AUTHOR=Ghanem Hussam , Cruz Christophe TITLE=Fine-tuning or prompting on LLMs: evaluating knowledge graph construction task JOURNAL=Frontiers in Big Data VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2025.1505877 DOI=10.3389/fdata.2025.1505877 ISSN=2624-909X ABSTRACT=This paper explores Text-to-Knowledge Graph (T2KG) construction, assessing Zero-Shot Prompting, Few-Shot Prompting, and Fine-Tuning methods with Large Language Models. Through comprehensive experimentation with Llama2, Mistral, and Starling, we highlight the strengths of FT, emphasize dataset size's role, and introduce nuanced evaluation metrics. Promising perspectives include synonym-aware metric refinement, and data augmentation with Large Language Models. The study contributes valuable insights to KG construction methodologies, setting the stage for further advancements.1