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Chronic obstructive pulmonary disease (COPD), a major cause of global

mortality, necessitates novel therapies targeting lung function and remodeling.

Their e�ect on emphysema formation is initially investigated using mouse

models by analyzing histological lung sections. The extent of airspace

enlargement that is characteristic for emphysema is quantified by manual

assessment of the mean linear intercept (MLI) across multiple histological

microscopy images. Besides being tedious and cost intensive, this manual task

lacks scientific comparability due to complexity and subjectivity. In order to

continue with the well-established practice and to preserve the comparability

of study results, we propose a deep learning-based approach for automating

the determination of MLI in histological lung sections utilizing the AutoML

software AIxCell which is specialized for the domain of semantic segmentation-

based cell culture and tissue analysis. We develop and evaluate our image

processing pipeline on stained histological microscope images that stem from

a study including two groups of C57BL/6 mice where one group was exposed

to cigarette smoke while the control group was not. The results indicate

that the AIxCell segmentation algorithm achieves excellent performance, with

IoU scores consistently exceeding 90%. Furthermore, the automated approach

consistently yields higherMLI values compared to themanually generated values.

However, the consistent nature of this discrepancy suggests that the automated

approach can be reliably employed without any limitations. Moreover, it

demonstrates statistical significance in distinguishing between smoker’s and

non-smoker’s lungs.

KEYWORDS

deep learning, pulmonary disease, mean linear intercept (MLI), semantic segmentation,

microscopy, automated machine learning

1 Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death

worldwide and its prevalence is still increasing (Li et al., 2023). Besides cigarette smoking,

environmental and occupational factors are common causes of COPD (Holtjer et al., 2023).

The disease is characterized by inflammation and remodeling of lung tissue (Jeffery, 2001).

Long-term remodeling can result in destruction of alveoli and airspace enlargement, which

are characteristic features of emphysema (Wang et al., 2018).
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Because current therapies only have a limited effect on

lung remodeling and emphysema, new molecular targets and

pharmacological compounds are urgently needed (Lo Bello et al.,

2020). To analyze the effect of potential new therapies on COPD,

the utilization of animal models in general and mouse models in

particular is very valuable because they reflect the complexity of

a whole organism including all cell types and tissues. The mouse

model with the highest pathophysiological relevance for COPD

is chronic cigarette smoke exposure (Ghorani et al., 2017). After

several months of smoking, lungs are harvested and remodeling

and emphysema formation are assessed by analyzing histological

lung sections (Yao et al., 2010).

The mean linear intercept (MLI) method is commonly used to

assess emphysema by quantifying the chord length in microscope

images of stained lung sections. Test lines of known length

are overlaid on lung images, and intersections with the alveolar

surface are counted, inversely correlating with the mean linear

intercept chord length (Lm) (Knudsen et al., 2010). This analysis

is still performed manually by specialists being highly labor-

and cost-intensive, with evaluation complexity and observer-

dependency reducing result comparability. In recent years, image

processing and recognition algorithms along with Deep Learning

(DL) methods utilizing artificial neural networks have proven to

be effective for automating and objectivizing visual recognition

tasks by extracting semantic information from high-dimensional

microscopy image data (Tsuneki, 2022; Fuyong et al., 2018).

However, a reliable implementation, training and maintenance of

such DL pipelines requires various skills from the fields of software

engineering, programming, data analysis, and DL along with

sufficient computational resources for training and inferencing

(Jain et al., 2024; Stoean et al., 2023). The majority of biological

and medical experts lack these skills hindering them to utilize the

technological potential for their individual analyses.

To automatize analysis with minimal configuration and

customization effort and to promote the adaptation of DL methods

in biomedical practice, we have developed AIxCell—an image-

based automated machine learning (AutoML) system that is tailor-

made for the domain of cell culture analysis (Leyendecker et al.,

2022; Baratchi et al., 2024). Given its domain-specificity, we claim

AIxCell to be a domain-specific AutoML-system that incorporates

a portfolio-based meta-learning approach for automating ML

development for a provided labeled dataset. It’s meta learning

model aims to configure a best-performing DL pipeline including

pre-processing and post-processing steps for a given analysis task

and image data. To do so, it utilizes knowledge from a portfolio of

previously solved related analyses represented as in meta data. This

meta data contains information on the analysis task, the dataset, the

DL pipeline configuration and final evaluation results. To force its

adoption in biomedical practice, AIxCell provides a user-friendly

interface that guides the user through the different steps of analysis

configuration, image annotation and semantic segmentation-based

image processing and evaluation (Leyendecker et al., 2022). To both

automate the quantification of emphysema formation and to extend

the AutoML system from cell culture analysis to tissue analysis we

aim to solve the pulmonary disease use-case using AIxCell.

This paper presents the medical background of pulmonary

alveoli analysis and currently used manual methods. Subsequently,

we introduce our DL-based approach by discussing the image

processing pipeline. The main contributions of our paper are:

• Developing a modular Deep Learning pipeline for the

automation of mean linear intercept (MLI) quantification.

• Presenting another use-case of our domain-specific Auto-

ML system AIxCell Leyendecker et al. (2022) on automating

biomedical analysis on microscopy images of histological lung

section.

• Demonstrating that AIxCell is capable of accurately

segmenting microscopy images of pulmonary alveoli

improving the quality of biomedical analysis in comparison

to manual analyses.

To evaluate the effectiveness of our approach, tests are conducted

to compare the DL method with the manual approach. Lastly, the

application of the proposed method is discussed in the context of

biological relevance. The following sections detail each step of this

investigation in detail.

2 Materials and methods

The aim of this study was to automize the measurement of

pulmonary airspace enlargement. We begin by presenting the

biological study, followed by a description of the manual analysis

method. Subsequently, we introduce our DL-based approach

utilizing the domain-specific AutoML-system AIxCell. We then

proceed to outline the evaluation of our new approach and its

comparison with the manual method.

2.1 Smoke exposure and manual analysis
of lung sections

The following section describes the study design used to

determine pulmonary airspace enlargement manually.

2.1.1 Biological experiment design
Animal experiments were performed according to the

guidelines of the German law of protection of animal life with

approval by the local government authorities (LANUV, NRW,

Germany). Even though there are several animal models of COPD,

e.g., based on lipopolysaccharide or elastase instillation into the

lung, the current gold standard is cigarette smoke-induced COPD,

as cigarette smoke is the major risk factor for COPD in humans

(Churg et al., 2008) also rats, guinea pigs and dogs are used, the

most commonly applied species is mouse, as it enables the use of

knockout animals and there are many molecular tools available

(Ghorani et al., 2017).

To cause cigarette smoke-induced chronic obstructive

pulmonary disease (COPD) in female C57BL/6 mice, we utilized

a modified version of the protocol developed by de Souza et al.

(2014). The “in Expose” model (Scireq, Montreal, Canada) was

employed for this purpose. Mice were exposed to the cigarette

smoke of 3R4F research cigarettes (University of Kentucky,
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FIGURE 1

Exemplary lung tissue sample of a mouse to illustrate the MLI method for determination of airspace enlargement; red crosses mark the transition

between background (white) and tissue.

Lexington, USA). The exposure to mainstream cigarette smoke

occurred twice daily, five days a week, over a period of 20 weeks

to induce COPD. During each exposure session of 1 h, smoke was

generated from 24 cigarettes at a rate of 4 puffs per minute (n = 3).

Control mice were exposed to room air (n = 3).

At the end of the protocol, lung function was determined by a

flexiVent system (Scireq). Therefore, mice were anesthetized with

fentanyl (50µg/kg), medetomidine (0.5mg/kg), and midazolam

(5mg/kg). Then, they were tracheally cannulated and ventilated

with a tidal volume of 10ml/kg at a frequency of 150 breaths/min

and a positive end-expiratory pressure (PEEP) of 2.5 cmH2,O.

To analyze the increase in airway reactivity, escalating doses of

methacholine were administered as an aerosol using a nebulizer (0,

6.25, 12.5, 25, and 50mg/ml, 25µl each). Additionally, pressure-

volume loops were recorded. At the end of the experiment animals

were euthanized by cervical dislocation and lungs were removed.

2.1.2 Image generation of lung sections
For histological analysis, the lungs were perfused with 4%

paraformaldehyde (PFA) at a pressure of 25 cmH2O. Following

overnight fixation, paraffin sections were prepared, and subsequent

H&E staining was performed. Images were captured using an

Axiostar Plus microscope equipped with an Axiocam MRc5

camera, a 20× A-Plan objective (NA: 0.45) and the Axiovision

software (Zeiss, Germany).

To calculate the mean linear intercept (MLI), 12 randomly

selected fields from different lobes of the right lung were analyzed

for each mouse. Images containing large vessels and airways were

excluded from the analysis.

2.1.3 Mean linear intercept
Mean linear intercept (MLI) is a common method to estimate

the respiratory volume-to-surface ratio of lung tissue (WEIBEL and

GOMEZ, 1962). There is a range of different implementations and

versions, both manual and automatised, with different strengths

and weaknesses (Knudsen et al., 2010) [MBCA+12] (Parameswaran

et al., 2006). Our study implements the following approach: An

arbitrary number of lines is drawn through the lung image. The

total length of these lines is denoted as l. Each time a line crosses

the border from background to tissue or vice versa, an intercept is

counted. The total number of intercepts is then denoted as n. The

mean linear intercept Lm can then be computed according to the

following formula:

Lm = l/n (1)

To make different images comparable, we used ten equidistant

lines throughout all images. One example image is shown in

Figure 1. Lm is not a direct measure of alveolar size as also alveolar

ducts are comprised in sections of lung parenchyma. In addition,

it is dependent on the degree of lung inflation and therefore rather

reflects the surface to volume ratio of acinar airspaces in general

(Hsia et al., 2010; Knudsen et al., 2010). Still, Lm is considered as an

accepted measure of airspace enlargement of emphysema.

2.2 DL based analysis approach utilizing
AIxCell, a domain-specific AutoML-system
for cell culture analysis

AIxCell is a domain-specific AutoML-System for automating

microscopy image-based cell and tissue analyses. Thereby, we

aim to enable biomedical experts to utilize the image analysis

capabilities of deep convolutional neural networks and machine

learning algorithms without requiring DL or programming

expertise. AIxCell consists of a modular DL-based pipeline

structure that, according to Figure 2, is trisect into pre-processing,

modeling and post-processing. AIxCell enables biomedical experts

to utilize DL-based image recognition for automating their

individual microscopy datasets and analysis tasks. In addition
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FIGURE 2

Modular image analysis pipeline constituted of pre-processing, modeling and post-processing with corresponding data properties.

to pre-configured pre-processing and post-processing steps, its

modular design also enables the implementation of application-

specific procedures introducing a considerable level of flexibility

(Leyendecker et al., 2022). In its core component, AIxCell utilizes

convolutional deep neural networks (CNN) and an encoder-

decoder architecture to perform supervised semantic segmentation

for arbitrary image feature extraction. As with the majority of data-

driven systems, both performance and applicability of AIxCell scale

with the number of datasets and use-cases that were realized with it.

To automate MLI analysis in COPD research, we extend AIxCell’s

module library that stores of all its pre-processing, modeling, and

post-processing functionality by implementing use-case specific

post-processing modules for MLI calculation. Therein, data pre-

processing, semantic segmentation, computation of the MLI and

quantification are sequentially performed to determine the MLI

and therefore the extent of airspace enlargement. We then apply

AIxCell to the lung image dataset to provide a fully-functional

image analysis pipeline for this use-case and to demonstrate the

applicability and functionality of AIxCell on another use-case.

Our final image image analysis pipeline for MLI quantification

in microscopy images is shown in Figure 2. For both training

and inference, the pipeline comprises all image processing steps

and data flows beginning with the raw microscopy images and

and ending with the MLI results. In the following, starting with

describing dataset properties (Section 2.3), we further outline the

overall configuration of this pipeline comprising pre-processing

(Section 2.3.1), DL-based modeling (Section 2.3.2), and Post-

processing and MLI quantification (Section 2.3.3). In Section

2.3.4, we define the performance metrics and outline the training

procedure.

2.3 Dataset properties of lung images

The raw microscopy image dataset comprises 72 images of

histological sections of lung tissue. Each image has a dimensionality

of 1,292 × 968 pixel and three color channels. As required

for supervised learning, we have implemented a threshold-based

image conversion procedure for automatically creating semantic

segmentation annotations. This procedure comprising greyscale

conversion (step 1), thresholding (step 2), white erosion (step 3),

white dilation (steps 4 and 5), and a final white erosion operation

(step 6) is outlined in Figure 3.

2.3.1 Pre-processing
According to the data-pipeline (see Figure 2), the raw

microscopy images from the lung image dataset are preprocessed

and enhanced to achieve optimal modeling and subsequent analysis

results. First, due to the need for dimensionality reduction, the raw

images of dimensions (1,292, 968) comprising three color channels

are converted to greyscale. Thereby, the computational efficiency of

the data pipeline is enhanced. We design all subsequent operations

to be conditional on these dimensions, so that the pipeline can

cope with varying image dimensions. For further reducing the

required size of the convolutional neural network and thereby

training and inference times, both images and annotations are

equally split into patches of subordinate size. To avoid information

loss in near patch border regions, the images are patched using

a stride of half the patch dimensions (352px/2 = 176px)

producing overlapping patches. The resulting image patches have

the dimensions (1, 352, 352, 2). In preliminary experiments,

these patching dimensions have been identified in maximizing F1-

Score and minimizing both validation loss duration of a single

training epoch. Thereby, no informational content is lost due to

dimensionality reduction while an efficient neural network size can

be maintained. After sequencing the cached patches for efficient

memory usage, they are forwared to the semantic segmentation

model for training in batch-mode. Please note that in contrast

to the use-case presented in Leyendecker et al. (2022), for this

use-case, no oversampling and image augmentation techniques

are applied.
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FIGURE 3

Raw image (left), binary semantic segmentation mask (right), and corresponding threshold-based image conversion procedure for automated image

annotation (steps 1–6).

2.3.2 Modeling
In the modeling step, we use a symmetrical convolutional

encoder-decoder network architecture for pixelwise semantic

segmentation and choose intersection over union (IoU) and F1-

score metrics for evaluating the performance of the segmentation

model (see Section 2.3.4) (Minaee et al., 2022). Given the modular

structure of the image analysis pipeline, we utilize semantic

segmentation because, in comparison to end-to-end image analysis

pipelines, it provides the most flexibility in combination with use-

case specific post-processing procedures. Thereby, we achieve a

high degree in flexibility and therefore applicability of AIxCell to

a variety of different cell culture analysis use-cases. In general,

by using semantic segmentation, one aims to identify and group

pixels that share similar properties thereby reducing the an image

pixel variety to the number of pre-defined segmentation classes

(Szeliski, 2022). Two main types of image segmentation methods

exist: semantic segmentation and instance segmentation. Semantic

segmentation classifies individual pixels into distinct classes, while

instance segmentation also identifies separate objects within the

same class (Szeliski, 2022). Because in the majority of cell and tissue

analysis tasks considering single cell information does not provide

relevant information and considering the increased labeling efforts

for instance segmentation, we decided to incorporate semantic

segmentation instead of instance segmentation into AIxCell. For

the COPD use-case in particular, an instance-based approach is also

not suitable because the separation of individual alveoli does not

yield important information for MLI quantification.

Given the symmetrical shape of encoder-decoder network

architectures, both input and output layer of the network are

of equal dimensions. By enforcing the input data into a lower-

dimensional representation in the bottleneck of the network

and subsequently increasing the dimensions of the data in the

decoder, the model provides an output of same dimension

as the input data only containing the features of interest in

form of pixelwise classification. For processing two-dimensional

microscopy images that have been converted to grayscale in the pre-

processing procedure, we utilize networks with two-dimensional

convolutional layers. Suitable network architectures comprise

U-Net (Ronneberger et al., 2015), Feature Pyramid Network

(Seferbekov et al., 2018), LinkNet (Chaurasia and Culurciello,

2017), ICNet (Zhao et al., 2018), and PSPNet (Zhao et al., 2017).

Based on preliminary experiments, we selected and configured the

ICNet architecture.

2.3.3 Post-processing
In post-processing, the patches are stitched back together

to obtain the dimension of the input image. Based on the

segmentation image, post-processing functions aim to extract

analysis-specific information. For the MLI computation that

resembles themanual process and, therefore, ensures comparability

of scientific results, we have developed a custom algorithm. We

draw a pre-configurable number of horizontal lines (compare

with Figure 3 left) as an additional layer on top of the binary

segmentation mask. The algorithm then sequentially follows each

line, checking whether the pixel above or below the line is facing

a color swap. If so, the interception counter n increases by one.

To avoid overcounting of intercepts, we introduce a regularization

hyperparameter (determined in a series of tests with subsequent

evaluation by biomedical experts) that specifies how many pixels

after a detected change between tissue and background must be

passed before a new change can be detected. If all horizontal lines

have been traversed, the MLI is calculated according to Equation 1.

2.3.4 Training procedure and performance
metrics - F1-Score and Intersection Over Union
(IoU)

For training the CNN encoder-decoder architecture, we split

the total of 72 images into three distinct datasets for training,

validation, and testing. After performing the split, the training set

contains 50 images, and both validation and testing sets contain

11 images each. We trained the ICNet architecture for 20 epochs

using a learning rate of 0.0001 (default case) and a batch-size of 9

(determined in preliminary experiments). As evaluation metrics to

assess the accuracy of semantic image segmentation, we apply two

types of metrics, namely intersection over union (IoU score) and F1

score (Minaee et al., 2022). The IoU-score is a common evaluation

metric for semantic segmentation comparing the similarity of two

sets A and B (See Equation 2). For the binary classification case,

the IoU-score can be simplified as the ratio of true positives (TP)

and the sum of true positives (TP), false negatives (FN), and false
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positives (FP). The IoU score is also known as the Jaccard index

J(A;B) (Rezatofighi et al., 2019). In the context of ML, it represents

the overlap between the prediction and the ground truth of a

class divided by the union between the prediction and ground

truth. The IoU-score thereby quantifies how accurate the semantic

segmentation model is in distinguishing objects from the image

background and allows to calculate the segmentation performance

for distinct classes separately.

IoU =
|A ∩ B|

|A| ∪ |B|
(2)

IoU =
TP

TP + FN + FP
(3)

According to Equation 6, the F1-score represents the harmonic

mean of precision (see Equation 4) and recall (see Equation 5)

for a given class k. Both metrics share the same value range

between 0 and 1, whereas 1 indicates a perfect match between

the segmentation mask and ground truth, while 0 describes their

perfect mismatch.

precisionk =
TPk

TPk + FPk
(4)

recallk =
TPk

TPk + FNk
(5)

F1k =
2 · precisionk · recallk

precisionk + recallk
(6)

2.4 Evaluation

To evaluate the potential of replacing the manual method with

the DL-basedMLI approach, three tests were conducted. In the first

test, we quantified the training performance of the neural network.

The data set was divided into three sets of equal size: training,

validation, and testing. Each set contained images of all six mice.

IoU-values and F1-scores were calculated for the evaluated images

using the automatically labeled images as reference. Average F1 and

IoU scores were then determined for each dataset.

Next, the second test involved calculating the MLI using three

different methods on the same dataset. These methods included

manual labeling and counting, classic image segmentation (the

one used for generating training data), and DL segmentation.

For both automated segmentation approaches, the same algorithm

was employed to calculate the number of intersects based on the

segmented images. The MLI scores were averaged for smokers

and non-smokers separately, resulting in average MLI values and

corresponding standard deviations for each group. These values

were then used to compare the different approaches.

In the third test, hypothesis tests were conducted to determine

whether there were significant differences in MLI values within

the groups. This analysis was performed for both manually and

DL-based calculated MLI values. The Student-t-test was chosen

as the statistical test since a standard deviation could be assumed

within each dataset (smokers and control group) (Zimmerman,

2004). The null hypothesis stated that there was no statistical

difference between smokers and non-smokers. With an α-value

set to 5%, the null hypothesis was discarded if the significance

level exceeded 95%. After applying the Student-t-test to both

datasets, a comparison was made between the manually and DL-

based determined MLI values to determine if both approaches

yielded similar conclusions. If they did, it could be inferred that the

DL-based approach was a viable replacement for manual MLI.

The Student’s t-test was used to test the hypothesis of a

significant difference between the means of the two groups. In

the t-test, the t-value was calculated by dividing the difference

between the means by the standard error of the difference, and

significance was determined by comparing the calculated t-value

with the critical t-value at a predetermined significance level (∗p =

0.05; ∗∗p = 0.01; ∗∗∗p = 0.001).

In summary, the implementation involved inducing COPD

in mice through cigarette smoke exposure, followed by manual

lung function assessment. AIxCell was employed to automate

image analysis, utilizing a symmetrical convolutional encoder-

decoder network, specifically the ICNet architecture, for semantic

segmentation and MLI calculation. A pipeline comprising pre-

processing, AIxCellmodeling, and post-processing was established.

Evaluation included calculating Intersection over Union (IoU)

and F1-scores to assess segmentation accuracy, comparing MLI

calculations between deep learning, classic segmentation, and

manual labeling, and conducting Student’s t-tests to evaluate

differences in MLI between smokers and non-smokers.

3 Results

In biological experiments, five months of exposure to smoke

resulted in an inflammatory reaction in mouse lungs as the

number of immune cells in bronchoalveolar lavage was strongly

increased (Supplementary Figures S1A–C). This was accompanied

by altered lung function in Flexivent measurements with elevated

compliance as determined by snapshot pertubations at 50 mg/ml

MCh (Supplementary Figure S1D) and therefore steeper pressure-

volume (PV)- loops (Supplementary Figure S1E). Lung histology

revealed airspace enlargement (Figure 4), which was quantified by

quantifying MLI either manually or by automated approaches.

The MLI evaluation is based on lung tissue sections from

control mice and mice exposed to cigarette smoke. Two of these

colored tissue sections can be seen in Figure 4. The two tissue

cross-section samples differed significantly in the size of the tissue

lumens. Healthy lung tissue consists of smaller lumens that appear

to break down due to excessive exposure to cigarette smoke,

resulting in larger lumens. These pictures form the basis for manual

evaluation and for evaluation using the DL pipeline.

The results of the DL-based based assessment of MLI can be

divided into three subcategories: evaluation of training, validation,

and test datasets, homogeneity of data in control- and smoker-

group data sets, and finally the calculation of MLI values by

automated and manual approaches. The evaluation of the ICNet

training performance is based on the metrics IoU and F1 score.

These are intended to provide information about the performance

of object detection and accuracy. Afterwards, a comparison in
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FIGURE 4

Exemplary images of a murine lung tissue sample from a control mouse (A) and a lung tissue sample from a mouse that was under the influence of

cigarette smoke (B).

the intersection count between manual and automated approaches

is made to check the plausibility of used data and to determine

potential differences. The last subsection evaluates the DL pipeline

by comparing automated generated results with the data of the

manual procedure.

3.1 Evaluation of training-, validation-, and
test datasets

As already mentioned, the performance metrics IoU and F1-

score are used to evaluate the accuracy of the segmentation

model (ICNet). This is based on the classification of the

training-, validation-, and test datasets into the categories: Tissue,

Background, and Overall. The delineation of the categories is

decided at the pixel level. The results of the two performance

metrics of the selected CNN are shown in Table 1. Both the IoU

values and the F1 scores show values above 90% for all categories

(such as tissue or background) and form a reliable basis for the

DL pipeline. On the left side of the table, three data sets (training,

validation, and test) are listed. This is followed by the percentages

of the three categories (tissue, background, and overall) for the IoU

metric and then further to the right is the F1 score. The result of

the applied IoU metric showed at least 92% in each category for

all datasets, with the training dataset performing best with 93%

or more in all categories. The accuracy calculated using the F1

metric showed a value between 96% and 97% for all datasets in

all categories. The highest value which could be reached by using

the F1 metric is 100%. The values from the F1 metric therefore

indicated a high level of accuracy. The analysis of the training-,

validation-, and test data showed that the percentage of false

positives and false negatives was less than 8% and in some cases as

low as 3%. These low values explain the robustness of the pipeline.

The underlying confusion matrix for determining the above

performance metrics can be found in Table 2 for the test data set

as an example. The values show that the system is very reliable

and only in rare cases (1%–2%) wrong predictions were made.

Predictions and annotations of tissue and background are thus

juxtaposed. Predictions for tissue and background, which form a

category, can be found in the left column of the table, and the

top row shows the annotations for tissue and background, which

together also form a category. The comparison of the two categories

(prediction and annotation) shows the percentage of correct and

incorrect assignments by the DL pipeline. The correct predictions

are on the diagonal from left to right.

3.2 Homogeneity of data in control- and
smoker group data sets

To evaluate the DL pipeline, we analyzed the homogeneity

within the groups (control/smoker), on the one hand for the

manual process (manual cross testing) and on the other hand for

the automated process (DL pipeline). Two hypotheses have been

formulated to compare automated generated results with the data

of the manual procedure. The hypotheses are defined below:

1. H0-Null hypothesis: The mean MLI of the two compared

subjects is equal.

2. H1-Alternative hypothesis: The mean MLI of one subject is

higher than that of the other.

First, the results of the manual cross test are shown, and then

the results of the DL pipeline are highlighted. It should be noted

that there are three control samples and three smoker samples

compared to each other, resulting in three possible combinations,

the resulting p-values are listed in (Table 3). It should be noted, that

significances represent heterogeneity of the data. Homogeneity of

the data is desirable in this experiment.

Table 3 manual cross testing left table reveals that the manual

process is more inconsistent than the DL-based cross test. Only in

the cross tests of data obtained by the manual analysis there are

significant differences within the control and smoker groups.

The statistical evaluation of the control group samples, which

were determined by means of DL pipeline, does not show any
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TABLE 1 IoU and F1-Score values with training, validation, and test data.

Data set IoU values F1-Scores

Tissue Background Overall Tissue Background Overall

Training 0.93 0.94 0.93 0.97 0.97 0.97

Validation 0.92 0.92 0.92 0.96 0.96 0.96

Test 0.92 0.92 0.92 0.96 0.96 0.96

TABLE 2 Exemplary confusion matrix for determining IoU and F1-Score

for the case of test data.

Prediction Annotation

Positive/
tissue

Negative/
background

Total

Positive/

tissue

0.46 0.02 0.48

Negative/

background

0.01 0.51 0.52

Total 0.47 0.53 1.00

TABLE 3 DL-based cross testing did not show any di�erence within the

smoker or control group.

Sample set Manual cross test DL-Pipeline cross test

Control Smoker Control Smoker

Sample 1/2 0.064 0.414 0.553 0.937

Sample 1/3 0.018∗ 0.006∗ 0.962 0.674

Sample 2/3 0.510 0.029∗ 0.510 0.631

The manual and DL-based cross test was evaluated by comparing all n = 3 samples, within

the smoker and control groups, by Student’s t-test, table shows p-values, stars indicate

significance.

significance. These findings reflect that the results of the DL

pipeline are plausible and that the ICNet architecture used is

suitable for automatic evaluation. Thus, both within the control

group and within the smoker group, the null hypothesis could

be confirmed. The different p-values resulting from the same

samples, which were evaluated once automatically and once

manually, result from the different evaluation approaches. The

automated evaluation is the more direct measurement here, while

the manual measurement is based purely on information about

phase transitions.

In conclusion, no significant differences were found within

the control or smoking groups by the uses of the DL pipeline.

Thus, it can be stated that the smoking and control groups are

homogeneous. Using the manual cross-test method, significances,

i.e., differences within the groups, could be found more frequently.

3.3 Calculation of MLI values by automated
and manual approaches

After the homogeneity of the data could be ensured, the

evaluation of the DL pipeline and the DL segmentation of

the lung tissue sections were compared with the classic image

FIGURE 5

Comparison of the mean values of the two comparison groups

(control group and smoker group) based on the MLI method

calculated by manual evaluation, classical segmentation and DL

segmentation.

segmentation and the manual analysis. When comparing the three

segmentation approaches, it is noticeable that they are similar

between the control group and the smoker group. The figure

shows a significant difference between control and sample in each

approach, as soon as image processing is added the significance

level is raised from single significance to triple significance

(Figure 5). In other words, the MLI values in the samples from

the smoking group are higher than in the control group when

using any segmentation method. This indicates that the chosen

CNN provides valid results for the classification/segregation of

the sample datasets. In addition, the scatter of the MLI results

could be reduced, which is evident from the lower standard

deviation of the control- and smoker group compared to the

manual method.

The MLI values in the control and smoking groups are higher

when using the DL pipeline and thus deviate from the data from

the manual methods. A similar trend could also be observed when

using the classic segmentation (Figure 5). The MLI values seem

to vary between manual and automated approaches, which could

be due to the different evaluation methodology. It is important to

note that the ratio of control to sample is most significant here.

As already seen in the homogeneity tests, manual and automated

evaluations are not comparable in their absolute values, but this

should not be the case, as the focus is on the difference between

the samples to be compared, which should be similar for all

three approaches.
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In conclusion, the results of the DL pipeline provide a reliable

and sufficient interpretation of lung tissue samples. Independent

of the method, there is a clear difference between the MLI of the

control and the smoker group. While the two automatic methods

resulted in higher numbers for the MLI, their standard deviations

were smaller. This may indicate a more consistent evaluation.

A student’s t-test was executed to compare the three methods.

No matter which method was used, the MLI of the smokers is

significantly higher than the MLI of the control group. In addition,

the p-value for all three methods was clearly lower than the

significance level of 5%. Therefore, the currently available data

suggests that the implementation of the DL-Pipeline is in fact

functional.When comparing the time required for analysis, manual

analysis is much more time consuming as, depending on the

number of alveolar membrane cross sections, labeling and counting

can take up to 10 min per image, which adds up to about 2h per

mouse. In contrast, the AlxCell system can process the 12 images

per mouse within few seconds.

4 Discussion

4.1 Model training and performance
evaluation

4.1.1 Model evaluation
The IoU scores of over 90 % throughout the data, shown

in Section 3.1, indicate a good training performance. These high

scores were expected due to the low complexity of the image

segmentation task. This shows that the network architecture

chosen by the AutoML algorithm was suitable for this application,

demonstrating the usefulness of the AIxCell tool.

4.1.2 Homogeneity of the data within the groups
The hypothesis tests confirmed that the DL model is superior

to the manual approach in data consistency. In any case, the DL

pipeline does not provide statistically relevant overlap between data

of the same class (control or smoker). Therefore, our model can

be considered a viable alternative to the manual approach and

offers significant time savings. However, it is important to consider

the limitation of the small sample size. To ensure a more reliable

interpretation of the results, the collection of additional data is

essential.

4.1.3 Distinction between smokers and non
smokers

Comparisons between the masks generated by classic

segmentation and DL based segmentation using AIxCell show that

the average MLI is slightly higher with AIxCell’s approach, yet the

difference is very small. The difference may be attributed to higher

coarseness of the masks created by the DL algorithm. However,

since the differences were generally very small, this can be seen as

another proof of a good model performance.

Compared to the manually generated values, it becomes

obvious that the two automatic approaches yielded notably larger

values for the mean MLI (up to 33%), meaning they counted fewer

intersections in each image than their human counterparts. Given

that the DL model was trained using class segmentation data and

closely adheres to its training data, the underlying reason can be

attributed to the classical segmentation approach. This is because

the result of a DL approach can only be as good as its training data

(Alzubaidi et al., 2021).

Despite the apparent distinction between the manual and

two automatic methods, notable differences between smokers and

non-smokers exist across all scenarios. The mean MLI value

serves as a reliable differentiation factor between these two groups

and successfully fulfills its intended purpose in both instances.

Consequently, it can be inferred that the AIxCell DL library is

suitable for substituting or complementing manual analysis.

4.2 Potential for further improvement of
the algorithm

Our results show that the DL-based image processing pipeline

proposed by AIxCell is capable of automating MLI quantification

in pulmonary emphysema analysis. However, different aspects

can be taken into consideration for improving both accuracy

and robustness of the analysis results. First, the relatively small

dataset, consisting of 72 raw images underscores the need

for additional data acquisition. This limitation arose from the

restricted availability of biological samples. Nevertheless, the

current dataset encompasses multiple lung sections from various

individuals, thereby introducing variability between images. Even

the small dataset already proved a general suitability of AIxCell

for this application. Since oversampling and data augmentation

has not been investigated in this research, besides collecting a

higher quantity and more diverse genuine images from laboratory

practice, we aim to investigate the impacts of data augmentation

techniques (Leyendecker et al., 2023) on data diversity and model

performance. Besides traditional data augmentation, generative

adversarial networks (GANs) can be utilized for generating

synthetic samples with the appearance of real images as proposed

by Andreini et al. (2020). Chen et al. provide a review of GAN-

based augmentation techniques in the medical domain (Chen et al.,

2022). The analysis of the risk of overfitting, which is comparatively

high for lab-specific cellular image analysis due to small dataset

sizes and analysis-specific low diversity of the image data, will be

enhanced by the increasing number of images. Training, validation,

and pipeline testing become more extensive, increasing model

robustness and accuracy. Additional genuine, augmented, and

synthetically generated data will not only enable a more detailed

analysis but also aims to mitigate overfitting in the first place

by increasing data quantity and diversity (e.g., by geometrical

transformations, color variation, and noise overlay).

Even though we consider data-centric improvement potentials

much larger compared to model-centric ones, new network

architectures for semantic image segmentation like attention-based

transformers can be taken into account (Strudel et al., 2021).

Although we contend that converting from three color channels to

grayscale results in minimal information loss due to the distinct

contrast between tissue and background, this topic could be

explored in future research. For post-processing, we consider the
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proposed MLI algorithm as a fast and reliable solution. However,

a more extensive parameter study on historical and manually

analyzed data could help align automatic MLI quantification

with human results and thus increase the comparability of

scientific results. Due to the specificity of counting intersections,

this task cannot be automatically applied to other AIxCell use

cases, unlike the segmentation component. As a result, AIxCell’s

core functionalities remain focused on segmentation. Future

evaluations of additional use cases could further demonstrate

AIxCell’s versatility. It has been successfully used to classify

cardiomyocyte images (Leyendecker et al., 2022), and has also

been applied to Embryoid Bodies, induced pluripotent stem cells,

and mesenchymal stem cells. In these applications, segmentation

was achieved with AIxCell’s autoML algorithm, while both pre-

processing and post-processing were tailored to specific tasks.

4.3 Comparison and summary

Manual MLI quantification is a widespread and accepted

method for analyzing airspace enlargement in COPD research. First

approaches to automate the task have already been made in the

1970s when computational power was still limited, emphasizing

the importance of this task. Langston et al. compared the average

Lm between human and machine measurement. Similar to this

paper, they found that Lm created by humans and machines

strongly correlate with each other, even if specific values differ.

Thus, the computational model can be used to replace human

Lm measurement. Crowley et al. (2019) use a semi-automated

approach that solely relies on openly available software. Their

segmentation algorithm uses traditional thresholding methods

instead of neural networks. The results are equally good as in this

study. However,AIxCell aims for a fully-automated solution to take

away even more work from the user. Other studies replace MLI

with area based methods, where the area of cavities is calculated

computationally (Knudsen et al., 2010).

Due to the continued use of MLI despite the possibilities to

use new approaches caused by increased computational resources,

the results can also be compared with evaluations carried out

years ago. However, it has to be said that MLI is certainly not

the most precise way to analyze lung tissue and only allows

random sample testing (Salaets et al., 2020). Before computers

were widely available and powerful, a simple method that could

also be manually carried out must have been used (Liu et al.,

2017). With modern computational capacities though, the volume

of cavities can be determined easily with little more effort than

MLI (Sallon et al., 2015). Other optical methods for automatic lung

disease detection have already been proposed (Gupta et al., 2019).

Therefore, a switch to a more precise method could pay out long

term. The biological limitations of this approach further include the

potential dependency of emphysema severity on perfusion pressure

and lung inflation during tissue processing. In addition, using two-

dimensional mouse lung sections may not accurately represent the

three-dimensional in vivo conditions in a living animal.

In conclusion, this study presented an automated DL-

based approach to MLI quantification in microscopy images of

histological lung sections. Even though the considered analysis task

does not require a DL-based approach for image segmentation in

preparation to MLI computation, the results show the functionality

and widespread applicability ofAIxCell. By successfully automating

MLI quantification, our approach enhances efficiency, reliability,

and objectivity of emphysema quantification in COPD research and

relives biomedical experts of the cumbersome task of manual MLI

determination.
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SUPPLEMENTARY FIGURE 1

Model of cigarette smoke-induced COPD. (A, B) Cells in bronchoalveolar

lavage (BAL) fluid after Di�-Quick staining of controls (A) and mice exposed

to cigarette smoke (CS) for 5 months (B), scale bar: 20 µm. (C) Absolute cell

numbers of macrophages (Mac), neutrophils (Neu), and lymphocytes (Lym)

in BAL. (D) Lung compliance in response to methacholine inhalation (50

mg/ml). (E) Pressure volume loops in control mice and animals exposed to

CS, ∗p < 0.05, ∗p < 0.01.
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