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This paper explores Text-to-Knowledge Graph (T2KG) construction, assessing

Zero-Shot Prompting, Few-Shot Prompting, and Fine-Tuning methods with

Large Language Models. Through comprehensive experimentation with Llama2,

Mistral, and Starling, we highlight the strengths of FT, emphasize dataset

size’s role, and introduce nuanced evaluation metrics. Promising perspectives

include synonym-aware metric refinement, and data augmentation with Large

Language Models. The study contributes valuable insights to KG construction

methodologies, setting the stage for further advancements.1
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1 Introduction

The term “knowledge graph” has been around since 1972, but its current definition

can be traced back to Google in 2012. This was followed by similar announcements from

companies such as Airbnb, Amazon, eBay, Facebook, IBM, LinkedIn, Microsoft, and Uber,

among others, leading to an increase in the adoption of Knowledge graphs(KGs) by various

industries. As a result, academic research in this field has seen a surge in recent years,

with an increasing number of scientific publications on KGs (Hogan et al., 2021). These

graphs utilize a graph-based data model to manage, integrate, and extract valuable insights

effectively from large and diverse datasets (Noy et al., 2019).

KGs serve as repositories for structured knowledge, organized into a collection of

triples, denoted as KG = (h, r, t) ⊆ E× R× E, where E represents the set of entities, and R

represents the set of relations (Hogan et al., 2021). Within a graph, nodes represent various

levels, entities, or concepts. These nodes encompass diverse types, including person, book,

or city, and are interconnected by relationships such as located in, lives in, or works with.

The essence of a KG emerges when it incorporates multiple types of relationships rather

than being confined to a single type. The overarching structure of a KG constitutes a

network of entities, featuring their semantic types, properties, and interconnections. Thus,

constructing a KG necessitates information about entities (along with their types and

properties) and the semantic relationships that bind them. For the extraction of entities

and relationships, practitioners often turn to NLP tasks like Named Entity Recognition

(NER), Coreference Resolution (CR), and Relation Extraction (RE).

KGs are crucial in organizing complex information across diverse domains, such

as question answering, recommendations, semantic search, etc. However, the ongoing

1 Our code at https://github.com/ChristopheCruz/LLM4KGC.

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2025.1505877
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2025.1505877&domain=pdf&date_stamp=2025-06-25
mailto:hussam.ghanem@u-bourgogne.fr
https://doi.org/10.3389/fdata.2025.1505877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2025.1505877/full
https://github.com/ChristopheCruz/LLM4KGC
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ghanem and Cruz 10.3389/fdata.2025.1505877

challenge persists in constructing them, particularly as the primary

sources of knowledge are embedded in unstructured textual data

such as press articles, emails, and scientific journals. This challenge

can be addressed by adopting an information extraction approach,

sometimes implemented as a pipeline. It involves taking textual

inputs, processing them using Natural Language Processing (NLP)

techniques, and leveraging the acquired knowledge to construct or

enhance the KG.

If we envision the Text-to-Knowledge Graph (T2KG)

construction task as a black box, the input is textual data, and

the output is a knowledge graph. In this study, we define the

Text-to-Knowledge Graph (T2KG) task as the transformation of

unstructured text into a structured set of factual triples. Formally,

given an input sentence or paragraph x, the task is to produce a

set of triples T = {(si, pi, oi)}
n
i=1, where each triple consists of a

subject si, a predicate pi, and an object oi. Subjects and objects can

be named entities or literals, and predicates represent relations

between them. A triple is considered valid if it semantically

aligns with the information expressed or justifiably implied in the

input text. This includes paraphrased expressions and inferred

facts, while excluding hallucinated content—i.e., information not

supported by the input.

The transformation function can be viewed as T = fθ ,π (x),

where θ represents the language model’s parameters and π denotes

the prompting strategy employed. In this work, we explore three

such strategies: zero-shot prompting (ZSP), where the model is

guided by instructions alone; few-shot prompting (FSP), where task

examples are included in the prompt; and fine-tuning (FT), where

the model is trained on labeled data to perform the extraction

directly. This definition provides a consistent framework for

evaluating semantic fidelity (see Section 4.2 for evaluation details),

generalization, and structure in the generated knowledge graphs.

Achieving this can be approached through methods that

directly convert text into a graph or by implementing NLP

tasks in two ways (Zhong et al., 2023): (1) through an

information extraction pipeline incorporating the mentioned tasks

independently, or (2) by adopting an end-to-end approach, also

known as joint prediction, using Large Language Models (LLMs)

for example. In the realm of LLMs and KGs, their mutual

enhancement is evident. LLMs can assist in the construction of

KGs. Conversely, KGs can be employed to validate outputs from

LLMs or provide explanations for them (Mihindukulasooriya et al.,

2023). LLMs can be adapted to the T2KG construction task through

various approaches, such as fine-tuning (Ershov, 2023) (FT), zero-

shot prompting (Caufield et al., 2023) (ZSP), or few-shot prompting

(FSP) (Han et al., 2023) with a limited number of examples.

Each of these approaches has their pros and cons with respect to

the performance, computation resources, training time, domain

adaption and training data required.

In-context learning, as discussed by Min et al. (2022),

coupled with prompt design, involves telling a model to execute

a new task by presenting it with only a few demonstrations

of input-output pairs during inference. Instruction fine-tuning

methods, exemplified by InstructGPT (Ouyang et al., 2022) and

Reinforcement Learning fromHuman Feedback (RLHF) (Stiennon

et al., 2020), markedly enhance the model’s ability to comprehend

and follow a diverse range of written instructions. Numerous

LLMs have been introduced in the last year, as highlighted by

Mihindukulasooriya et al. (2023), particularly within the ChatGPT

(OpenAI, 2023) like models, which includes GPT-3 (Brown et al.,

2020), LLaMA (Touvron et al., 2023), BLOOM (Workshop et al.,

2022), PaLM (Chowdhery et al., 2023), Mistral (Jiang et al., 2023),

Starling (Zhu B. et al., 2023), and Zephyr (Tunstall et al., 2023).

These models can be readily repurposed for KG construction from

text by employing a prompt design that incorporates instructions

and contextual information.

This study focuses on the formal evaluation of the T2KG task,

exploring the developments and challenges associated with KG

construction using LLMs. Specifically, we benchmark open-source

LLMs across three adaptation strategies–zero-shot, few-shot, and

fine-tuning (Figure 1). Unlike prior work that primarily examines

proprietary models or single adaptation techniques, our study

systematically compares multiple strategies across various models.

Additionally, we introduce the GM-GBS metric to assess semantic

alignment in generated triples, offering a refined evaluation

perspective beyond standard precision-recall measures.

While this paper is primarily positioned as a benchmarking

study, our findings also offer empirical insights into the trade-

offs between Zero-Shot Prompting, Few-Shot Prompting, and

Fine-Tuning. We do not prescribe one universal strategy but

provide data-driven guidance to help practitioners choose the most

appropriate method based on their task constraints.

The present study is organized as follows, Section 2 presents a

comprehensive overview of the current state-of-the-art approaches

for T2KG Construction. Section 3 presents the general architecture

of our proposed implementation (method), with datasets, metrics,

and experiments. Section 4 then encapsulates the findings

and discussions, presenting the culmination of results. Finally,

Section 5 critically examines the strengths and limitations of

these techniques.

2 Background

The current state of research on knowledge graph construction

using LLMs is discussed. Three main approaches are identified:

ZSP, FSP, and FT. Each approach has its own challenges, such as

maintaining accuracy without specific training data or ensuring the

robustness of models in diverse real-world scenarios. Evaluation

metrics used to assess the quality of constructed KGs are also

discussed, including semantic consistency and linguistic coherence.

This section highlights methods and metrics to construct KGs and

evaluate the result.

Figure 1 illustrates the black box joint prediction of the

T2KG construction process using LLMs. It demonstrates how two

French examples on the left are converted into an expected result

(Knowledge Graph) on the right using ZSP, FSP or FT approaches

with LLMs.

2.1 Zero shot

Zero Shot methods enable KG construction without task-

specific training data, leveraging the inherent capabilities of large
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FIGURE 1

T2KG task.

language models. Carta et al. (2023) introduces an innovative

approach using LLMs for knowledge graph construction,

employing iterative ZSP for scalable and flexible KG construction.

Zhu Y. et al. (2024) evaluate the performance of LLMs, specifically

GPT-4 and ChatGPT, in KG construction and reasoning tasks,

introducing the Virtual Knowledge Extraction task and the VINE

dataset, but they do not take into account open sourced LLMs as

LLaMA (Touvron et al., 2023). Li et al. (2023) assess ChatGPT’s

abilities in information extraction tasks, identifying overconfidence

as an issue and releasing annotated datasets. Wei et al. (2023)

tackle zero-shot information extraction using ChatGPT, achieving

impressive results in entity relation triple extraction. Laurenzi et al.

(2024) investigate the use of LLMs for Enterprise KG construction,

proposing a six-step process that integrates LLMs to reduce manual

effort and lower the expertise barrier. Jarnac et al. (2023) propose

a method for Knowledge Graph Construction (KGC) using an

analogy-based approach, demonstrating superior performance

on Wikidata. Bi et al. (2024) address the limitations of existing

generative knowledge graph construction methods by leveraging

large generative language models trained on structured data.

Most of these approaches having the same limitation, which is

the use of closed and huge LLMs as ChatGPT or GPT4 for this

task. Challenges in this area include maintaining accuracy without

specific training data and addressing nuanced relationships

between entities in untrained domains.

2.2 Few shot

Few Shot methods focus on constructing KGs with limited

training examples, aiming to achieve accurate knowledge

representation with minimal data. Han et al. (2023) introduce

PiVe, a framework enhancing the graph-based generative

capabilities of LLMs, and the authors create a verifier which is

responsable to verify the results of LLMs with multi-iteration type.

Yao et al. (2023) explore the potential of LLMs for knowledge graph

completion, treating triples as text sequences and utilizing LLM

responses for predictions. Khorashadizadeh et al. (2023) automate

the process of generating structured knowledge graphs from

natural language text using foundation models. Deng et al. (2023)

present OpenBG, an open business knowledge graph derived from

Alibaba Group, containing 2.6 billion triples with over 88 million

entities. Trajanoska et al. (2023) explore the integration of LLMs

with semantic technologies for reasoning and inference. Chen

et al. (2023) investigate LLMs’ application in relation labeling for

e-commerce Knowledge Graphs (KGs). Kommineni et al. (2024)

explore the semi-automated construction of knowledge graphs

using open-source LLMs. Meyer et al. (2023) investigated the

integration of ChatGPT for KG engineering, demonstrating its

ability to automate T2KG construction. Other studies, such as

Hu et al. (2024), have explored LLM applications for domain-

specific KG construction, particularly in cybersecurity contexts.

As ZSP approaches, FSP approaches use closed and huge LLMs

as ChatGPT or GPT4 (OpenAI, 2023) for this task. Challenges

in this area include achieving high accuracy with minimal

training data and ensuring the robustness of models in diverse

real-world scenarios.

2.3 Fine-tuning

Fine-Tuning methods involve adapting pre-trained language

models to specific knowledge domains, enhancing their capabilities

for constructing KGs tailored to particular contexts. Ershov (2023)

present a case study automating KG construction for compliance

using BERT-based models. This study emphasizes the importance

of machine learning models in interpreting rules for compliance

automation. Harnoune et al. (2021) propose an approach for

knowledge extraction and analysis from biomedical clinical notes,

utilizing the BERT model and a Conditional Random Field

layer, showcasing the effectiveness of leveraging BERT models

for structured biomedical knowledge graphs. Yang et al. (2023)
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propose Knowledge Graph-Enhanced Large Language Models

(KGLLMs), enhancing LLMs with KGs for improved factual

reasoning capabilities. These approaches that applied FT, they do

not use new generations of LLMs, specially, decoder only LLMs

as Llama, and Mistral. Challenges in this domain include ensuring

the scalability, interpretability, and robustness of fine-tunedmodels

across diverse knowledge domains.

2.4 Evaluation metrics

As we employ LLMs to construct KGs, and given that

LLMs function as Natural Language Generation (NLG) models, it

becomes imperative to discuss NLG criteria. In NLG, two criteria

(Ferreira et al., 2019) are used to assess the quality of the produced

answers (triples in our context).

The first criterion is semantic consistency or Semantic Fidelity

which quantifies the fidelity of the data produced against the input

data. The most common indicators are:

• Hallucination: It is manifested by the presence of information

(facts) in the generated text that is absent in the input data.

In our scenario, hallucination metric counts triples present

in the generated triples (GT) but missing in the ground truth

triples (ET);

• Omission: It is manifested by the omission of one of the

pieces of information (facts) in the generated text. In our case,

omission counts triples present in ET but missing in GT;

• Redundancy: This is manifested by the repetition of

information in the generated text. In our case, the redundancy

exists if a triple appears more than once in GT;

• Accuracy: The lack of accuracy is manifested by the

modification of information such as the inversion of the

subject and the direct object complement in the generated

text. Accuracy increases if there is an exact match between ET

and GT. ;

• Ordering: It occurs when the sequence of information is

different from the input data. In our case, the ordering of GT

is not considered.

The second criterion is linguistic coherence or Output Fluency to

evaluate the fluidity of the text and the linguistic constructions

of the generated text, the segmentation of the text into different

sentences, the use of anaphoric pronouns to reference entities and

to have linguistically correct sentences. However, in our evaluation,

we do not take into account the second criterion.

In their experiments, Mihindukulasooriya et al. (2023)

calculated three hallucination metrics—subject hallucination,

relation hallucination, and object hallucination—using certain

preprocessing steps such as stemming. They used the ground truth

ontology alongside the ground truth test sentence to determine if

an entity or relation is present in the text. However, a limitation

could arise when there is a disparity in entities or relations between

the ground truth ontology and the ground truth test sentence. If

the generated triples contain entities or relations not present in the

ground truth text, even if they exist in the ground truth ontology, it

will be considered a hallucination.

The authors of Han et al. (2023) evaluate their experiments

using several evaluation metrics, including Triple Match F1 (T-

F1), Graph Match F1 (G-F1), G-BERTScore (G-BS) from Saha

et al. (2021) which extends BertScore (Zhang T. et al., 2019) for

graphmatching, and Graph Edit Distance (GED) fromAbu-Aisheh

et al. (2015). The GED metric measures the distance between the

predicted graph and the ground-truth graph, which is equivalent

to computing the number of edit operations (addition, deletion,

or replacement of nodes and edges) needed to transform the

predicted graph into a graph that is identical to the ground-truth

graph, but it does not provide a specific path for these operations

to calculate the exact number of operations. To adhere with the

semantic consistency criterion, we use the terms “omission” and

“hallucination” in place of “addition” and “deletion,” respectively.

2.5 Limitations of triple-based
representations

While the (subject, predicate, object) format is widely

used in KG construction, it is inherently limited in expressing

complex semantic phenomena such as temporal relations,

modality, causality, and uncertainty. For instance, a sentence

like “Nie Haisheng is believed to have trained as a fighter pilot

before becoming an astronaut” encodes temporal sequencing

and epistemic modality that flat triples fail to capture. Prior

works have highlighted that RDF-style triples oversimplify

nuanced linguistic structures and are insufficient for representing

dynamic or contextual knowledge (Ji et al., 2022; Allen et al.,

2022). These limitations have motivated research into more

expressive representations, such as event-centric knowledge graphs

(Rospocher et al., 2016) and frame-based or graph-structured

semantic parsers (Banarescu et al., 2013). In this study, we treat

T2KG as a practical approximation and recognize that supporting

richer knowledge formalisms remains an important direction for

future research.

3 Propositions

This section describes our approach to evaluate the quality

of generated KGs. We explain how we use evaluation metrics

such as T-F1, G-F1, G-BS, GED, Bleu-F1 (Papineni et al., 2002),

and ROUGE-F1 (Lin, 2004) to assess the quality of the generated

KGs in comparison to ground-truth KGs. Additionally, we discuss

the use of Optimal Edit Paths (OEP) metric2 to determine the

precise number of operations required to transform the predicted

graph into an identical representation of the ground-truth graph.

This metric serves as a basis for calculating omissions and

hallucinations in the generated graphs. We employ examples from

the WebNLG+2020 (Gardent et al., 2017) training dataset for

2 NetworkX - optimal edit paths: https://networkx.org/documentation/

stable/index.html.
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FIGURE 2

Overall experimentation’s process.

testing with FSP techniques. Additionally, we utilize the training

dataset of WebNLG+2020 to train LLMs using the FT technique.

For further experimentation, we employ examples from KELM-sub

training dataset (Han et al., 2023). Subsequent subsections delve

into a detailed discussion of each phase.

3.1 Overall experimentation process

We leverage theWebNLG+2020 dataset, specifically the version

curated by Han et al. (2023). Their preparation of graphs in lists of

triples proves beneficial for evaluation purposes. We utilize these

lists and employ NetworkX (Hagberg et al., 2008) to transform

them back into graphs, facilitating evaluations on the resultant

graphs. This step is instrumental in performing ZSP, FSP, and FT

LLMs on this dataset.

Figure 2 illustrates the different stages of our experimentation

process, including data preparation, model selection, training,

validation, and evaluation. The process begins with data

preparation, where the WEBNLG dataset is preprocessed and

split into training, validation, and test sets. Next, the learning type

is selected, and different models are trained using the training

set. The trained models are then evaluated on the validation

set to evaluate their performance. Finally, the best-performing

model is selected and validated on the test set to estimate its

generalization ability.

3.2 Preprocessing

In this phase, we directly utilize the WebNLG and KELM-

sub datasets as provided by Han et al., without additional

modifications. These datasets have been carefully curated by experts

to align with the T2KG task, ensuring high-quality, manually

verified triples for knowledge graph construction. Given their

structured nature, no further preprocessing was required before

feeding them into our pipeline. However, while these datasets

provide a strong foundation, future work could explore entity

harmonization techniques to further refine the extracted triples. By

integrating entity linking strategies (Dredze et al., 2010) or LLM-

assisted canonicalization methods (Zhang and Soh, 2024), we could

improve coherence and reduce redundancy in the constructed

knowledge graphs.

3.3 Prompting learning

During this phase, we employ the ZSP and FSP techniques

on LLMs to evaluate their proficiency in extracting triples (e.g.,

construction of the KG). The application of these techniques

involves merging examples from the training dataset of

WebNLG+2020 with our adapted prompt. Our prompt is

strategically modified to provide contextual guidance to the

LLMs, facilitating the effective extraction of triples, without the

inclusion of a support ontology description, as demonstrated in

Mihindukulasooriya et al. (2023). The specific prompts used for

ZSP and FSP are illustrated in Figures 3a, b.

In our approach for ZSP, we began with the methodology

outlined in Han et al. (2023), initiating our prompt with the

directive “Transform the text into a semantic graph.” However,

we enhanced this prompt by incorporating additional sentences

tailored for our LLMs, as illustrated in Figure 3a.

The effectiveness FSP depends heavily on example selection

(Yoshida, 2024). In our experiments, we selected examples based on

criteria shown in the following paragraph. However, prior research

suggests that structured selection methods–such as clustering

diverse examples or prioritizing domain-specific samples–could

significantly improve performance. Exploring optimal example

selection strategies remains a valuable direction for future work.

For FSP, we executed 7-shots learning. The rationale behind

employing 7-shots learning lies in the fact that the maximum

KG size in WebNLG+2020 is 7 triples. Consequently, we fed our

prompt with 7 examples of varying sizes; example 1 with size 1,

example 2 with size 2, example 3 with size 3, and so forth. In

Figure 3b, we depict a prompt containing two examples.

To demonstrate the efficacy of our refined prompt (including

additional sentences), we conducted zero-shot experiments on

ChatGPT (OpenAI, 2023), comparing the outcomes with those of
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FIGURE 3

Prompting examples. (a) Zero shot prompt. (b) Two shots prompt.

Han et al. (2023). Our results consistently reveal that our prompt

yields more coherent answers in terms of structure.

For further experimentation, we use examples from KELM-

sub training dataset, especially when we discuss the generalizability

of the original and finetuned vesions of our the most performing

model. To do so, we used 6-shot learning, corresponding to the

maximum KG size in KELM-sub.

As mentioned before, FSP test cases in our experiments

utilized manually selected examples from the WebNLG+2020

dataset to maintain consistency. However, advanced techniques

such as LLM-generated prompts or retrieval-augmented example

selection could further refine few-shot effectiveness. Future work

will explore dynamic example selection strategies to optimize

model performance across diverse scenarios.

In addition to standard zero-shot and few-shot prompting, we

acknowledge the growing significance of Chain-of-Thought (CoT)

prompting (Wei et al., 2022). CoT enables LLMs to decompose

complex reasoning tasks into intermediate steps, which has been

shown to enhance structured information extraction. While our

study primarily focuses on direct triple extraction using standard

prompting approaches, future work should investigate how CoT

influences knowledge graph generation, particularly in reducing

hallucinations and improving entity-relation consistency.

3.4 Finetuning

If the initial results from the ZSP and FSP on LLMs prove

reasonable, we proceed to the FT phase. This phase aims to provide

the LLMs with a more specific context and knowledge related

to the task of extracting triples within the domains covered by

the WebNLG+2020 dataset. Using the example “(a)” illustrated in

Figure 3, we pass in the FT prompt, at once for each line of the

training dataset, the input text and the corresponding KG (the list

of triples). To do this phase (FT), we employ QLoRA (Dettmers

et al., 2024), a methodology that integrates quantization (Zhang X.

et al., 2019) and Low-Rank Adapters (LoRA) (Hu et al., 2021). The

LLM is loaded with 4-bit precision using bitsandbytes (Dettmers

et al., 2023), and the training process incorporates LoRA through

the PEFT library (Parameter-Efficient Fine-Tuning) (Mangrulkar

et al., 2022) provided by Hugging Face.

3.5 Postprocessing

Given our focus on KG construction, our evaluation process

involves assessing the generated KGs against ground-truth KGs.

To facilitate this evaluation, we take a cleaning process for the

LLMs output. This involves transforming the graphs generated by

LLMs into organized lists of triples, subsequently transferred to

textual documents.

The transformation is executed through rule-based processing.

This step is applied to remove corrupted text (outside the lists of

triples) from the whole text generated by LLMs in the preceding

step. The output is then presented in a list of lists of triples format,

optimizing our evaluation process. This approach proves especially

effective when calculating metrics such as G-F1, GED, and OEP, as

we will see in more detail in Section 3.6.

A potential problem arises when instructing LLMs to produce

lists of triples (KGs), as there may be instances where the generated

text lacks the desired structure. In such cases, we address this

issue by substituting the generated text with an empty list of

triples, represented as ‘[[“”, “”, “”]],’ allowing us to effectively

evaluate omissions. However, this approach tends to underestimate
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FIGURE 4

Examples and results. (a) Hallucination example. (b) Omission example.

hallucinations compared to the actual occurrences. To address this

issue, we calculate the exact hallucination and omission for each

generated graph through qualitative evaluation of two randomly

generated graphs (Figure 4).

3.6 Experiment’s evaluation

For assessing the quality of the generated graphs in comparison

to ground-truth graphs, we adopt evaluation metrics as employed

in Han et al. (2023). These metrics encompass T-F1, G-F1, G-BS

(Saha et al., 2021), andGED (Abu-Aisheh et al., 2015). Additionally,

we incorporate the Optimal Edit Paths (OEP) metric, a tool aiding

in the calculation of omissions and hallucinations within the

generated graphs.

In the following, we summarize some definitions of the main

evaluation metrics :

• G-F1 andT-F1: Assess graph- and triple-level precision, recall,

and F1-score.

• GED (Graph Edit Distance): Measures the minimal number

of edits needed to transform the generated graph into the

reference graph.

• GM-GBS (Graph Matching BERTScore): Evaluates semantic

similarity between generated and ground truth triples.

• Hallucination and Omission Analysis: Identifies cases where

the model generates incorrect triples (hallucinations) or fails

to generate expected ones (omissions).

A detailed breakdown of the metric calculations is provided

in Supplementary Data Sheet.

Our evaluation procedure aligns with the methodology

outlined in Han et al. (2023), particularly in the computation of

GED and G-F1. This involves constructing directed graphs from

lists of triples, referred to as linearized graphs, utilizing NetworkX

(Hagberg et al., 2008).

In contrast to Mihindukulasooriya et al. (2023), our

methodology diverges by not relying on the ground truth

test sentence of an ontology. As previously mentioned, we opt for a

distinct approach wherein we assess omissions and hallucinations

in the generated graphs using the OEP metric. Unlike the global

edit distance provided by GED, OEP gives the precise path of

the edit, enabling the exact quantification of omissions and

hallucinations, either in absolute terms or as a percentage across

the entire test dataset.

For example, in the illustrated nodes path labeled “a)” in

Figure 4b, we observe 2 omissions, while the nodes path in

Figure 4a exhibits 1 hallucination. In our evaluation, the criterion

for incrementing the global hallucination metric for all graphs is

set at finding >=1 hallucinations or >=1 omission in a generated

graph. This approach ensures a comprehensive assessment of the

presence of omissions and hallucinations across the entirety of

the generated graphs. We calculate also the exact percentage of

hallucination or omission in a generated graph, experimenting

on 2 random examples from the WebNLG+2020 test

dataset (Figure 4).

As mentioned earlier, the evaluation of the three methods

is conducted using examples sourced from the test dataset of

WebNLG+2020 and the test dataset of KELM-sub for further

experimentation. The primary goal is to enhance G-F1, T-F1,

G-BS, Bleu-F1, and ROUGE-F1 metrics, while reducing GED,

Hallucination, and Omission.

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2025.1505877
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ghanem and Cruz 10.3389/fdata.2025.1505877

4 Experiments and discussion

This section provides insights into the LLMs utilized in our

study for ZSP, FSP, or FT, followed by the presentation of our

experimental results.

A detailed experimental setup is provided in

Supplementary Data Sheet. While these settings provided

meaningful improvements over prompting strategies, further

experimentation with hyperparameter optimization—such as

adjusting LoRA scaling factors, layer-specific tuning, and learning

rate schedules—could yield deeper insights into generalization

performance.

4.1 Selection criteria of the used LLMs

In this section, we provide a brief overview of the LLMs utilized

in our experiments. Our selection criteria focused on employing

small, open-source, and easily accessible LLMs. All models were

sourced from the HuggingFace platform.3

• Llama 2 (Touvron et al., 2023) is a collection of pretrained

and fine-tuned generative text models ranging in scale from 7

billion to 70 billion parameters. In our experiments, we deploy

the 7B and 13B pretrained models, which have been converted

to the Hugging Face Transformers format.

• Introduced by Jiang et al. (2023), Mistral-7B-v0.1 is

a pretrained generative text model featuring 7 billion

parameters. Notably, Mistral-7B-v0.1 exhibits superior

performance to Llama 2 13B across all benchmark tests in

their experiments.

• In the work presented by Zhu B. et al. (2023), Starling-7B is

introduced as an open LLM trained through Reinforcement

Learning from AI Feedback (RLAIF). This model leverages

the GPT-4 labeled ranking dataset, berkeley-nest/Nectar, and

employs a novel reward training and policy tuning pipeline.

4.2 Metrics analysis and impact of
Fine-Tuning on WebNLG+2020

In our review of the state-of-the-art, we observed that,

apart from Mihindukulasooriya et al. (2023), which incorporates

hallucination evaluation in their experiments, other studies

primarily focus on metrics such as precision, recall, F1 score,

triple matching, or graph matching. In our approach to evaluating

experiments, we consider also hallucination and omission through

a linguistic lens.

Upon examining Table 1, we observe the superior performance

of the FT method compared to ZSP and FSP for the T2KG

construction task. Of particular interest is the finding that, with the

exception of Llama2-7b, applying ZSP to the fine-tuned Llama2-7b

results in worse performance than FSP on the original Llama2-

7b. Overall, this table provides a clear visualization of the relative

3 Hugging Face: https://huggingface.co/.

performance of each method, highlighting the strengths and

limitations of each approach for T2KG construction.

Furthermore, it is evident that better results are achieved

by providing more examples (more shots) to the same model,

whether original or fine-tuned. The results underscore the positive

correlation between the quantity of examples and the model’s

performance. Comparing the fine-tuned Mistral and fine-tuned

Starling, they exhibit similar performance when given 7 shots,

surpassing the two Llama2 models by a significant margin.

The standout performer with ZSP on the fine-tuned LLM is

Mistral, showcasing a considerable lead over other LLMs, including

Starling. To corroborate these findings, future versions of our study

plan to assess our fine-tuned models using an alternative dataset

with diverse domains.

As depicted in Table 1, Hall. represents Hallucinations, while

Omis. denotes Omissions.

Taking into account our strategy of introducing an empty

graph when LLMs fail to produce triples, we note that even with

LLama2-13b with ZSP exhibiting the least favorable results across

all metrics, it displays minimal hallucinations. Nonetheless, it’s

crucial to recognize that the model with the fewest hallucinations

may not necessarily be the most suitable choice. To overcome

this limitation in our evaluation metric, we aim to improve it by

considering the prevalence of empty graphs in the generated results

before assessing them against ground truth graphs.

The G-BS consistently remains high, indicating that LLMs

frequently generate text with words (entities or relations) very

similar to those in the ground truth graphs. Among the models,

the finetuned Starling with 7 shots achieves the highest G-F1,

which focuses on the entirety of the graph and evaluates how many

graphs are exactly produced the same, suggesting that it accurately

generates approximately 36% of graphs identical to the ground

truth. For various metrics, the finetuned Mistral with 7 shots

performs exceptionally well, particularly in T-F1, where F1 scores

are computed for all test samples and averaged for the final Triple

Match F1 score. Additionally, it excels in metrics such as “Omis.,”

F1-Bleu, and F1-Rouge. F1-Bleu and F1-Rouge represent n-gram-

based metrics encompassing precision (Bleu), recall (Rouge), and

F-score (Bleu and Rouge). These metric could potentially yield even

better results if synonyms of entities or relations are considered as

exact matches.

The authors in Han et al. (2023) conduct evaluations using

WebNLG+2020. Consequently, we adopt their approach (PiVE) as

a baseline for comparison with our experiments. Upon analyzing

the results, it becomes evident that nearly all fine-tuned LLMs

outperform PiVE, which is applied on both ChatGPT and GPT-4

as mentioned before.

As in Tables 1, 2 shows that the fine-tuned Mistral with 7

shots from WebNLG+2020 (Mistral-FT-7) performs better than

other models in almost all metrics except GM-GBS, where the

finetuned Mistral with 6 examples from KELM-sub (Mistral-FT-

6) outperforms Mistral-FT-7 and all other models. One reason to

use it for the GM-GBS metric in these experiments is that—as

mentioned above—G-BS consistently remains high. We observe

also that even when we gave Mistral examples from KELM-sub

training dataset, it works better than zero-shot for the test dataset

of WebNLG.
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TABLE 1 Comparison of performance metrics and models on WebNLG+2020. Lower values indicate better performance for GED, Hall., and Omis.

Model | Metric G-F1 T-F1 G-BS GED F1-Bleu F1-Rouge Hall. Omis.

PiVE 14.00 18.57 89.82 11.22 - - - -

Mistral-0 2.30 0.00 77.87 15.93 54.97 55.15 20.63 31.48

Mistral-7 18.72 28.44 87.54 10.13 55.09 63.94 17.88 21.14

Mistral-FT-0 31.93 44.08 86.89 8.25 63.88 69.08 13.55 18.27

Mistral-FT-7 34.68 49.11 91.99 6.69 71.78 77.43 15.01 14.45

Starling-0 5.23 7.83 86.29 13.35 34.64 14.61 17.48 33.24

Starling-7 21.30 33.77 90.41 8.96 60.47 69.34 17.31 14.61

Starling-FT-0 21.47 28.29 72.86 11.87 44.07 47.69 10.17 42.78

Starling-FT-7 35.69 48.49 91.95 6.60 71.51 76.67 11.35 18.27

Llama2-7b-0 0.00 0.46 54.20 18.29 20.23 17.98 4.83 81.53

Llama2-7b-7 11.80 20.88 82.78 12.66 45.48 54.29 20.74 30.02

Llama2-7b-FT-0 3.82 15.41 59.19 15.78 16.82 17.95 6.07 79.20

Llama2-7b-FT-7 18.77 32.63 87.19 10.16 58.48 66.35 25.24 18.66

Llama2-13b-0 0.00 0.79 57.42 17.79 20.50 18.23 4.78 81.23

Llama2-13b-7 13.49 23.99 84.89 11.59 50.18 58.71 26.36 19.06

Llama2-13b-FT-0 20.52 32.18 75.88 11.38 46.53 50.78 11.64 39.63

Llama2-13b-FT-7 23.55 37.29 88.77 8.94 63.26 70.12 23.55 16.19

Bold values indicate the best-performing results for each corresponding metric.

TABLE 2 Comparison of performance metrics and models on WebNLG test dataset. Lower values indicate better performance for GED, Hall., and Omis.

Model | Metric G-F1 T-F1 G-BS GED Hall. Omis. GM-GBS

Mistral-0 2.30 3.27 77.87 15.84 20.35 31.31 33.27

Mistral-7 18.72 28.44 87.54 10.13 17.88 21.14 51.88

Mistral-FT-0 31.93 44.08 86.89 8.25 13.55 18.27 54.97

Mistral-FT-7 34.68 49.11 91.99 6.69 14.90 14.39 57.72

Mistral-6 (KELM-sub) 7.59 12.45 81.23 16.29 61.16 7.64 26.86

Mistral-FT-6 (KELM-sub) 31.37 47.49 91.27 7.51 27.37 8.26 58.40

Bold values indicate the best-performing results for each corresponding metric.

TABLE 3 Results on KELM-sub.

Model | Metric G-F1 T-F1 G-BS GED Hall. Omis. GM-GBS

Mistral-7 5.50 11.35 81.77 13.74 6.72 61.09 28.66

Mistral-FT-0 2.17 8.55 78.29 14.35 7.22 56.28 12.88

Mistral-FT-7 2.89 9.92 78.42 13.63 6.22 61.00 13.66

Mistral-6 (KELM-sub) 12.00 31.08 85.49 10.82 25.50 32.44 38.88

Mistral-FT-6 (KELM-sub) 4.00 17.66 84.30 12.50 11.06 4817 36.22

Bold values indicate the best-performing results for each corresponding metric.

As mentioned before, to corroborate these findings, we assess

our fine-tuned models using KELM-sub test dataset for few-shot.

4.3 Generalization across domains

In Table 3, we present the evaluation results of original LLMs

with 7 shots and fine-tuned LLMs with zero-shot and 7 shots

on the KELM-sub test dataset which is prepared by Han et al.

(2023), building upon (Agarwal et al., 2020). It’s crucial to note

that the experiments utilized the same prompts as previously

described. The 7-shot experiments sourced examples from the

WebNLG+2020 training dataset. These new experiments aim to

assess the generalization ability of original LLMs with 7 shots and

fine-tuned LLMs with zero-shot and 7 shots across diverse domains

in the T2KG construction task.
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FIGURE 5

Examples of the calculated GM-GBS.

Providing LLMs with insights into certain relation types. Han

et al. (2023) use examples from KELM-sub training dataset in their

model PiVE, which leeded us to do another experiment which was

conducted using 6 random examples from the KELM-sub training

dataset. We applied the prompt with these examples to both the

original Mistral (Mistral-6) and our finetuned Mistral (Mistral-FT-

6) models. As expected, Mistral-6 outperformed Mistral-7 because

the examples were from the KELM-sub training dataset used in

Mistral-6. However, it was interesting to observe that Mistral-FT-6

performed less effectively than Mistral-6 with the same examples.

This suggests that finetuning on WebNLG domains reduces the

generalizability of the LLMs.

The results in Table 3 indicate that the fine-tuned Mistral

models perform less effectively than the original Mistral with

7 shots from WebNLG+2020 and with 6 shots from KELM-

sub. Additionally, all fine-tuned versions of Mistral (Mistral-FT-7,

Mistral-FT-0, and Mistral-FT-6) show inferior results on KELM-

sub compared to WebNLG+2020. This disparity can be attributed

to the presence of different relation types, with some types

expressed differently in KELM-sub. To address this, we utilize G-BS

to calculate the similarity between two graphs and consider them

as synonyms if they are sufficiently similar (>95% of similarity).

This metric, called GM-GBS, is the last metric presented in Table 3.

GM-GBS indicates a higher value of graph matching. To assess the

reliability of this metric, we conducted a qualitative evaluation as

illustrated in Figure 5.

Overall, using examples from KELM-sub shows that the results

are relatively similar. This indicates that fine-tuning negatively

affects the generalization capability of the models.

4.4 Implications and future directions

All results highlight the effectiveness of fine-tuning, particularly

in improving knowledge graph extraction accuracy. However,

the study is limited to the QLoRA approach, and a broader

exploration of fine-tuning strategies could provide deeper insights.

For example, full fine-tuning might yield different generalization

trade-offs, while selective fine-tuning on entity-rich layers could

further optimize performance. Future studies should systematically

compare different fine-tuning paradigms to assess their impact

on both accuracy and generalization. At the same time, our

results indicate that increasing the number of few-shot examples

leads to improved performance, but the selection strategy plays

a crucial role. Automated prompt generation or retrieval-based

few-shot prompting could potentially enhance consistency and

reduce variance in model output. We recommend future research

to investigate optimal prompt selection methodologies to refine the

efficacy of few-shot learning in knowledge graph extraction.

4.5 Qualitative results

As illustrated in Figure 4, our metric precisely calculates the

percentage of hallucinations and omissions in the generated graphs

at the triple level. For example, if a generated graph contains 2

triples and 1 of them is not present in the ground truth graph, the

hallucination rate is approximately 50%. Similarly, for omissions, if

the generated graph is missing some triples present in the ground

truth graph, the omission rate is calculated accordingly.

As mentioned above, we use G-BS to calculate the similarity

between generated and ground-truth graphs. If the similarity value

exceeds 95%, we consider it an exact match, based on the notion

that entities or relations in the generated graph are very close to

those in the ground-truth graph, or what we refer to as synonyms.

In Figure 5, we present examples with varying levels of similarity,

including one with approximately 95% similarity, to demonstrate

that even with 95% similarity, the two graphs convey the same or

very similar meanings.

While our study provides valuable insights into the effectiveness

of different LLM-based approaches for T2KG construction, it

is limited by the absence of a comprehensive error analysis.

A systematic investigation into common failure cases—such

as hallucinated triples, missing relations, and entity extraction
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errors—could offer deeper insights into model weaknesses.

However, due to computational resource constraints, we were

unable to conduct this analysis in the current study. Future work

will focus on addressing this limitation by incorporating an error

taxonomy and analyzing failure patterns across different LLMs

once adequate resources become available.

4.6 Guidelines for strategy selection

Our experiments suggest several heuristics for choosing among

ZSP, FSP, FT in the context of T2KG tasks. ZSP is most appropriate

when rapid prototyping is needed, no labeled data is available, and

the task domain is general or closely aligned with the language

model’s pre-training. FSP becomes advantageous when a small

set of labeled examples can be curated, especially for reinforcing

task-specific patterns without engaging in full model retraining;

it performs well in domains that deviate moderately from general

language. In contrast, FT is preferable when a sufficient volume

of labeled data exists, the target domain is highly specialized or

technical, and computational resources are available to support the

retraining process. While these guidelines are not exhaustive, they

are grounded in both our empirical findings and prior research, and

they aim to support practitioners in selecting the most appropriate

strategy for adapting LLMs to the T2KG task.

5 Conclusion and perspectives

This study delves into the T2KG construction task, exploring

the efficacy of three distinct approaches: ZSP, FSP, and FT of

LLMs. Our comprehensive experimentation, employing models

such as Llama2, Mistral, and Starling, sheds light on the strengths

and limitations of each approach. The results demonstrate the

remarkable performance of the FT method, particularly when

compared to ZSP and FSP across various models. Notably, the

fine-tuned Llama2-7b with ZSP gave worse results than FSP with

the original Llama2. Additionally, the positive correlation between

the quantity of examples and model performance underscores

the significance of dataset size in training. An essential part of

our study involves the evaluation metrics employed to assess the

generated graphs. Our analysis incorporated a comprehensive set

of metrics, including G-F1, T-F1, G-BS, GED, along with measures

for hallucinations and omissions.

Despite these improvements, we observed that fine-tuning on

domain-specific data, such as WebNLG, can negatively impact

the model’s generalization capabilities. This was evident from the

comparative performance of the fine-tuned models on the KELM-

sub dataset, where the original Mistral model with 7 shots from

WebNLG+2020 outperformed the fine-tuned variants. This finding

highlights the importance of balancing domain-specific fine-tuning

with maintaining broad generalization.

The inclusion of the GM-GBSmetric provided valuable insights

into the semantic similarity between generated and ground truth

graphs. Our qualitative analysis of hallucinations and omissions

further enhanced our understanding of model performance at the

triple level.

One is to involve refining evaluation metrics to accommodate

synonyms of entities or relations in generated graphs, employing

advanced methods or tools for synonym detection could improve

assessment accuracy. Furthermore, leveraging LLMs for data

augmentation in the T2KG construction task shows promise, as

our experiments suggest that LLMs can maintain consistency in

generating results and propose relevant triples.

Expanding evaluations to a broader range of domains and

datasets can provide deeper insights into how various types

of data influence model behavior and performance. Combining

automated metrics with human evaluation could also offer a richer

understanding of model quality, with domain experts providing

valuable assessments of the relevance and accuracy of generated

graphs. Exploring these directions will contribute to advancing

the field of T2KG construction and enhancing the capabilities

of language models in producing accurate and contextually

appropriate knowledge graphs.

We suggest several future directions for improving the

robustness of LLM-based T2KG construction. One key avenue

is to explore chain-of-thought (CoT) prompting approaches,

which could improve accuracy and reduce hallucinations in

multi-step reasoning tasks. Furthermore, an investigation into

entity harmonization strategies could lead to more consistent and

accurate knowledge graph structures. We also plan to conduct

further experiments with newer LLM versions and investigate the

impact of hyperparameter tuning on fine-tuning and generalization

performance.

Finally, while this study benchmarks various LLM-based

approaches for knowledge graph construction, a comparative

analysis with traditional NLP-based techniques remains an

important area of investigation. Evaluating LLM-based methods

alongside classical rule-based or statistical approaches could

provide deeper insights into their relative advantages. We leave this

exploration as a promising direction for future research.
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