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Impact of imbalanced features
on large datasets

Waleed Albattah and Rehan Ullah Khan*

Department of Information Technology, College of Computer, Qassim University, Buraydah,

Saudi Arabia

The exponential growth of image and video data motivates the need for

practical real-time content-based searching algorithms. Features play a vital

role in identifying objects within images. However, feature-based classification

faces a challenge due to uneven class instance distribution. Ideally, each

class should have an equal number of instances and features to ensure

optimal classifier performance. However, real-world scenarios often exhibit

class imbalances. Thus, this article explores the classification framework based

on image features, analyzing balanced and imbalanced distributions. Through

extensive experimentation, we examine the impact of class imbalance on image

classification performance, primarily on large datasets. The comprehensive

evaluation shows that all models perform better with balancing compared to

using an imbalanced dataset, underscoring the importance of dataset balancing

for model accuracy. Distributed Gaussian (D-GA) and Distributed Poisson (D-PO)

are found to be the most e�ective techniques, especially in improving Random

Forest (RF) and SVM models. The deep learning experiments also show an

improvement as such.
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1 Introduction

The imbalance refers to an uneven class instance distribution in image datasets. This

can significantly affect the accuracy of Machine Learning models. When the dataset is

highly unbalanced, with a large number of samples in themajority class and a small number

in the minority class, the models tend to have high accuracy against the majority class

but struggle to classify the minority class accurately. This is because there are insufficient

examples of minority classes from which the models can learn, and the models are biased

toward the majority class.

Various approaches have been developed to tackle this issue, including oversampling

methods such as random oversampling, SMOTE, borderline SMOTE, ADASYN, and Deep

SMOTE (Barulina et al., 2023). An alternative method involves utilizing a subset of the

dataset with missing images in certain classes and adding augmented images. This strategy

has demonstrated enhanced metrics when compared to the original imbalanced dataset

(Achmad and Haris, 2023).

Addressing the imbalance in image datasets is essential for enhancing the accuracy of

machine learning algorithms. The accuracy and reliability of Deep Learning (DL) models,

specifically those employed in tasks such as image recognition and classification, are

significantly impacted by the caliber and composition of the datasets utilized for training.

Unequal distribution of images in datasets can result in substantial biases, which can affect

the performance and fairness of these algorithms. This article examines the consequences

of imbalanced datasets on the accuracy of machine learning models and proposes possible

solutions to address this issue.
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Deep learning models intrinsically depend on data, relying

on substantial training data to acquire the fundamental patterns

required for making predictions (LeCun et al., 2015). Imbalanced

datasets occur when certain classes are overrepresented while

others are underrepresented. The model may be biased toward the

more frequent classes in such cases. This can decrease performance

in underrepresented classes, as the model has fewer learning

examples (Buda et al., 2018).

The effect of dataset imbalance is most notable in areas like

medical imaging, where certain illnesses may naturally have a lower

occurrence rate than others. For example, regarding rare diseases,

a limited number of images may be available for training. As a

result, models tend to excel in recognizing common diseases but

struggle to identify unusual ones (Litjens et al., 2017). This can

have immediate implications for clinical decision-making, possibly

resulting in incorrect diagnosis.

Dataset imbalance in facial recognition technologies may

increase racial biases. Research has indicated that facial recognition

systems, which have been primarily trained on datasets mainly

consisting of persons of Caucasian descent, exhibit increased

inaccuracy rates when attempting to identify individuals from

different ethnic origins (Buolamwini and Gebru, 2018). This

impacts accuracy and gives rise to ethical considerations regarding

the objectivity and comprehensiveness of AI technology.

A prominent method for dealing with imbalanced datasets

is data augmentation, which involves artificially boosting the

number of data points in underrepresented classes by producing

additional data through different transformations (Perez and

Wang, 2017). This includes methods such as rotation, scaling, or

color modification, which aid in achieving a more balanced dataset

without gathering more images.

Another approach involves the production of synthetic data.

Generative Adversarial Networks (GANs) can be utilized to

generate images that can be incorporated into the training

dataset, hence balancing the distribution of classes (Goodfellow

et al., 2014). This strategy has proven advantageous when data

collecting is difficult, or privacy issues are paramount. Transfer

learning is a practical approach for reducing the impact of

imbalanced datasets. Transfer learning enables the advantages

of deep learning to be utilized even when there is limited

data by using a model trained on an extensive and diverse

dataset and then fine-tuning it on a smaller and more particular

dataset (Pan and Yang, 2010). This approach is particularly

advantageous when gathering data is costly or complicated.

Ensemble learning techniques, which integrate many models

to enhance overall performance, can also efficiently address

imbalanced datasets. Ensemble approaches can mitigate the risk

of overfitting to the majority class by training many models on

different subsets of the data and combining their predictions

(Dietterich, 2000).

Although these strategies can help, it is not possible to

eliminate dataset imbalance, and it typically needs continuous

attention during the model development process. Consistent

monitoring and testing in various scenarios guarantee

that models perform fairly for all classes. This article

examines the influence of imbalanced features on Deep and

non-deep models.

2 Literature review

Class imbalance emerges when there is significant variation in

the number of samples between different classes. This can bias

models toward the majority class. Class imbalance occurs when

one class has significantly more samples than other classes. This

can bias models toward the majority class. The classification of

imbalanced data, where there are many more samples of the

majority class compared to the minority class, is a challenging

problem for deep learning models. Class predictions tend to be

biased toward the majority class, resulting in poor accuracy on

the minority class. One thesis empirically studies the impact of

imbalanced training data distributions on Convolutional Neural

Networks (CNNs) performance for image classification (Masko and

Hensman, 2015). The CIFAR-10 dataset creates training subsets

with different class distributions, ranging from balanced to highly

imbalanced. A simple CNN architecture is trained on each subset.

Performance is measured by classification accuracy on the held-out

CIFAR-10 test set.

Oversampling is also applied to imbalanced subsets to duplicate

minority class examples until a balanced distribution is achieved.

This allows for evaluating whether oversampling can recover

performance lost due to imbalanced training data.

The study reveals that balanced training data yields the

best CNN performance, as expected based on prior work.

However, performance decreases with increasing imbalance.

Highly imbalanced distributions cause the CNN to simply predict

the majority class. Under-representations of single classes do

not significantly impact overall accuracy, where few classes have

only a few cases. The experiments show that oversampling

successfully recovers performance lost due to imbalanced training,

matching results from balanced training. The study provides

empirical evidence that balanced training data and oversampling

of imbalanced data are essential for optimizing CNN performance

on image classification tasks.

CNNs have achieved great success in computer vision. Still,

the following study analyzes how data imbalance affects the

performance of Convolutional Neural Networks (CNNs) for image

classification tasks. It reveals how imbalanced data’s impact is

poorly understood (Pulgar et al., 2017). The study focuses on

classifying images of traffic signs using CNNs, with datasets

containing different levels of class imbalance. Four experiments

were conducted with imbalance ratios (IR) of 1/10, 1/5, 1/3, and

1/1 (balanced). A CNN architecture with convolution, pooling, and

fully connected layers was trained on 2,030 images and evaluated

on 670 images in each experiment. Key metrics like error rate,

accuracy, and recall were computed. The results show that the

classification performance consistently improves across all metrics

as the IR decreases (data becomes more balanced). Error rate drops

from 3.3% with IR 1/10 to 1.2% with a balanced dataset. Accuracy

and recall also increase in each subsequent experiment.

This confirms the initial hypothesis that imbalance negatively

impacts CNN’s performance. The authors theorize this may be

due to the fully connected layer prioritizing majority classes

and convolution filters over-adapting to them during training.

Although the study demonstrates that data imbalance is a problem

for CNN-based image classification and that balancing training
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data through techniques like resampling can help address this issue

and improve results, further work is needed to understand how

imbalance affects CNNs, which the present study tries to address

in this paper.

One investigated issue of medical images is that the

classification tasks suffer from severe class imbalance, where images

of target classes of interest (e.g., certain diseases) only appear

in a small portion of the dataset (Zhang, 2019). Consequently,

this shares two common issues: Only a small labeled training

set is available due to the high cost of manual labeling by

experts. Also, the rare and common classes have a high imbalance

ratio. The study (Zhang, 2019) refers to these two issues because

traditional data augmentation, sampling-based methods, and cost-

sensitive learning do not utilize large unlabeled image sets to

create large representative training sets. Moreover, the existing

active learning methods are not designed for medical image

classification tasks with unknown feature representations and class

imbalance. To overcome these issues, they (1) propose several

real data augmentation methods that utilize unlabeled data to

expand small labeled training sets, especially for the rare class.

(2) A sensitivity study compares the effectiveness of different

data augmentation methods with training sets of varying sizes,

varieties, and similarities to the test set. (3) A hierarchical and

unified data augmentation method is proposed to efficiently collect

a large representative training set for the common class. (4) A

novel similarity-based active deep learning framework called SAL

is introduced to deal with small labeled training sets and significant

class imbalance. The key findings suggest that triplet-based real

data augmentation methods outperform other techniques, and SAL

achieves near-optimal classification performance with minimal

manual labeling effort. The study provides valuable insights

on selecting appropriate medical image training sets and offers

promising solutions to address class imbalance and small labeled

data challenges in medical image classification tasks.

A further study focuses on the issue of insufficient annotated

datasets and imbalanced classes when utilizing deep learning to

detect lung disease indicators from chest X-rays and CT images

(Iqbal et al., 2023). The study introduces a new 3-phase Dynamic

Learning (3PDL) technique that adjusts the sampling of the

minority class throughout training to achieve class balance. The

proposed method is assessed using accuracy, F1 score, precision,

sensitivity, and specificity. The model obtains a notable F1 score

of 96.83% and a precision of 96.87% on the datasets, showing

excellent performance. The study’s findings suggest that the 3PDL

approach andHFFmodel are more effective than othermethods for

dealing with class imbalance and using multi-modality data. The

study suggests doing additional tests on more extensive datasets. It

highlights the need to address data privacy and bias in using deep

learning for medical imaging.

Another approach to tackle the imbalanced data problem is

incorporating noise into the feature space of a Convolutional

Neural Network (CNN) during the training process (Fan and Lee,

2021). Noise is added to the last extracted feature layer of the

CNN to perturb the features and encourage the network to learn

more separable representations. A hybrid loss function combining

cross-entropy and KL divergence is used. The KL divergence term

constrains the noise distribution, preventing it from approaching

zero during training. The method is evaluated on DAGM 2007,

NEU surface defect, and MNIST (artificially imbalanced). A simple

CNN architecture selection method is also presented.

The proposed CNN with added noise (CNNnoise) achieves

significantly better accuracy on the minority class than a standard

CNN, especially at higher imbalance ratios. CNNnoise maintains

over 96% accuracy even at an imbalance ratio of 100. Adding

noise allows the network to learn features not existing in

the original minority class samples. This helps address the

lack of meaningful representations for the minority class due

to data imbalance. In a different context, a study aimed to

effectively classify imbalanced cloud image data with a class

imbalance of more than 20 times using deep learning approaches

(Matsuoka, 2021). The authors held a data science competition

to design a highly accurate classification model where labeled

images of tropical cyclones and other categories were publicly

available. The top-performing models in the competition used

the following techniques: Deep and wide convolutional neural

networks (CNNs) such as ResNet, WideResNet, and PyramidNet to

increase representational capability. Data augmentation methods

for the minority class include flipping, cropping, and shifting

to increase training data. Undersampling of the majority class

by including misclassified examples to focus on more complex

examples. Ensemble learning by combining models trained with

different data sampling techniques. Loss functions accounting

for class imbalance, such as focal loss. The top model achieved

a precision of 0.6236 when the recall was fixed at 0.8062,

improving classification performance by around 65.4% compared

to the baseline. Common effective methods included deep CNN

architectures, data augmentation, ensemble learning, and test

time augmentation. The competition successfully improved the

classification of imbalanced cloud image data, showcasing the

effectiveness of collaboration between computer science and

geoscience fields.

From another perspective, another study aimed to investigate

how the performance of imbalance classification models is

affected by the joint use of feature selection and data resampling

methods (Zhang et al., 2023). Specifically, it compared the

performance of two pipelines: feature selection before data

resampling (FS+DS) and data resampling before feature selection

(DS+FS). The following methodologies were used: 52 publicly

available imbalanced datasets from various domains, nine feature

selection methods (filters, wrappers, embedded) and six resampling

methods (oversampling, undersampling), three classifiers (C4.5,

SVM, MLP) to build models on preprocessed data, and finally, the

performance was evaluated using metrics like accuracy, G-mean,

F1, IBA. Statistical tests like Wilcoxon and Iman-Davenport were

used to compare pipelines, and heuristic measures like Rank-Sum

were used to recommend top combinations.

The study concluded that both pipelines should be considered

for the best model. It provided new insights into their performance

with different configurations and recommendations on promising

feature selection-resampling combinations. The joint use of these

techniques can significantly improve imbalance classification.

Lastly, a new method has been developed to improve the accuracy

of imbalanced medical datasets using Balanced GAN (BAGAN)

to generate synthetic images of minority classes (Asokan, 2021).
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They develop efficient CNN classifier algorithms for classifying

medical images from various datasets. They also compare and

evaluate different CNN models on the classification performance

of synthetic images generated by BAGAN. The study proposes

a methodology with the following steps: (1) traditional data

augmentation is applied to enlarge the training dataset, (2) BAGAN

is used to generate synthetic images of minority classes to balance

the datasets, (3) various CNN models are trained on original and

BAGAN-balanced datasets, and (4) classification performance is

evaluated and compared between different models.

The study finds that BAGAN can generate high-quality

synthetic images that balance the class distribution. CNN classifiers

achieve better accuracy when trained on BAGAN-balanced datasets

compared to imbalanced original datasets. Finally, an ensemble of

CNN classifiers further improves the classification performance.

3 Proposed approach

This work examines image classification using traditional

features, considering both balanced and unbalanced sets of features.

It offers a thorough exploration of various image classification

models. The first group of models is designed for datasets with

imbalanced class distributions, while the second group works

with datasets where classes are balanced. The effectiveness of

these models is evaluated by testing them on known datasets

and comparing their performance in accurately classifying images.

Algorithm 1 shows the Pseudocode for the algorithmic flow of the

steps for the proposed approach.

The following steps are followed to address the imbalanced

features in a dataset, see Figure 1. First, a balanced sample is

gathered to reduce the imbalance. Then, feature extraction is

done using the Auto Color Correlogram method to extract the

essential features, making the dataset more accessible for machine

learning. After this, ML models are created to classify the data,

and their performance is checked to see how well the feature

extraction models the data. Also, experiments are executed to

handle the imbalanced classes, hoping to improve the overall

classification process.

Additionally, multiple models are developed for classifying

images. The effectiveness of these models is evaluated to see

how well the techniques work. Finally, all the results are

compared to determine which strategies are best for dealing with

imbalanced features and boosting machine learning performance

for image classification.

3.1 Model evaluation

Feature classification models (ML models) are selected based

on the performance of similar tasks in the state-of-the-art. The

Bayesian Network (BN) classifier is a probabilistic graphical model

representing variables and their conditional dependencies using a

Directed Acyclic Graph (DAG). Multinomial Naive Bayes (NB),

a probabilistic classifier designed for discrete data, utilizes Bayes’

theorem. Random Forest (RF) is an ensemble learning method

for various problems, including classification and regression. It

creates multiple decision trees during training, with the outcome

# Obtain the dataset

dataset = obtain_dataset()

# Extract features from the dataset

extracted_features =

feature_extraction(dataset)

# Train models using the extracted features

models = train_models(extracted_features)

# Evaluate the models on the original

dataset

original_evaluation =

evaluate_models(models, extracted_features)

# Balance the dataset to handle class

imbalance

balanced_dataset = balance_dataset(dataset)

# Extract features from the balanced dataset

balanced_features =

feature_extraction(balanced_dataset)

# Train models using the balanced features

balanced_models =

train_models(balanced_features)

# Evaluate the models on the balanced

dataset

balanced_evaluation =

evaluate_models(balanced_models,

balanced_features)

# Obtain an image dataset for classification

image_dataset = obtain_image_dataset()

# Extract features from the image dataset

image_features =

feature_extraction(image_dataset)

# Train models using the image features

image_models = train_models(image_features)

# Evaluate the models on the image dataset

image_evaluation =

evaluate_models(image_models,

image_features)

# Compare the evaluation results

comparison_results =

compare_results(original_evaluation,

balanced_evaluation, image_evaluation)

# Output the comparison results

output(comparison_results)

Algorithm 1. Pseudocode for the algorithmic flow of the steps for the

proposed approach.

determined by either the mode of the classes (for classification)

or the average prediction (for regression) of the individual trees.

Sequential Minimal Optimization (SMO) is a technique for training

Support Vector Machines (SVMs), which are used for classification

and regression tasks. Convolutional Neural Networks (CNNs) are

deep learning models specialized for analyzing structured grid data

and have excelled in numerous computer vision tasks such as image

classification, object detection, and segmentation.
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FIGURE 1

Flow of the steps for the proposed approach.

3.2 Feature balancing

Feature balancing methods, namely the Class Balancer (CB)

and the Distribution-Based Balancer (DB), address the issue of

imbalanced classes in image datasets.

Feature balancing methods, namely the Class Balancer (CB)

and the Distribution-Based Balancer (DB), address the issue of

imbalanced classes in image datasets (He and Garcia, 2009). Class

imbalance occurs when certain classes are overrepresented while

others are underrepresented, which can lead to biased models that

perform poorly on minority classes. Balancing techniques aim to

mitigate this bias by ensuring the model receives an equitable

representation of each class during training.

3.2.1 CB approach
The CB approach adjusts the weights of instances in the dataset

so that each class contributes equally to the total weight (Buda

et al., 2018). This method works by assigning a weight to each

instance inversely proportional to the class frequency, ensuring

that no class dominates the training process due to its imbalance

(Japkowicz and Stephen, 2002). As a result, the loss function during

training is computed in a way that gives equal importance to

all classes, regardless of their original proportions in the dataset.

The adjustment is made iteratively until the total weight across

all classes remains constant, thereby normalizing the influence of

each class.

We can represent the above explanation as follows: For the

formulation of CB into amore formalmathematical representation,

Let D= {x1, x2,..., xn} represent the dataset containing n instances,

where each instance xi belongs to a class Ci ε C, with class labels

C = {C1, C2,..., C
k}. The weight of an instance xi is denoted as wi.

The CB is to reassign weights wi so that each class Cj has an equal

total weight.

For the initial class distribution computation, Let Nj denote the

number of instances in class Cj, such that: Nj = | {xi | Ci = Cj} |,

for j ε {1, 2,..., k}. The total number of instances in the dataset is

n=
∑k

j = 1 Nj.

For the total weight sum preservation, Let W_total be the total

weight of the instances in the dataset before balancing: W_total

=
∑

i =1n wi. The total weight after balancing must remain

unchanged: W_total’=W_total.

The goal of assigning equal weight per class is to ensure that

each class Cj contributes equally to the total weight. Thus, denoting

the total weight allocated to each class as Wj’, where:

W’
j = W_total/k

Each instance xi in class Cj must have a weight wi such that:∑
xi ε Cj wi =Wj’, for all j ε {1, 2,..., k}.

Thus, the weight assigned to each instance xi ε Cj is:

wi’ = Wj’/Nj, for all xiε Cj.

Final new weight reassignment: The new weight of an instance

xi is then given by:

wi’ = W_total/(k∗Nj), for Ci = Cj.

This ensures that the total weight across the dataset remains

constant and each class has an equal total weight contribution.

As such, theoretically, the CB ensures the total sum of weights

remains the same while redistributing the weights so that each class

contributes equally.

3.2.2 DB approaches (D-GA, D-PO)
On the other hand, the DB approach involves resampling

instances using a probabilistic model and, with replacement, each

tagged with its respective class label. It operates by following

a distribution learned for each combination of attribute and

class labels. Specifically, this approach begins by estimating the

probability distribution of each class based on its attributes (Liu

et al., 2009). Using this distribution, instances are sampled to ensure

balanced class representation. This approach is particularly useful

in scenarios where certain attribute-class combinations are rare,

as it guarantees that the model is exposed to sufficient samples

from these combinations during training. Doing so enhances the

model’s ability to generalize across all classes and reduces the risk

of overfitting to the majority classes.

We can represent the above explanation as follows. For

the formulation of DB into a more formal mathematical

representation, Let C = {C1, C2,..., Ck} be the set of class labels,

and A = {A1, A2,..., Am} be the set of attributes. Each instance xi is

associated with a class label yi ε C and a set of attribute values {ai1,

ai2,..., aim} ε A. The Distribution-Based Balancer (DB) approach

follows these steps:
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For the estimation of probability distribution: For each class

Cj, estimate the conditional probability distribution P(A | Cj) of

attributes A given the class Cj from the training data:

P(A|Cj) = 5i =1m P(ai| Cj)

where P(ai | Cj) is the probability of observing attribute ai given

class Cj.

For the sampling of instances: Instances xi are sampled with

replacement such that the probability of selecting an instance xi
from class Cj is proportional to the learned probability distribution

P(A | Cj), ensuring balanced class representation. Balanced Class

Representation: The resampling procedure continues until the

desired class balance is achieved, meaning the number of instances

sampled for each class Cj is approximately equal:

N(Cj)≈N(Ck) for all j, k ε{1, 2, ..., k}

where N(Cj) is the number of instances sampled for class Cj.

Thus, the final dataset used for training or evaluation has

a balanced distribution of classes, accounting for the class

distribution in the original dataset.

3.2.2.1 D-GA

The Distributed Gaussian (D-GA) method balances a dataset

by modeling class attributes using Gaussian distributions and

generating synthetic data to achieve class balance. For each class,

Ck ε C, attributes A follow a Gaussian distribution characterized by

the mean µk and covariance 6k:

P(A|Ck) = N(A|µk, 6k)

Whereas, the mean µk and covariance 6k are estimated from

the data:

µk = (1/Nk)
∑

i
Ai

6k = (1/(Nk − 1))
∑

i
(Ai − µk)(Ai − µk)

T

New instances are generated by sampling from the Gaussian

distribution for each class:

Āi ∼ N(µk, 6k)

3.2.2 D-PO
The Distributed Poisson (D-PO) method balances a dataset

by modeling class attributes using a Poisson distribution and

generating synthetic data. For modeling the Class Distributions:

For each class Ci ε C, the attributes A follow a Poisson distribution

with rate λi:

P(A|Ci) = Poisson(A| λi)

For the estimating the rate λi: It is estimated as the mean of the

attribute values:

λi = (1/Ni)
∑

i
Ai

The new instances are generated by sampling from the

Poisson distribution:

Āi ∼ Poisson(λi)

Finally, the dataset is balanced by ensuring each class has the

same number of instances:

N(Ci) = Nr
taγ t

Both CB and DB methods are critical in applications involving

image classification, where imbalanced datasets are common.

These methods can be applied in various domains, such as

medical imaging, where minority-class instances (e.g., images of

rare diseases) are often underrepresented, leading to potential

misdiagnoses (Chawla et al., 2002). By implementing feature

balancing techniques, models can be trained to recognize patterns

more effectively across all classes, improving overall accuracy

and robustness.

4 Experimental evaluation

4.1 Datasets (DS1, DS2)

The experimental evaluation utilizes the NDPI large video

dataset (Avila et al., 2013), represented as DS1. The DS1

is categorized into three groups: acceptable, flagged, and

unacceptable. The data obtained via image filtering is used

for data sampling. The dataset is effectively structured for three

primary reasons: it is divided into three well-defined categories, can

be transformed into numerical representations, and encompasses

a significant volume of data (up to 40 GB). Consequently, it is

well-suited for processing massive amounts of data and doing

in-depth analysis using machine learning techniques.

Furthermore, the dataset is especially suitable for experiments

that involve imbalanced data classes. In practical situations,

datasets commonly show class imbalances, wherein specific

categories (such as “acceptable”) have a notably higher

number of instances compared to others (such as “flagged”

or “unacceptable”). The dataset’s classification into acceptable,

flagged, and unacceptable categories enables the investigation

of approaches to address unbalanced data, such as resampling

techniques, cost-sensitive learning, and sophisticated algorithms

designed to operate effectively in class imbalances. Due to these

characteristics, it is suitable for studying and developing machine-

learning solid models that can efficiently handle and learn from

imbalanced data distributions.

The Retinopathy image dataset (represented as DS2) retrieved

from Kaggle plays a key role in detecting diabetic retinopathy

(DR), a significant cause of blindness. It consists of retina images

taken through fundus photography and is used to train machine

learning models to identify and classify the severity of DR. The

images are labeled with severity levels, ranging from No DR

(0) to Proliferative DR (4), with other stages like Mild DR

(1), Moderate DR (2), and Severe DR (3). The dataset includes

over 35,000 images, with around 35,000 in the training set and

about 5,000 in the test set. These images help train models

and spot subtle changes in the retina that may not be easy
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for the human eye to detect. Preprocessing steps like resizing,

normalization, and augmentation (like rotating and flipping

images) are applied to improve model accuracy. The dataset is

challenging, especially in detecting early-stage DR. It’s widely

used for automated diagnosis and testing of machine learning

models in tasks like image classification, segmentation, and

object detection.

4.2 Experimental setup

The experimental evaluation aims to build several models

for classifying images into their categories and then evaluate the

classification performance. The Auto Color Correlogram is used to

extract the features. BN, Multinomial Naive Bayes, Simple Logistic,

Random Forest, and SMO are used for model creation.

The First set of experiments involves generating the model with

an unbalanced original feature set. The second set of experiments

balances classes in the image dataset and then applies the proposed

models initially applied to the original dataset. The Third set of

experiments uses the CNN model to classify images according to

their category and then evaluate the classification performance.

In addition, in this experiment, an auto-balancing function

is used.

The CNN model consists of four Convolution and

Pooling layers, each paired with a ReLU activation function.

After these layers, there’s a flattened layer, which bridges

the Convolution and Dense layers. The Dense layers serve

as the output layers, employing the Softmax function to

assign probabilities to each class. Three Dropout layers are

integrated into the model to mitigate overfitting, preventing

excessive reliance on specific features when connected to the

flattened layer.

5 Evaluation and analysis

In this section, we present the experimental evaluation and

report the performance.

5.1 Evaluation of balanced and unbalanced
classical features

Table 1 shows the balancing techniques used for evaluation.

Four balancing techniques were examined and compared with the

original dataset.

The original imbalance dataset is a base for the other four

techniques used in different classification algorithms. In manual

balancing, the dataset is manually balanced by excluding features

that make the dataset unbalanced. A class balancer adjusts the

weights of instances in the dataset so that each class contributes

equally to the total weight. It ensures that no class dominates the

training process due to its imbalance. Lastly, the Distribution-Based

Balancer involves resampling instances with replacement, each

tagged with its respective class label. Instances are sampled based

on the learned distribution to ensure a balanced representation of

classes during training and the corresponding modeling algorithm.

TABLE 1 Balancing techniques.

Approach Definition

IB Imbalance: performance with the original imbalanced

dataset

MB Manual balance: performance after manually balancing

the dataset

CB Class balancer: utilizing automated class balancing

techniques

D-GA Distributed Gaussian: performance using a Gaussian

distribution approach to balance the dataset

D-PO Distributed Poisson: performance using a Poisson

distribution approach to balance the dataset

5.1.1 DS1 evaluation
Table 2 and Graph of DS1 in Figure 2 present the F-measure

values for various models applied to the DS1 dataset, balanced

using different approaches. The F-measure balances precision and

recall, with higher values indicating better model performance.

The Bayesian Network performs best with the D-GA method,

achieving a strong F-measure of 90, followed by D-PO at 89,

SMOTE-NC at 87, and SMOTE-ENN at 86. This suggests that D-

GA is the most effective balancing technique for this model. Naive

Bayes also performs best with D-GA (91), slightly outperforming

the Bayesian Network, but sees a drop in performance with D-

PO (89) and a more significant decline with SMOTE-NC (86)

and SMOTE-ENN (87). Random Forest follows a similar trend,

with its highest F-measure (90) achieved using D-GA, but its

performance drops slightly with D-PO (89) and SMOTE-NC (88)

and more noticeably with SMOTE-ENN (86). SVM stands out as

the top performer overall, with a peak F-measure of 92 using D-

GA, followed by 90 with D-PO, and a noticeable decrease with

SMOTE-NC (87) and SMOTE-ENN (85). Across all models, D-

GA consistently yields the best results, indicating its effectiveness in

balancing the dataset. While D-PO also performs well, SMOTE-NC

and SMOTE-ENN result in lower performance, with SMOTE-NC

slightly outperforming SMOTE-ENN. In conclusion, D-GA is the

best method for balancing the dataset, with SVM delivering the top

performance overall, followed by Naive Bayes, Bayesian Network,

and Random Forest.

5.1.2 DS2 evaluation
Table 3 and the DS2 graph in Figure 3 show the F-measure

values for different models applied to the DS2 dataset, with

data balanced using various methods. The Bayesian Network

performs consistently across all methods, achieving its highest F-

measure (85) with both D-GA and D-PO and slightly lower values

with SMOTE-NC (84) and SMOTE-ENN (83), showing minimal

sensitivity to the balancing technique. Naive Bayes performs best

with D-PO (84), just edging out D-GA (83), but it drops off more

significantly with SMOTE-NC (82) and especially with SMOTE-

ENN (73), suggesting that this model struggles with SMOTE-ENN.

Random Forest is the most consistent, showing an F-measure

of 89 for D-GA, SMOTE-NC, and SMOTE-ENN and a slight

improvement with D-PO (90), meaning it performs well regardless
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TABLE 2 F-measure for DS1 evaluation.

Model IB MB CB D-GA D-PO SMOTE-NC SMOTE-ENN

Bayesian network 80 76 81 90 89 87 86

Naive Bayes 70 67 70 91 89 86 87

Random forest 84 82 86 90 89 88 86

SVM 88 87 89 92 90 87 85

FIGURE 2

F-measure of DS1 evaluation. Visualizing only D-GA, D-PO, and

SMOTE for better visual comparison.

of the balancing method. SVM performs the best overall, reaching

an F-measure of 91 with both D-GA and D-PO, with a slight

drop to 90 with SMOTE-NC and 89 with SMOTE-ENN, indicating

that it benefits most from D-GA and D-PO. In conclusion, D-

GA and D-PO are the most effective balancing methods across

most models, with SVM standing out as the best-performing model

overall. Random Forest is robust to different balancing techniques,

while Naive Bayes performs the worst with SMOTE-ENN.

5.2 Evaluation of the deep features

The findings of deep learning investigations implementing

Convolutional Neural Networks (CNN) on IB and CB datasets

show significant observations and provide clarity on the influence

of data balancing on model performance. The performance is

evaluated using the F-measure metric, as indicated in Table 4.

We start the overall evaluation with increasing epoch sizes.

Initially, with the 20 epochs, the model trained on an imbalanced

dataset performed slightly better, achieving an F-measure of 86,

compared to 84 for the model trained on balanced data. This slight

increase in performance for the imbalanced data may be due to

the model being more diverted to the existing correlated feature

distribution of the classes. However, from 40 epochs onward,

the balanced data model begins to outperform its imbalanced

counterpart, with an F-measure of 90 compared to 88 at 40 epochs.

This trend continues till the 100 epochs, where the balanced

data model achieves an F-measure of 93, compared to 91 for

the imbalanced data model, indicating that the benefits of class

balancing become more evident with additional training.

Interestingly, at 60 epochs, there was a temporary shift where

the imbalanced data model achieved a higher F-measure of 90

compared to 88 for the balanced data model. This anomaly could

be due to the model on imbalanced data finding a local optimum

that momentarily boosts its performance. Despite this, the overall

trend favors the balanced data model, which consistently shows

superior performance in the later stages of training. With the 150

epochs, the balanced data model achieved an F-measure of 94,

while the imbalanced data model lagged at 92. This gap widened

at 200 epochs, where the balanced data model reached the highest

F-measure of 96, significantly outperforming the imbalanced data

model, which remained at 92.

The CNN evaluation results highlight the importance of

balancing classes when training deep learning models. Models

trained on imbalanced data may achieve good performance

initially. On the other hand, models trained on balanced data

keep getting better. This shows that balancing classes makes

models more accurate and reliable. Balancing classes contributes to

increasing performance, especially when dealing with datasets with

large imbalances among classes.

5.3 Results analysis

The findings indicate a significant performance improvement,

ranging from 10 to 20% when employing distribution-based

balancers before image classification. Dataset balancing

significantly improves the performance of all models compared

to using an imbalanced dataset, highlighting the crucial role of

dataset balancing in achieving high model accuracy. Out of the

various methods, Distributed Gaussian (D-GA) and Distributed

Poisson (D-PO) consistently yield the highest performance across

all models, with a particular advantage for Random Forest (RF)

and SVM models. The Naive Bayes (NB) model exhibits the

most negligible improvement when manual balancing is applied,

indicating that it is less affected by variations in class distribution or

that manual techniques are less impactful for this particular model.

The experiments demonstrate that utilizing practical balancing

approaches, such as Distributed Gaussian and Distributed Poisson,

to tackle dataset imbalance can significantly enhance model

performance. This improvement is particularly noticeable in

models such as Random Forest and SVM, which demonstrate

substantial benefits using these techniques. This investigation

emphasizes the crucial significance of dataset preparation in

developing efficient machine-learning models, especially when

dealing with imbalances in class distribution.
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TABLE 3 F-measure for DS2 evaluation.

Model IB MB CB D-GA D-PO SMOTE-NC SMOTE-ENN

Bayesian network 83 80 83 85 85 84 83

Naive Bayes 72 70 72 83 84 82 73

Random forest 86 81 87 89 90 89 89

SVM 89 83 88 91 91 90 89

FIGURE 3

F-measure of DS2 evaluation. Visualizing only D-GA, D-PO, and

SMOTE for better visual comparison.

TABLE 4 Summary of CNNmodel results.

Model (Epoch) IB CB

CNN20 86 84

CNN40 88 90

CNN60 90 88

CNN100 91 93

CNN150 92 94

CNN200 92 96

Experiments involving deep learning and convolutional neural

networks (CNNs) have demonstrated that models’ performance is

greatly influenced by the balancing of data in imbalanced (IB) and

class-balanced (CB) datasets. The analysis presented highlights the

significance of class balancing while training deep learning models.

It demonstrates that models trained on balanced data regularly

achieve superior performance during the later stages of training.

5.4 Qualitative analysis

In the experimental evaluation of the previous section, we

see that the D-GA and D-PO increase the accuracy of the

classifiers used without balancing. With this increase, we constitute

a Qualitative question: Can the D-GA and D-DPO increase the

classification accuracy for other N classifiers? To answer this

qualitative question, we select the Neural Network, Gradient

Boosting, AdaBoost, and Logistic Regression from the set of

TABLE 5 Comparative classifiers; the experimental evaluation for the

qualitative solution.

Model IB D-GA D-PO

Neural network 82 88 89

Gradient boosting 80 87 87

AdaBoost 68 73 72

Logistic

regression

72 80 80.5

FIGURE 4

Comparative classifiers; the experimental evaluation for the

qualitative solution.

classifiers. These classifiers are chosen based on their good overall

performance in the state-of-the-art. Table 5 shows the Comparative

classifiers, where IB is accuracy without balancing, D-GA is

calculated after balancing with Distributed Gaussian, and D-PO is

calculated after balancing with the Distributed Poisson approach.

The experimental evaluation of different classifiers for a

qualitative solution, as presented in Figure 4, reveals a clear

hierarchy in performance across three metrics: IB, D-GA, and

D-PO. The Neural Network classifier emerges as the top

performer, consistently achieving the highest scores across all

metrics (IB: 82, D-GA: 88, D-PO: 89). Following closely is

the Gradient Boosting classifier, which demonstrates strong

performance with only slightly lower scores (IB: 80, D-GA: 87, D-

PO: 87). These two classifiers significantly outperform the others,

establishing themselves as the most effective options for the given

qualitative solution.

In contrast, AdaBoost and Logistic Regression classifiers show

notably lower performance. AdaBoost ranks third with scores

of 68, 73, and 72 for IB, D-GA, and D-PO, respectively, while
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FIGURE 5

F-measure of DS1 evaluation. Visualizing only D-GA, D-PO, and

SMOTE for statistical significance.

Logistic Regression trails behind with scores of 72, 80, and 80.5.

The consistent ranking across all three metrics underscores the

reliability of this performance assessment. This clear differentiation

in performance suggests that for this particular qualitative solution,

the Neural Network and gradient-boosting classifiers are the

most suitable choices, with the Neural Network having a slight

edge. However, the choice between these top two may also

depend on factors such as computational resources and specific

application requirements.

Table 4 thus shows that D-GA and D-PO help increase the

accuracy of N classifiers. This, therefore, validates the qualitative

question that sampling with optimal algorithms can improve the

classification performance in almost all classifiers, showing the

efficacy of the D-GA and the D-PO.

5.5 Statistical significance

For statistical significance evaluation and better visualization

and understanding of the D-GA and D-PO vs. SMOTE, we present

the results in the graph for both the DS1 and DS2 datasets. We omit

other approaches for this visualization because their performance is

already lower than the D-GA, D-PO, and SMOTE alternatives.

5.5.1 Dataset DS1
The Graph in Figure 5 shows that the D-GA is the best method

for balancing the dataset DS1 compared to the SMOTE alternatives.

As can be seen from the results in the graph, the D-

GA outperforms the D-PO, SMOTE-NC, and SMOTE-ENN.

Therefore, for statistical evaluation, we evaluate the D-GA with the

SMOTE-NC and SMOTE-ENN for the DS1. We select D-GA only

because D-GA already outperforms other approaches, and thus, we

are only interested in evaluating it with the SMOTE alternatives.

5.5.1.1 D-GA vs. SMOTE-NC

To confirm whether D-GA truly outperforms SMOTE-NC,

we performed a paired t-test on the F-measure values from

four models (Table 6, Figure 6). This test is helpful because it

TABLE 6 F-measure of the D-GA and SMOTE-NC is shown here to

calculate the statistical significance.

Model D-GA SMOTE-NC

Bayesian network 90 87

Naive Bayes 91 88

Random forest 90 88

SVM 92 87

FIGURE 6

F-measure DG-A vs SMOTE_NC.

directly compares each model’s performance under both balancing

techniques, helping us determine if the difference is real or just

due to chance. The results showed a t-statistic of 5.166 and a p-

value of 0.014. Since the p-value is well below the standard cutoff

of 0.05, we can confidently say that the difference in performance is

statistically significant. D-GA consistently had a higher F-measure

than SMOTE-NC in every tested model, meaning its advantage is

significant on DS1. These results suggest that D-GA is the better

balancing method, offering a clear and reliable improvement in

classification performance. The graph below also confirms this.

5.5.1.2 D-GA vs. SMOTE-ENN

For this set, we select D-GA only because D-GA already

outperforms other approaches, and thus, we are only interested in

evaluating it with the SMOTE alternatives.

For D-GA vs. the SMOTE-ENN (Table 7, Figure 7), a paired

t-test is conducted to compare the F-measure performance of D-

GA and SMOTE-ENN across four models. The mean difference

between the two approaches was 4.75, with a standard deviation of

1.5, leading to a t-value of 6.33 for 3 degrees of freedom. The critical

t-values at α = 0.05 and α = 0.01 are 2.353 and 4.541, respectively,

meaning the computed t-value far exceeded both thresholds. This

resulted in a p-value well below 0.01, indicating a highly significant

difference. As a result, we reject the null hypothesis and conclude

that D-GA significantly outperforms SMOTE-ENN. The consistent

improvement across all models, particularly in SVM (+7 points),

indicates that D-GA is the superior approach for balancing on DS1.
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TABLE 7 F-measure of the D-GA and SMOTE-ENN is shown here to

calculate the statistical significance.

Model D-GA SMOTE-ENN

Bayesian network 90 86

Naive Bayes 91 87

Random forest 90 86

SVM 92 85

FIGURE 7

F-measure DG-A vs SMOTE-ENN.

FIGURE 8

F-measure of DS2 evaluation. Visualizing only D-GA, D-PO, and

SMOTE for statistical significance.

5.5.2 For dataset DS2
The following graph in Figure 8 shows that the D-GA is

the best method for balancing the dataset DS2 compared to the

SMOTE alternatives.

5.5.2.1 D-GA vs. SMOTE-NC

We conducted a paired t-test to see if D-GA performs

significantly better than SMOTE-NC regarding F-measure (Table 8,

Figure 9). Looking at the differences between the two methods

across four models, we found an average difference of 0.75 with

some variation (a standard deviation of 0.661). The statistical test

resulted in a t-value of 2.27 and a p-value of 0.06. While D-GA

showed a slight advantage over SMOTE-NC, the p-value is just

TABLE 8 F-measure of the D-GA and SMOTE-NC is shown here to

calculate the statistical significance.

Model D-GA SMOTE-NC

Bayesian network 85 84

Naive Bayes 83 82

Random forest 89 89

SVM 91 90

FIGURE 9

F-measure DG-A vs SMOTE-NC.

TABLE 9 F-measure of the D-GA and SMOTE-NC is shown here to

calculate the statistical significance.

Model D-GA SMOTE-ENN

Bayesian network 85 83

Naive Bayes 83 73

Random forest 89 89

SVM 91 89

above the typical significance threshold of 0.05. This thus signifies

a slight performance improvement over the SMOTE-NC.

5.5.2.2 D-GA vs. SMOTE-ENN

A paired t-test was conducted to compare the F-measure

performance of D-GA and SMOTE-ENN across four models, using

a relaxed significance level of α = 0.10 (Table 9, Figure 10). The

mean difference was 3.5, with a standard deviation of 4.43, resulting

in a t-value of 1.58 for 3 degrees of freedom. The critical t-value at

α = 0.10 is 1.638, meaning the computed t-value was slightly below

the threshold. This yielded a p-value of∼0.11, indicating borderline

statistical significance. While the difference is insignificant at α =

0.10, the results suggest a clear trend favoring D-GA, particularly

in models like Naïve Bayes, where it outperformed SMOTE-ENN

by 10 points.
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FIGURE 10

F-measure DG-A vs SMOTE-ENN.

5.6 Quantitative analysis

To provide more insights into the challenges of imbalanced

data analysis, different approaches are introduced in this section

as follows:

I. Dimensionality Analysis: Investigate the impact of

dimensionality reduction (e.g., using PCA).

We reduce the dimensionality of the data using Principal

Component Analysis (PCA) and observe how it affects the

performance of the four classifiers (Bayesian Network, Naive Bayes,

Random Forest, and SVM).

The observations on the classifiers’ performance show that

Random Forest and SVMmodels maintain relatively high accuracy

as dimensionality increases. In contrast, Naive Bayes shows a drop

in performance as the number of components increases.

II. Noise Intensity Analysis: Introduce controlled noise to see

how the classifiers behave.

To analyze the impact of noise intensity, we introduced varying

levels of random noise into the dataset and observed how the

classifiers behaved.

The experiments performed varying noise levels (0.1, 0.5, and

1.0) on the dataset. With the noise introduction, the classifiers show

some drop in performance as noise intensity increases, though

Random Forest and SVM remain relatively robust. Naive Bayes

shows consistent performance across noise levels but at a lower

accuracy overall.

III. Outlier Impact Analysis: Introduce outliers and measure

their effect on classifier performance.

To analyze the impact of outliers, we introduce extreme values

into the dataset and observe how each classifier’s performance

is affected. Naive Bayes depicts a significant drop in accuracy,

suggesting that it is sensitive to the presence of outliers. In contrast,

Random Forest and SVM remain relatively robust, with only

slightly reduced accuracy.

IV. Non-uniform Distribution Impact: Adjust the data

distribution and evaluate classifier robustness.

To analyze the impact of a non-uniform data distribution,

we modified the dataset so that some regions of the feature space

are more densely populated than others, creating a skewed or

imbalanced distribution.

Naive Bayes experienced a notable drop in performance,

indicating sensitivity to the non-uniform distribution. Random

Forest and SVM remained relatively robust, with their accuracy

only slightly impacted.

6 Conclusions

The exponential growth of image and video data motivates

practical real-time content-based searching algorithms. This article

thus analyzed the classification paradigm based on image features

with balanced and unbalanced scenarios. The results showed

that models perform better when using balanced datasets than

imbalanced ones, highlighting the importance of dataset balancing

for model accuracy. Among the techniques evaluated, D-GA

and D-PO are the most effective, particularly in enhancing the

performance of the RF and the SVM models. The NB showed

the most minor improvement from manual balancing, depicting

that it is either less influenced by class distribution or that

manual balancing methods are less effective. Future research

should continue exploring innovative balancing methods and their

applications across various classification algorithms to enhance

the accuracy and reliability of image-based classifiers in real-time

content searching.
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