pn(k) =
{({

r
(n)
1 × k

}

,
{

r
(n)
2 × k

}

, ...,
{

r(n)s × k
}

, 1 ≤ k ≤ n
)}

(30)

Where Pn(k) is the set of good points, s is the dimensionality, r

denotes the good points, and the value of the set of good points r is

taken as:

r =
{

2 cos(2πk/p), 1 ≤ k ≤ s
}

(31)
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p is the smallest prime quantity that satisfies the condition
(

p− 3
)

/2 ≥ s. Therefore, the new initialization strategy is:

xi(j) = (ubj − lbj)× {rij × k} + lbj (32)

Figure 4 shows that the distribution produced by the good

point set initialization process is more uniform than that of

random initialization.

4.2.2 Triangle wandering strategy
The introduction of a triangular wandering strategy for

breeding dung beetles, who do not need to be directly close to the

optimal spawning area but instead wander around the spawning

area, allows the algorithm to have a better local search ability in later

stages. First, the distance between a dung beetle and the spawning

area is obtained as L1. Then, the range of the walking step length

of the dung beetle is obtained as L2. Where L1 and L2 are shown in

Equations 33, 34, and the walking direction β of the dung beetle is

obtained according to Equation 35. Then, the distance P between

the current location of the dun beetles and the breeding area is

calculated according to Equation 36. Finally, the position of the

dung beetle after implementing the triangular wandering strategy

is obtained from Equation 37.

L1 = posb(t)− posc(t) (33)
−→
L2 = rand()×−→

L1 (34)

β = 2× π × rand() (35)

P = L1 + L2 − 2× L1 × L2 × cos(β) (36)

Posnew = posb(t)+ r × P (37)

4.2.3 Adaptive t-distribution variation and greedy
strategies

The t-distribution contains parametric degrees of freedom tn,

and tn varies adaptively with the quantity of iterations, which

can balance the exploration and exploitation capabilities of the

DBO (Wu et al., 2023). When 1 degree of freedom is used, the

distribution is close to the Cauchy distribution, and as the degrees

of freedom increase, the distribution gradually approaches the

Gaussian distribution. Therefore, dynamically adjusting the degree-

of-freedom parameters enables the DBO to improve its global

search ability in the early stage to discover a wider solution space,

while its local search ability is enhanced in the later stage to

converge to a more accurate solution. Thus, the specific equations

for updating the positions of dung beetles after implementing

distribution variation are as follows.

trnd(tn) =

{

Gauss (0, 1) tn → ∞
Cauchy (0, 1) tn = 1

(38)

tn = exp
(

4.(t/T)2
)

(39)

xi(t) = xi(t)+ xi(t)× trnd (tn) (40)

Gauss (0, 1) is the Gaussian distribution, Cauchy (0, 1) is the

Cauchy variation, and tn exhibits a non-linear increase with the

quantity of iterations t.

To further compare the position of a beetle after the mutation

perturbation with the original position to see which has a better

fitness value, a greedy strategy is used, and it is implemented

as follows:

Xp =







Hb(t) f
[

Hb(t)
]

< f
[

Xb(t)
]

Xb(t) f
[

Hb(t)
]

≥ f
[

Xb(t)
] (41)

4.2.4 MDBO algorithm implementation steps

Input: The maximum iterations TMAX, the

size of the particle’s population N

Output: Optimal position Xb and its

fitness value fb

1: Initialize the population of Dung

Beetle by Equation 32

2: while t ≤ TMAX do

3: for i = 1 to Quantity of Rolling dung

beetles do

4: λ = rand(1)

5: if λ < 0.9 then

6: Update Rolling Dung Beetle Location by

Equation 22.

7: else

8: Rolling the ball in the encounter of

obstacles by Equation 24 to update.

9: end if

10: end for

11: The value of the non-linear

convergence factor is calculated by

R = 1− t/TMAX.

12: for i = 1 to Quantity of Spawning dung

beetles do

13: Updating of Spawning dung beetles by

Equations 25, 37.

14: end for

15: for i = 1 to Quantity of Foraging dung

beetles do

16: Update foraging dung beetles by

Equations 27, 28.

17: end for

18: for i = 1 to Quantity of Stealing Dung

Beetles do

19: Use Equation 29 to update the

location of the stealing dung beetle

20: end for

21: The variation of the global optimal

solution by using the adaptive

t-distributions and greedy strategies

affects.

22: end while

23: Return Xb and its fitness value fb

Algorithm 1. The MDBO algorithm’s framework.
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FIGURE 4

Comparison between the good point set initialization and random initialization distributions.

TABLE 1 Test functions.

No Types Functions Dim Opt

F1 Unimodal Shifted and Rotated Bent Cigar Function 30 100

F2 Multimodal Shifted and Rotated Zakharov Function 30 300

F3 Shifted and Rotated Rastrigin’s Function 30 500

F4 Hybrid Hybrid function 1 (N= 3) 30 1,100

F5 Hybrid function 2 (N= 3) 30 1,200

F6 Hybrid function 3 (N= 3) 30 1,300

F7 Composition Hybrid function 6 (N= 6) 30 2,000

F8 Composition function 5 (N= 5) 30 2,500

F9 Composition function 8 (N= 6) 30 2,800

4.3 Performance of the MDBO Algorithm

4.3.1 Benchmark test function experiment
To validate the performance of MDBO, the performance of the

algorithm is tested and evaluated using benchmarking functions.

The benchmark test functions are selected from CEC2017 (Wu

et al., 2016), and these functions are shown in Table 1 (Dimensions

uniformity of 30). Moreover, the parameters of the Sine cosine

algorithm (SCA) (Mirjalili, 2016), WOA, HHO (Heidari et al.,

2019), Golden jackal optimization (GJO) (Chopra and Ansari,

2022), SCSO, and DBO algorithm are the same as those in

their original papers. For the fairness of the experiments, the

initialized population sizes of all the algorithms are set to 30, and

the maximum quantity of iterations is 1,000 (Jia et al., 2021).

Additionally, to eliminate randomness in the experiments, 30

independent runs are made on each benchmark function, and the

optimal value, mean, standard deviation and ranking of the mean

are used as the evaluation metrics.

As Table 2 illustrates, MDBO achieves excellent results on all

the benchmark test functions. With respect to the optimization of

the unimodal function (F1), the optimization accuracy of MDBO

is closer to the theoretical optimum than that of the other six

algorithms, and the proposed algorithm performs better overall.

Regarding the multimodal functions (F2 and F3), the optimization

accuracy achieved by MDBO for F2 is slightly lower than that

of HHO, but its overall performance is better than that of the

remaining five optimization algorithms, ranking second; on F3,

the optimization accuracy and overall performance of MDBO are

better than those of the remaining algorithms and are close to the

theoretical optimal value sought for the function. For the hybrid

functions (F4, F5, and F6), the optimization accuracy of MDBO

is orders of magnitude greater than those of the other algorithms.

On the composition function (F7), the optimization accuracy of

MDBO is slightly worse than that of GJO and ranks second overall,

outperforming the optimization accuracies of the remaining five

optimization algorithms; its accuracy is ranked first for the F8 and

F9 benchmark functions, with superior performance and accuracy

to those of the remaining algorithms.

4.3.2 Wilcoxon rank sum test
Although thirty different runs are used to compare the

performances of the different algorithms, additional statistical

testing is still required to fully understand their capabilities. The

Wilcoxon rank sum test is used to assess whether the results

of each MDBO run are significantly different from those of the

other algorithms at the P = 5\% significance level (Zhu et al.,

2024). According to the null hypothesis, there should not be
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TABLE 2 Experimental results produced for the test functions.

NO SCA WOA HHO GJO SCSO DBO MDBO

F1 Mean 1.86E+10 1.68E+09 2.69E+07 1.21E+10 6.05E+09 4.78E+07 7.61E+03

Std 6.338E-73 7.90E+08 6.32E+06 3.38E+09 3.47E+09 7.08E+07 7.69E+03

Degree 5 4 2 7 6 3 1

F2 Mean 6.89E+04 2.50E+05 4.07E+04 5.66E+04 5.00E+04 7.08E+04 4.94E+04

Std 4.73E-49 6.60E+04 7.00E+03 9.63E+03 1.13E+04 1.24E+04 7.06E+03

Degree 5 7 1 4 3 6 2

F3 Mean 8.19E+02 8.33E+02 7.60E+02 7.06E+02 7.55E+02 7.64E+02 6.83E+02

Std 2.06E+01 5.41E+01 3.13E+01 4.28E+01 4.76E+01 4.81E+01 5.32E+01

Degree 6 7 4 2 3 5 1

F4 Mean 3.41E+03 6.97E+03 1.30E+03 3.04E+03 2.36E+03 1.58E+03 1.30E+03

Std 8.62E+02 3.26E+03 5.55E+01 1.42E+03 9.71E+02 3.68E+02 7.74E+01

Degree 6 7 2 5 4 3 1

F5 Mean 2.06E+09 2.25E+08 2.21E+07 8.59E+08 2.78E+08 3.29E+07 1.95E+06

Std 6.90E+08 1.26E+08 1.62E+07 7.56E+08 3.78E+08 4.97E+07 3.06E+06

Degree 4 5 2 7 6 3 1

F6 Mean 8.27E+08 3.11E+06 8.45E+05 1.62E+08 4.25E+07 5.36E+06 6.65E+04

Std 4.22E+08 8.12E+06 1.16E+06 2.15E+08 1.01E+08 1.37E+07 5.81E+04

Degree 7 3 2 6 5 4 1

F7 Mean 2.85E+03 2.87E+03 2.82E+03 2.56E+03 2.68E+03 2.75E+03 2.65E+03

Std 1.50E+02 1.97E+02 2.47E+02 1.90E+02 1.96E+02 1.63E+02 2.15E+02

Degree 6 7 5 1 3 4 2

F8 Mean 3.45E+03 3.11E+03 2.94E+03 3.23E+03 3.14E+03 2.97E+03 2.91E+03

Std 1.90E+02 5.54E+01 2.62E+01 1.33E+02 1.20E+02 6.27E+01 2.56E+01

Degree 7 4 2 6 5 3 1

F9 Mean 4.29E+03 3.53E+03 3.34E+03 3.94E+03 3.60E+03 3.39E+03 3.25E+03

Std 3.15E+02 1.14E+02 3.38E+01 3.78E+02 2.20E+02 1.93E+02 4.98E+01

Degree 7 4 2 6 5 3 1

The bold value represents the minimum value of the mean.

much difference between each pair of algorithms. P > 5% signifies

the acceptance of the original hypothesis, implying that the two

compared algorithms perform similarly; N/A indicates that the

intelligent optimization algorithms perform similarly in terms of

optimizing the search process and are not comparable; and P < 5%

indicates the rejection of the original hypothesis, implying that a

notable distinction is present between the two tested algorithms.

The exact test results obtained for MDBO by utilizing each

competing method independently are displayed in Table 3.

Table 3 indicates that on the F1, F2, F5, F6, F8, and F9

test functions, MDBO significantly outperforms the other six

optimization algorithms; on the other hand, GJO and MDBO

perform similarly well in terms of the search results obtained on F3,

HHO, and MDBO perform similarly on F4, and MDBO performs

similarly to GJO and SCSO on F7, with no significant differences.

By combining the findings of the Wilcoxon rank sum test

with the benchmark function test conducted on CEC2017, it is

found that MDBO offers notable gains in both its local and

global exploration capabilities. Regarding the convergence speed,

accuracy, and stability of the algorithm, MDBO performs better

than the original DBO and WOA as well as other optimization

algorithms. This confirms the effectiveness of the optimization

technique applied in this work.

5 Experiment

5.1 Dataset

This article uses the Mat and Por student performance datasets

from the UCI database as the experimental dataset. The feature

attributes possessed by students in the Mat and Por datasets are

the same, with a total of 33 basic student characteristics. However,

there are differences in the values of specific attributes, such as exam

scores, attendance rates, background information, etc. Therefore,

this article introduces the main student characteristics in the Mat
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TABLE 3 Wilcoxon rank sum test.

SCA WOA HHO GJO SCSO DBO

F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.09E-10

F2 1.55E-09 3.02E-11 2.24E-02 8.29E-06 2.51E-02 1.46E-10

F3 7.39E-11 2.15E-10 5.60E-07 5.94E-02 6.74E-06 8.84E-07

F4 3.02E-11 3.02E-11 7.06E-01 3.02E-11 1.46E-10 7.77E-09

F5 3.02E-11 3.02E-11 1.78E-10 3.02E-11 5.49E-11 2.78E-07

F6 3.02E-11 3.69E-11 3.34E-11 5.49E-11 5.19E-07 1.39E-06

F7 3.99E-04 4.46E-04 6.97E-03 9.63E-02 4.83E-01 3.78E-02

F8 3.02E-11 3.02E-11 1.53E-05 3.02E-11 3.02E-11 6.36E-05

F9 3.02E-11 6.07E-11 7.12E-09 3.34E-11 4.98E-11 4.18E-09

+/-/= 9/0/0 9/0/0 8/1/0 7/2/0 8/1/0 9/0/0

TABLE 4 Introduction to Mat and Por datasets.

Feature name Connotation Range of values

Sex Sex of students “F” for female or “M” for male

Age Age of students 15 to 22

Address Home address “U” Urban or “R” Rural

Guardian Student’s guardian “Mother,” “Father,” or “Other”

Schoolup Additional

education

expenditure

“Yes” or “No”

Famsup Expenditures on

family education

“Yes” or “No”

Activities Student

extracurricular

activities

“Yes” or “No”

Higher Want to go to

higher education

“Yes” or “No”

Famrel Quality of family

relations

From “1”-very poor to

“5”-excellent

Freetime Free time after

school

From “1”-very low to “5”-very

high

Absences Number of

absentees

0 to 93

G1 First semester

grades

0 to 20

G2 Second semester

grades

0 to 20

G3 Final score 0 to 20, Output targets

and por datasets, as shown in Table 4. The characteristics of the first

semester grades (G1) and the second semester grades (G2) are the

most important for predicting academic performance, as G1 and

G2 reflect each student’s previous exam scores and can be highly

correlated in MBSO feature selection.

At the same time, in order to facilitate the processing of

the Mat and Por datasets, the maximum-minimum normalization

technique was used to make the data more standardized and easy to

select features with strong correlation from student characteristics.

5.2 Feature selection of MBSO

In this paper, we use binary MBSO to feature select the

PortugueseMat and Por student achievement datasets and compare

it with feature selection using SCSO (Seyyedabbasi and Kiani,

2023), SSA (Wang et al., 2017), MFO (Mirjalili, 2015), GWO

(Mirjalili et al., 2014), SO. As can be seen from Figure 5, MBSO

achieves the lowest fitness values in the dataset after 20 independent

runs, while SCSO ranks second and SSA achieves the worst results.

As for the number of features, it is known from Table 5 that the

number of features of Mat and Por are 5.38 and 4.63, which are

much lower than other feature selection methods, where in the

number of Por features, MBSO is half of the number of GWO

features. From Table 6, it can be concluded that MBSO feature

selection is also higher than other feature selection methods in

terms of accuracy, reaching 0.8414 and 0.8809, respectively.

5.3 Score prediction of MDBO-BP-
Adaboost

For the MDBO-BP-Adaboost model proposed in this paper,

the optimal subset of student features obtained from the binary

MBSO is firstly obtained, which is divided into the training set and

test set according to 6:4. Then the MDBO algorithm is used for

parameter optimization of the weights and thresholds of the BP

neural network to obtain the optimal parameters, while the number

of nodes in the hidden layer of the BP neural network is determined

according to the empirical formulae (Wang et al., 2024), with Mat

and Por being 12 and 8, respectively. and the obtained MDBO-

BP is used as a weak learner (the number of weak learners is

8), which is integrated by Adaboost, and finally the proposed

MDBO-BP-Adaboost student performance prediction model. The

experiments were carried out on Matlab R2022a platform with

lntel(R) Core(TM) i7-7500U CPU @ 2.7OGHz 2.90 GHz.

Regression evaluation measures that are frequently employed

were Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), Mean Absolute Percentage Error (MAPE), and Coefficient

of Determination (R2), and the importance of each evaluation

indicator is the same. In this instance, the model performs better
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FIGURE 5

Iterative plot of adaptation for Mat and Por datasets.

TABLE 5 Comparison among the quantities of features chosen by MBSO and the alternative algorithms.

SCSO SSA MFO GWO SO MBSO

Mat Mean 15.05 16.95 16.15 14.90 16.50 7.90

Std 4.06 2.06 3.51 2.49 3.35 5.38

Degree 3 6 4 2 5 1

Por Mean 12.60 13.90 14.10 14.75 13.05 7.10

Std 2.72 2.75 2.86 2.75 2.56 4.63

Degree 2 4 5 6 3 1

The bold value represents the minimum value of the mean.

TABLE 6 Performance comparison of MBSO with other algorithms in terms of accuracy.

SCSO SSA MFO GWO SO MBSO

Mat Mean 0.8211 0.8078 0.8172 0.8102 0.8164 0.8414

Std 0.0119 0.0197 0.0125 0.0146 0.0159 0.0356

Degree 2 6 3 5 4 1

Por Mean 0.8739 0.8626 0.8700 0.8743 0.8709 0.8809

Std 0.0140 0.0115 0.0082 0.0107 0.0107 0.0144

Degree 3 6 5 2 4 1

The bold value represents the minimum value of the mean.

TABLE 7 Predictive e�ect of the model on Mat data.

Model MAE RMSE MAPE R2

XGBoost 0.944651 1.265536 0.107000 0.838

BP 0.879199 1.214926 0.083978 0.850

BP-Adaboost 0.774473 0.979547 0.075010 0.903

DBO-BP-Adaboost 0.714089 0.902263 0.070134 0.917

MDBO-BP-Adaboost 0.654909 0.832686 0.063603 0.930

The bold value represents the optimal values of MAE, RMSE, MAPE, and R2.

and the closer R2 is to 1, the better the model fits the data. The

smaller the values of MAE, RMSE, and MAPE.

According to the obtained quantity of nodes input to the BP,

BP-ADAboost, DBO-BP-ADAboost, MDBO-BP-ADAboost

models, and combined with the XGBoost model thus

resulting in the evaluation metrics for the prediction

of the relevant students’ performance, as shown in

Tables 6, 7.
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TABLE 8 Predictive e�ect of the model on Por data.

Model MAE RMSE MAPE R2

XGBoost 0.895790 1.120234 0.081644 0.821

BP 0.712972 0.913917 0.060686 0.881

BP-Adaboost 0.694133 0.869131 0.059596 0.892

DBO-BP-Adaboost 0.672008 0.844774 0.057235 0.898

MDBO-BP-Adaboost 0.661642 0.826050 0.056555 0.903

The bold value represents the optimal values of MAE, RMSE, MAPE, and R2.

FIGURE 6

Mat dataset.

As can be seen from Tables 7, 8, on the Mat student dataset, the

MDBO-BP-Adaboost model proposed in this paper is compared

with the XGBoost, BP, BP-Adaboost, and DBO-BP-Adaboost

models, respectively, and it reduces the MAE by 30.7%, 25.5%,

15.4%, and 8.3%, RMSE by 34.2%, 31.5%, 15.0%, and 7.7%, and

MAPE by 40.6%, 24.3%, 15.2%, and 9.3%, respectively, while the

coefficient of determination, R2 was improved from 83.8% for

XGBoost to 93.0% for MDBO-BP-Adaboost. Meanwhile, on the

Por student dataset, the MAE decreased by 26.1%, 7.2%, 4.7%,

and 1.5%, the RMSE decreased by 26.3%, 9.6%, 5.0%, and 2.2%,

the MAPE decreased by 30.7%, 6.8%, 5.1%, and 1.2% while the

coefficient of determination, R2, was improved from 0.821 for

XGBoost to 0.821 for MDBO- BP-Adaboost’s 0.903. It can be seen

that the MDBO-BP-Adaboost grade prediction model proposed in

this paper has a greater improvement in MAE, RMSE, MAPE, and

R2 compared to other models. In terms of prediction results, the

120th student in the Mat dataset clearly shows that the predicted

values of MDBO-BP-Adaboost are closer to the actual values, while

the predicted values of XGBoost and BP are far from the actual

values. On the Por dataset, observing students 120 to 160, it can

be found that the predicted curve of MDBO-BP Adaboost is closer

to the actual value, and the effect is better than that of BP Adaboost

and DBO-BP Adaboost. It can be concluded that using the model

in this paper for student grade prediction is more appropriate.

Conversely, the curves for the Mat and Por student performance

datasets in terms of projected and true values, respectively, are

statistically displayed in Figures 6, 7. In the meanwhile, MDBO-BP-

ADAboost performs better than the other model suggested in this

research for predicting students’ marks, as seen by the fact that it is

closest to the true value of student grades on the predicted and true

value curves.

6 Conclusion

In this work, binary MBSO is presented as a feature selection

method for removing data features that have minimal impacts

on the predictive performance of the utilized model; lowering

the likelihood of overfitting; and enhancing the generalizability,

predictive accuracy, and predictive performance of the model. To
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FIGURE 7

Por dataset.

assess the suitability of the proposed binary MBSO algorithm for

feature selection, its performance is experimentally compared with

that of five other feature selection models. The performance of

the proposed binary MBSO algorithm is measured in terms of

its classification accuracy, the quantity of selected feature subsets,

and the fitness value produced using the KNN classifier with data

acquired from two student datasets and seven UCI databases. The

results demonstrate the superior performance of the proposed

model by demonstrating that there is no discernible classification

accuracy difference between the proposed binary MBSO approach

and other algorithms, but significant improvements are observed

in the average fitness value and the quantity of selected

feature subsets.

The issue that the DBO tends to fall into local optima is

addressed by the proposed MDBO algorithm. Moreover, the

means, standard deviations, and average ranks obtained on

nine fundamental test functions are compared with those of

five optimization methods, and the Wilcoxon rank sum test is

utilized to rank the results for assessing the effectiveness of

MDBO. The aforementioned findings demonstrate the efficacy

of the enhanced approach by demonstrating that MDBO

outperforms the existing intelligent optimization algorithms in

terms of determining the theoretically ideal values of unimodal,

multimodal, hybrid, and composition functions. After passing

the student dataset through the binary MBSO model feature

selection, the selected subset of student features are inputted

into the MDBO-BP-Adaboost model for student performance

prediction and compared with other models in terms of

evaluation metrics.

We validate our method on student datasets. The selected

subset of student features is input into the MDBO-BP-Adaboost

model to perform student performance prediction, and the results

are compared with those of other models in terms of several

evaluation metrics. The model reduces the MAE, RMSE, and

MAPE and increases the R2, thereby demonstrating that the

prediction results of the proposed model are more accurate than

those of the competing methods. At the same time the model

can be extended on other student datasets and can result in a

complete student performance prediction application. Therefore,

the method proposed in this paper can provide new ideas for

predicting student performance, helping teachers and school policy

makers analyze students’ performance as well as their future

learning plans.

In order to further demonstrate the practical application

performance of the MDBO BP Adaboost model proposed

in this paper, our next step is to obtain more student

datasets from different schools, grades, and classes to verify

the performance of MDBO-BP-Adaboost, in order to accurately

predict students’ grades and apply them to actual teaching.

The model proposed in this article also has good scalability.

We will preprocess the obtained student performance dataset

and further obtain the basic information and past exam

scores of the students to predict their grades. Furthermore,

we explained the scalability of the model. At the same time,

this model also has certain limitations, mainly due to the

specific distribution requirements for obtaining student data,

including standardization of student data and the number of

student characteristics.
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