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An epidemiological extension of
the El Farol Bar problem
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School of Industrial Engineering, LIUC - Università Cattaneo, Castellanza, Italy

This paper presents an epidemiological extension of the El Farol Bar problem,

where both a social and an epidemiological dimension are present. In themodel,

individual agents making binary decisions—to visit a bar or stay home—amidst a

non-fatal epidemic. The extension of the classic social dilemma is implemented

as an agent-based model, and it is later explored by sampling the parameter

space and observing the resulting behavior. The results of this analysis suggest

that the infection could be contained by increasing the information available in

the underlying social system and adjusting its structure.
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1 Introduction

The appearance of COVID-19 pandemic brought a greater interest on the spread

of epidemics in social systems, which has ascended as a research imperative (Squazzoni

et al., 2020). The pandemic has especially highlighted the presence of an interplay between

disease dynamics and socio-behavioral patterns (Kreulen et al., 2022). Consequently,

understanding and strategizing against the spread of epidemics in interconnected social

systems have become paramount to safeguarding global health and socio-economic

stability (Maharaj and Kleczkowski, 2012).

Mathematical models (Kermack andMcKendrick, 1927), and subsequently, simulation

models (Bagni et al., 2002), have long been pivotal tools in epidemic management,

offering the capacity to predict (Colizza et al., 2006), analyze (Colizza et al., 2007), and

strategize (Ibarra-Vega, 2020) against the spread of infectious diseases (Ferreri et al., 2014).

The computational implementation of an epidemiological model enables the analysis of

disease transmission dynamics (Rahmandad and Sterman, 2008) through the systematic

examination of epidemiological variables, even when they are not analytically tractable

(Bobashev et al., 2007). In this perspective, simulations can serve two main interrelated

goals, although a more precise taxonomy can be defined (Epstein, 2008; Edmonds et al.,

2019). First, by incorporating real-world data and multifaceted parameters, simulations

provide a computational platform to assess possible outcomes and interventions in real-

world systems (Bertolotti and Roman, 2024). Second, simulations can be employed to

assess the reliability of hypotheses and to refine the objectives of empirical studies and

treatments (Georgescu, 2012).

The El Farol Bar problem (Arthur, 1994), a seminal example in complexity science

(Casti, 1996), exemplifies the use of toy models to study the unpredictability of the

dynamics of seemingly simple social systems (Lorenz, 1963). In the original form of the

problem, multiple agents all face the same binary decision, that each of them has to make

without the possibility to agree or to share information with the others: either to visit a bar

with limited capacity or to stay home, where a threshold is set and known to all agents above
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which they no longer find it enjoyable to visit the bar. The binary

outcome—either the visit was enjoyable if the bar was not too

crowded or viceversa—is known to each attending agent after the

event, and the time series of the outcomes of repeated events

is the basis for predicting the next outcome and a decision of

each accordingly.

In this paper, the dilemma has been modified and enrich

with a new epidemiological dimension. Individuals must decide

whether or not to engage in social activities amidst a contagious

disease outbreak, as it happened during the COVID-19 pandemic

(Kluwe-Schiavon et al., 2021). To the best of the authors’

knowledge, interactions between the underlying mechanisms of

social decision-making and the epidemiological dynamics in

such scenarios are largely unexplored (Pullano et al., 2020),

and the El Farol bar problem was never investigated from an

epidemiological perspective.

The El Farol Bar problem extension has been implemented

into an agent-based model (Bonabeau, 2002). This specific

methodology embodies a bottom-up approach, allowing for the

representation of heterogeneous behaviors and leading to the

emergence of complex system-wide phenomena (Siegenfeld and

Bar-Yam, 2020), and it is widely employed across multiple fields,

including ecology (Goodman et al., 2023), economics (Arthur,

2006), social sciences (Marwal and Silva, 2023), and epidemiology

(Squazzoni et al., 2020). The computational implementation

was needed to generate simulated data, with the purpose of

contributing to the understanding of the entangled nature of socio-

epidemiological systems.

The results suggest that epidemic survival rate is strongly

dependent on the experimental configuration, given that with

the specific parameters’ space employed only a small fraction

of simulations resulting in persistent infections. This indicates

that system dynamics are governed more by the setup of the

configuration space than by external environmental factors.

Parameters affecting infection survival display varied behaviors,

monotonic and non-monotonic. Environmental co-effects

highlight regions of increased infection persistence, particularly

in configurations with higher population densities and prolonged

infection durations. The results emphasizes the role of information

flow and the structural dynamics of social systems, where short-

term memory and agent presence significantly affect infection

survival probabilities.

This paper is structured as follows: The agent-based model

is first introduced and a detailed description of its components

provided. The model exploration process is then outlined,

emphasizing the methodology employed to generate the results.

Finally, we present and discuss the outcomes and draw conclusions

from our research.

2 Related works

Social dilemmas exist with the purpose of improving our

understanding of how people interact in a resource-bounded

environment (Van Lange et al., 2013), especially where there is a

conflict between bounded rational entities which are metabolically

dependent from a shared environment (Valentinov and Chatalova,

2016). At the best of our knowledge, Dawes (1980) was the

first to introduce the concept of social dilemma, even thought

a similar framework was already present in previous works

(Hardin, 1968; Olson, 1974). Dawes describes social dilemmas as

scenarios where individual decision-makers possess a dominant

strategy that leads to non-cooperation and, if everyone adopt

this dominant strategy, the outcome would be universally

poorer, leading to a suboptimal equilibrium. The final rate

of cooperation usually depends on the payoff structure (Rand

et al., 2012); even then, it is an approximation and usually

requires a certain number of iterations to be reached (Capraro,

2013).

The concept of the social dilemma is not confined to a

single field of study. In economics, they encompass a range of

perspectives and findings, such as investigating the difference

between rational behavior and social norm (Weber et al., 2004;

Biel and Thøgersen, 2007). Also, social norms have been employed

for addressing environmental policies (Cerutti, 2017), conflict

management strategies (Sitkin and Bies, 1993), social learning

(Mobius and Rosenblat, 2014), and knowledge sharing (Razmerita

et al., 2016). Ecology has a long tradition of using social dilemmas

as well (Eshel and Motro, 1988; Woodall et al., 2000), especially

in light of the pervasive presence of cooperation in natural

species (Gokhale and Hauert, 2016). These settings can help in

understanding the origin of sociality (Purcell et al., 2012) or group

foraging strategies (Bach et al., 2006). Also, social dilemmas have

been employed as the border between ecology and social sciences,

to study how success in species conservation depends as much on

individuals can collaborate to a common purpose (Di Chio et al.,

2008; Cumming, 2018) and to use classic economic concepts such

as signaling and contract theory to interpret evolutionary biology

(Archetti et al., 2011).

While El Farol Bar problem (Arthur, 1994) is a classic example

of social dilemma with decision-making under uncertainty,

it already presents several extensions. Statistical approaches

have been used to improve agents’ decision-making strategies,

particularly in dynamic environments with evolving population

behaviors (Challet and Zhang, 1997). Also, many approaches

have been proposed to model the prediction mechanisms and

agent behaviors in contexts such as resource allocation (Challet

and Zhang, 1997) and market dynamics (Johnson et al., 1998).

A variant of the El Farol bar problem has recently been

used to examine the fairness of social distancing measures

introduced during the COVID-19 pandemic (Schosser, 2022).

However, this analysis did not consider the potential for agents to

become infected.

Although the fields of epidemiology and social dilemmas have

not traditionally intersected extensively, recent years have seen

a burgeoning interest in the interplay between these disciplines,

particularly highlighted by global health crises such as the COVID-

19 pandemic (Tanimoto and Tanimoto, 2018). The application of

social dilemma frameworks has proven insightful for examining the

relationship between individual behaviors and collective outcomes,

notably in the context of vaccination rates within populations

(Tanimoto, 2021). These analyses utilize various models to

illuminate the impact of factors such as replicator dynamics

(Kabir, 2021), social efficiency (Kabir, 2021; Khan and Tanimoto,
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2023), and diffusion structures (Wei et al., 2019) on vaccination

uptake. Human behavior has been indicated as critical in shaping

epidemic trajectories (Ferguson et al., 2020), emphasizing how

deviations from optimal behavior can lead to suboptimal public

health outcomes (Meloni et al., 2011), how different cooperation

styles affect the achievement of herd immunity (Gharakhanlou

and Hooshangi, 2020), or the interplay between individual and

collective behavior (Palomo-Briones et al., 2022). Furthermore,

empirical studies highlight how cooperative behaviors may be

amplified by the accelerated transmission of disease (Rychlowska

et al., 2022). Additionally, the exploration of oscillatory behaviors

within social dilemmas reveals how perceived infection risks

can drive a collective shift toward more cautious approaches to

social interaction, such as increased adherence to social distancing

measures (Glaubitz and Fu, 2020).

3 Materials and methods

This section presents a description of the model of an

epidemiological version of the El Farol Bar and the exploration

methodology employed to generate results.

3.1 Agent-based model description

In this section an agent-based model of an epidemiological

version of the El Farol Bar problem is described and the method

employed to explore the model is presented.

In addressing how epidemics affects the social dynamics in

the El Farol Bar problem, agent-based modeling serves for two

compelling reasons: as an approach traditionally employed to

address social dilemmas, it is an effective means of communication

within the scientific community; and it is particularly well-

suited for capturing individual behaviors and their effects on an

overall epidemic spread. This enables to get insights from the

global co-effect of individual (i.e., agent-related) epidemic and

social variables.

At each time step t, the model implements a sequence of

actions, as depicted in the flowchart (see Figure 1). The first

concerns the decision-making process regarding bar attendance:

evaluating agents’ memory of past attendance, estimating the

expected crowd level, and making a decision accordingly. The

second is about the dynamics of infection as induced by the

interactions among the agents given their health states, where an

infectious pathogen could be transmitted to those who decide to

attend the bar, influenced by the density of the crowd and the

duration of exposure.

Together, these two sets of actions capture a dual aspect of agent

behavior: social decision making influenced by past experiences

and the epidemiological implications of these social choices. The

model thus provides a framework for examining the interplay

between individual decision making based on memory of previous

states and the collective outcomes in terms of disease transmission,

offering insights into how individual behaviors aggregate to impact

public health.

3.1.1 Social dilemma
The proposed model includes a single kind of agents,

representing the individuals that could decide to attend the bar

in any given week (the time step of the model) and thus possibly

be infectious. The agents’ behavior is modeled according to the

hypotheses of the original El Farol Bar problem. First, the only

decision each agent can make each week is whether to attend the

bar, and the decision is always executed. Second, agents like to

attend the bar, if it is not too crowded, and do it as much as

they can: hence, each agent decides each week whether to attend

the bar depending upon its expectation of the total number of

agents who will attend. Third, agents interact with each other only

at the bar, and therefore when their decision to attend has been

already made.

The model introduced by this paper incorporates several

hypotheses concerning agents’ behavior. First, agents make a

binary decision, as they can either choose to attend a bar

or not; no other actions are included in the model, to

focus on a specific aspect of social behavior. Second, agents

inherently enjoy attending the bar and will do so as much

as they can, but their preference is tempered by the bar’s

occupancy; agents are averse to overcrowding. Therefore, the

decision to attend the event is influenced by their expectations

regarding how crowded the bar will be. In time, this introduces

a feedback loop where the average attendance of the bar

inversely affects its attractiveness while it is directly influenced

by it; a dynamic seen in many real-world social scenarios.

Third, agents’ interaction is solely defined by the shared

presence in the crowded space of the bar, and there are no

interpersonal communications or relationships affecting their

attending decision.

The information about past attendance plays a crucial role in

shaping agents’ expectations, as it is used to estimate the number of

agents likely to attend the bar in the subsequent week, as follows.

For agents attending the event, the new value is the actual number

of agents at the bar, while for agents that did not attend the new

element of the memory is a random value, which stands for an

educated guess made by agents which can not communicate with

each other.

The agent’s decision whether to attend the event or not is taken

comparing an attendance threshold and the expectation regarding

the future attendance. The attendance threshold ta is a parameter

of the model that depicts venue saturation level above which agents

would consider unpleasant to be in the bar, consequently not

attending the event.

Each agent i (where i goes from 1 to n, the total number of

agents) generates an expectation regarding how many agents will

attend the bar at the next time step memorizing the number of

agents present at the bar during the last m times it attended the

bar, with m being the memory length, and assigning weights to

generate a prediction. In cases where the agent does not attend the

bar, the value saved inmemory is the one hypothesized by the agent,

namely, the one generated with the ’expected attendance’. Let si,k
be the k-th element of the memory of agent i (with k ∈ {0, 1, ..., t})

and w the list of weight wk used to the define importance of each

memory element, which increases with k. So, the attendance—

which is the number the agent i expects to be at the event at time
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t + 1—is therefore given by:

Ei[

n∑

j=1

aj,t+1] =

m∑

k=1

si,kwk (1)

where aj is the participation of the agent j to the event at time t+ 1,∑n
j=1 aj,t+1 is the total attendance at time t+ 1 and Ei[

∑n
j=1 aj,t+1]

is the expectation of the total attendance from agent i at time

t + 1. Consequently, from the expected attendance is possible to

determine also the expected filling f of the venue at the time t + 1

Ei[ft+1] =
Ei[

∑n
j=1 aj,t+1]

Cmax
(2)

where Cmax is the maximum capacity of the venue. Given the

expected filling, at each time step an agent i attends the event

whenever Ei[fi,t+1] < ta.

3.1.2 Epidemiological transmission
In epidemiological models, each agent is typically (but not

necessarily) in one of three states: susceptible, infectious, or

recovered. These class of models accounts for the possibility

of waning immunity after an infection, and eventually become

susceptible again, modeling diseases where immunity, either

natural or vaccine-induced, can be acquired and diminishes over

time. Figure 2 depicts this transition.

The epidemiological dimension of this model is based on

several key modeling hypotheses. Firstly, the contagion process

is assumed to be uniform across all agents, characterized

by a consistent duration and an initially uniform level of

infectiousness. This simplification negates individual variations in

disease progression and response to infection. Secondly, the model

posits that the disease in question is non-lethal; agents cannot die

as a result of contracting the illness. This assumption is critical

as it focuses the model on the dynamics of disease spread rather

than mortality rates, and the overall number of individual in the

system remains the same. Despite the absence of mortality and

the maintenance of agent numbers over time, a disease that infects

multiple agents has the potential to reduce the number of agents

available for social interaction at any given time. Furthermore, the

model assumes the absence of long-term physical or psychological

effects post-infection. Recovered agents are not hindered in their

ability to participate in normal activities, such as attending a bar,

indicating that the disease does not cause lasting health impacts.

Psychologically, the model assumes that agents do not experience

fear or behavioral changes as a result of the infection. They continue

to frequent the events without any alteration in their behavior

due to the experience of being infected. The sole variable that

the agent takes into account when determining whether or not

to attend the bar is their own contagion level ci. Indeed, should

an agent’s ci be too high, they may elect not to attend the bar

due to the symptoms of the disease. Finally, a crucial aspect of

this model is the agents’ ignorance of the epidemic. Agents lack

information about the total number of infected individuals and do

not consider the risk of infection in their decision-making process.

This implies a lack of adaptive behavior in response to the epidemic,

which significantly influences the model’s predictions about disease

spread. By ignoring potential changes in social behavior and risk

assessment, the model strictly focuses on the deterministic spread

of the disease under constant behavioral patterns. This approach

simplifies the modeling process but may overlook important

dynamics present in real-world scenarios where awareness and

behavioral adaptations play a crucial role in disease transmission.

Agents can get infected only by participating in an event. So, the

epidemic transmission happens solely at the bar, and only if at least

one infectious is attending. The number of new infected agents it at

time t is

it ∝ ⌊α

∑n
j=1 ajcjSt

Cmax
⌋

where is St the number of agents in susceptible state attending

the bar at time t, and α is the level of contagiousness of the infection.

In the proposed model, social relationships among agents are

not considered, leading to a uniform infection probability for all

individuals attending the bar at time t. Consequently, the selection

of new it infected agents at each time step is randomized from those

present, not considering individual interactions or relationships.

Whenever, an agent becomes infected, the infection follows this

dynamics. Initially, the contagion level of the newly infected agent i

is set to ci = 1. Given an infection duration di, the contagiousity of

agents decreases linearly by 1/di at each time step.

In the progression of the disease modeled, two critical

thresholds, ts and tc, play pivotal roles in influencing agent behavior

and the spread of the infection, as outlined in Figure 3. The first

threshold, ts, represents the infection level at which an agent

exhibits sufficient symptoms to deter them from attending the

bar. The second, tc, indicates the infection level beyond which

agents can spread the infection. The spread of the infection is

most influenced by the agents with tc < ci < ts, so with a

contagious level between these two thresholds. This is because it

encapsulates the period when agents are infectious but may not

have anymore the level of symptom severity or self-awareness

to avoid social gatherings, thereby contributing to the disease

transmission dynamics. Notable, the contagious level is taken into

account only for the ni agents which infection level is greater

than tc.

In the modeled scenario, infected agents undergo a recovery

process after a duration of ti time steps. Upon recovery, these

agents are conferred a temporary immunity lasting tr time steps.

However, this immunity is not permanent; after the elapse of tr time

steps, the agents once again become susceptible to infection. In this

model, the transition from immune to susceptible is unambiguous;

thus, an immune agent will invariably possess a null probability of

becoming infected. This cyclical pattern of recovery and renewed

susceptibility underscores the transient nature of immunity within

the model.

3.2 Model exploration settings

The results from the simulation model were generated by

means of a grid sampling exploration of the parameter space, to

collect the model outputs from different parameters’ combination

(Collins et al., 2013). Grid sampling from a parameter space

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2025.1519369
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Bertolotti et al. 10.3389/fdata.2025.1519369

FIGURE 1

Scheduling process of the model.

involves systematically selecting a finite subset of parameter values

that aims at comprehensively represent the entire parameter space.

The idea underlying the use of this technique is to facilitate

the exploration of system behavior across distinct parameter

combinations, especially in cases where not a specific behavior is

expected or researched. Table 1 presents the parameters tested in

the simulation and their explored ranges. Each parameter has been

sampled from a uniform distribution. The data are collected by

simulating the agent-based model 100, 000 times. A preliminary

analysis was conducted to assess the sensitivity to seed variation

with specific parameter combinations (Bertolotti et al., 2020). It

was observed that the variability of the metrics due to seed changes

was practically zero, indicating that the mean or the presence of

interesting behavior in the time series was not dependent on the

random number generator. Consequently, multiple experiments

were not conducted for each random seed.

Even if the model is stochastic, each simulation was initialized

with a specific random seed, that was stored as well. Consequently,

the results were reproducible at a later stage, and the time series

for each configuration of interest was observable. Furthermore,
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FIGURE 2

Map of possible infection status and their transitions.

the initial number of infected is not fixed; rather, it is 10% of the

population. This ensures that the infection will commence, and

that any subsequent extinction will not be contingent on the initial

number being insufficient, even if preliminary analysis has shown

that this value does not have an effect on the results.

From each simulation run, two time-series were collected: A,

which is the number of attending agent at each time-step t, and I,

the number of infected agents at each step of the simulation. From

each time-series two output were extracted: the mean value of the

series E[A] and E[I], which are used to assess the overall status of

the system in time.

The model, the exploration code and the data analysis are all

implemented in Python 3.11.

4 Experimental results

As illustrated in Figure 4, the epidemic did not persist until

the conclusion of the simulation in the majority of instances

when the specific experimental configuration was employed. The

specific configuration of the model exploration plays a more

significant role than the specific features of the model or the

specific environmental parameters in determining the outcome.

The percentage of surviving infections is highly dependent on

the experimental configuration. Although it could be adjusted to

achieve higher survival rates, the primary objective was to study

the behavior of the system under the current conditions. Keeping

specific configurations that increase the likelihood of infection

survival would limit the study of dynamics and introduce bias by

artificially inflating survival rates.

One might be surprised that only a small proportion of

runs result in a lasting infection (Figure 5 shows an example

of the model time series for a case where the infection lasted

until the end and where it did not), and thus conclude that the

existence of infection in social systems is merely coincidental.

This line of reasoning fails to consider the potential for biological

specimens to adapt, which could result in the emergence of

new infectious diseases. Such adaptations may occur through

evolutionary processes, resulting in the evolution of new pathogens

that are better equipped to survive and disseminate within a given

environment. An alternative hypothesis is that these adaptations

FIGURE 3

Dynamics of contagious level for each agent.

could either result in the evolution of a more resilient pathogen or

in the extinction of the pathogen. In a scenario where the infecting

entity is not adapting, the observed consequences are the result

of a previous adaptation. Therefore, the parameters configuration

in Table 2 should be considered in this context, particularly with

regard to the epidemiological elements.

It is then possible to label of the simulation outcomes into

two distinct groups based on their characteristics and behaviors;:

Sa, which includes all the simulation results, serving as a

comprehensive dataset to which to make confrontations; and Si,

containing those simulations where the epidemiological output

I(t = 200) > 0. Table 2 provides a detailed comparison between

two scenarios, and it was constructed by collecting the mean

values of the input parameters, segmented into the two observed

output scenarios. Given that these mean values were generated

from a random grid sampling experiment across the parameter

space, the difference can identify parameters’ effect on scenario

output. The third column of the table represents the relative

difference between the mean input values for the two scenarios,

providing a quantitative measure of each parameter’s influence on

the system’s behavior. These quantitative results are also reflected

in the description of Figure 6, where they are discussed later.

Figure 6 shows the effect of each parameter to the infection

surviving, illustrating the distribution of each parameter exclusively

for simulation runs for Si. Given that each parameter has been

sampled from a uniform distribution, the presence of diverse shapes

suggests that there is an actual effect of each parameters upon the

infection continuation, and that this effect may vary. It confirms the

finding from Table 2.

For instance, the infection duration (di), contagiousness of the

infection (α), and the number of agents in the simulation (n) all

exert a growing monotonic influence on the infection’s ability to
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TABLE 1 Description of model parameters.

Parameter Description

ta Threshold of share of expected agents above which an agent

does not attend the event

di Duration of the infection

tp Threshold of infection above which the infected agents have

symptoms and do not attend the bar

α Level of contagiousness of the disease

tc Threshold of infection below which an agent can not

transmit the disease anymore

m Weight of the last memory in the decision-making process of

agents

tr Duration of the immunity

n Number of agents in the simulation

FIGURE 4

Share of runs where I(t = 200) > 0, i.e. where the infection lasted

until the end of the simulation.

survive. While the effect of di and α is intuitive, the impact of

an increasing number of individuals is less clear, especially given

that the capacity is not fixed but depends on n. This observation

could depend on increased opportunities for interactions between

agents, the potential for delayed saturation, and the presence of

a buffer for randomness. Conversely, the significance of the most

recently encoded event in the decision-making process of the agents

(m) is univocally monotonically decreasing, indicating that a more

rapid reaction time could diminish the probability of an infection’s

survival, even when considering solely the overall attendance and

the absence of knowledge regarding the number of infected agents.

The remaining four parameters exhibit non-monotonic

behavior. The threshold of contagion below which the infection is

not spread (tc) or not perceived (tp) plays a role only for specific

values, functioning as enabling factors. Finally, it can be observed

that the attendance threshold, ta, and the recovery time, tr , exhibit

a non-symmetric "bell" shape. In the first case, the dependence

may be attributed to the fact that insufficient attendance does

not result in the establishment of a critical mass at the bar,

thereby preventing the constant dissemination of the epidemic.

Conversely, when the value is excessively high, the epidemic

rapidly eliminates all susceptible individuals, leading to extinction

following a primary surge. With regard to the recovery time, it

is evident that the proportion of surviving infections declines as

this variable increases. However, it is counterintuitive that, at low

values of this variable, there is an increase in the proportion of

surviving infections. It may be the case that this is due to the fact

that it reduces the size of the infection waves by reducing infection

synchronization, thus allowing them to persist for longer without

being extinguished due to the absence of non-infected agents.

In Figure 7, histogram on the left depicts the mean number

of agents infected over the course of a simulation in which the

infection was sustained, while the one on the right decomposes the

data as a function of the percentage capacity of the bar, which can be

only cp = 0.5 or cp = 1. The symmetrical shape of the histogram (a)

could suggest a relatively balanced distribution of infection rates,

with few extreme cases of very low or very high infection levels, but

histogram (b) reveals that it depends strongly from the bar capacity,

given that it is the combination of two distribution ranging from 0

to 1 with respectively a left and a right tail.

It is evident that there is a co-effect between the environmental

parameters, which can be visualized in Figure 8. The gradient

of the simulation in the top-left part of Figure 8 exhibits a

pronounced clustering of elevated values in the top right quadrant,

with a gradual decline in the lower left. This suggests that,

within the confines of this experimental configuration, it is

highly improbable to observe a simulation characterized by low

population density and minimal infection duration. Analogously,

the top-right subfigure illustrates that, for a given configuration

of infection threshold (tc) and attendance threshold (ta), the

probability of infection survival is higher when the majority of runs

occur at a specific point.

5 Discussions and conclusions

This paper introduces a modified version of the El Farol Bar

social dilemma with an added epidemiological dimension, where

individuals must choose whether to engage in social activities

during a disease outbreak. The simulation results indicate two key

messages. The first is the importance of the rate of information

available in the social system, which can be observed in the role

of short-term memories and personal awareness regarding the

infective status. This is not unexpected when the model is viewed

as a decision-making context, and there is a long tradition of

research exploring how an entity’s capacity to gather and process

information affects their actions. This aligns with Soros’s conceptual

framework, particularly the ’principle of fallibility,’ which asserts

that individuals’ perceptions of reality are inherently flawed due

to biases or inconsistencies (Soros, 1988, 2013). In the context of

social systems, these imperfect views influence decision-making

processes, shaping the outcomes of collective actions. Also, the

effect can be explained by the “principle of reflexivity" (Soros, 1988,

2013), which plays a pivotal role by illustrating how individual

beliefs—such as misconceptions about infection risks—not only

influence personal behaviors but also modify the dynamics of the

social and epidemiological systems as a whole. For example, if a
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FIGURE 5

Behavior of A and I in two four di�erent simulations. In the simulation on the left, the infection does not last to the end, which is what happens in the

simulation on the right.

FIGURE 6

Distribution of experimental parameters for Si.

majority of agents underestimate its contagiousness, their actions

can exacerbate disease spread, thus reshaping the trajectory of the

epidemic and the social structure itself (Beinhocker, 2013).

The second element is the need for taking explicitly into

account social system structure, which in this case derives from

agents’ numerosity and dynamics. From a topological perspective,
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an agent can be situated in one of two states: present or absent

from the event. Agents that are present are interconnected, at

least potentially, while those that are absent are not. This situation

undergoes change at each time step. These elements can change

in accordance with both social and epidemic features, which in

turn give rise to a diversification of the system structure and,

consequently, an increase in the probability of an infection lasting.

Also, the results indicate a positive effect between population size

and infection surviving. Given than, by design, the model is a

structured representation of a closed systems, this finding suggests

that an efficient strategy could be involve sectoral management by

dividing larger systems into smaller, manageable units. Such an

approach would facilitate easier control and monitoring of these

smaller systems.

TABLE 2 The following table presents the results of the simulation.

Parameter E[par|Sa] E[par|Si]
E[par|Si]−E[par|Sa]

E[par|Sa]

ta 0.50 0.58 0.17

tc 0.50 0.17 −0.66

di 5.51 6.91 0.26

m 0.50 0.39 −0.22

tp 0.50 0.56 0.13

tr 5.01 4.20 −0.16

α 0.26 0.32 0.23

cp 0.75 0.77 0.02

n 2252.35 2704.81 0.20

The second and third columns indicate the mean value of each analyzed parameter for the Sa

and Si scenario, respectively. The final column shows the relative difference between the two

scenarios, with the values normalized by the base scenario.

Moreover, the role of memory in this model could provide

important insights about decision-making in dynamic social-

epidemiological systems. On one hand, the implication appears

straightforward: agents who focus more on recent events, rather

than relying on a longer history of past experiences, are better

positioned to make adaptive decisions about whether to attend

the bar. This tendency to prioritize the present over distant past

events helps break the synchronization of attendance patterns,

reducing crowd-induced infection risks and stabilizing system

dynamics. However, this insight challenges conventional wisdom

in data-driven decision-making. A big data expert might argue

that having more data–such as an extended, detailed time series–

should lead to better decisions. The model, however, reflects the

cognitive constraints of the agents, who function with limited

capacity for processing complex information. In scenarios where

cognitive capacity is low (or where agents behave as if it is),

focusing on the most recent information proves to be a more

effective strategy than relying on an exhaustive analysis of historical

trends. This finding underscores an important tradeoff: when

resources for processing information are constrained, simplicity

can be advantageous. It suggests that decision-making entities—

whether individuals, organizations, or automated systems–may

benefit from heuristics that prioritize recent data over large datasets

in certain contexts.

The most negative effect on infection spread is linked to the

infectiousness threshold. This is consistent with the expectation

that when an infective specimen falls in the area where can be

perceived longer than it can be widespread, it has less chances to

survive. Furthermore, this underscores again the critical role of

information. More informed agents, who are thus more aware of

the risks, and so have an higher perception threshold, are more

likely to make decisions that would spread the infection, thereby

influencing the overall dynamics of disease spread.

FIGURE 7

The distribution of the share of infected agents at the conclusion of the simulation I(t = 200) for Si, aggregated (A) and divided by the percentage

capacity of the venue relative to the total number of agents cp (B).
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FIGURE 8

The number of simulations conducted for a configuration of parameters in Si. The lighter the heatmap, the more simulations there are at that

location in parameter space. In contrast, a darker color describes a location in the parameter space where there are no simulations.

The findings from this paper could have practical implications

for real-world scenarios, particularly in public health management

during epidemics. First, the importance of information flow and

short-term memory highlights the need for timely and accurate

communication strategies. Public health authorities could design

targeted messaging campaigns that provide clear and actionable

information to the public, enabling individuals to make informed

decisions that reduce disease transmission. Second, insights into

how agents’ perceptions and crowd dynamics influence infection

spread could inform the development of adaptive social distancing

measures. For instance, policies that dynamically adjust venue

capacity limits based on real-time occupancy or local infection rates

could effectively prevent overcrowding and minimize transmission

risks. Lastly, the role of personal awareness and memory in

decision-making underscores the value of sustained public health

campaigns. Educational initiatives that build long-term awareness

of health risks and encourage proactive behaviors, such as wearing

masks or staying home when symptomatic, can help maintain

a higher level of community preparedness and resilience during

future outbreaks.

A limitation of this study is the homogeneity of agents’

behavior. Future research could explore how the system behaves

when agents exhibit diverse behaviors. However, it was deemed

unnecessary to include this aspect in the initial analysis. Intuitively,

increasing the number of agents would likely result in behavioral

heterogeneity being averaged out in a mean-field approximation,

which guided the decision to use the current configuration.

Nonetheless, this represents a limitation and a potential avenue

for future research aimed at validating the results under more

heterogeneous scenarios.

Also, the endogeneity of contagion risk perception deserves

more exploration. In our model, agents’ decisions are based on
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memory and expectations regarding social attendance but do

not incorporate adaptive perceptions of contagion risk. However,

in real-world scenarios, individuals often adjust their behavior

dynamically based on perceived risk (Busby et al., 2016), which

in turn alters the actual spread of the disease. If agents were to

update their decision-making based on the prevalence of infections

in their environment–either through direct experience or social

influence—the model outcomes might change significantly. Higher

perceived risk could lead to more cautious behaviors, effectively

flattening the epidemic curve, while underestimation of risk could

accelerate contagion.

More broadly, the main limitation of this study is that

the analyses were conducted within the framework of a social

dilemma, rather than on an empirically validated model. While

the insights and results derived from this approach are valid,

they should be viewed as preliminary suggestions for empirical

researchers conducting field experiments. The findings provide a

theoretical foundation that can guide future empirical work, but

further validation through real-world data is necessary to confirm

their applicability.

Future developments can take multiple directions. First, the

time-series dynamics of the model could be studied to identify

whether specific dynamic equilibria or limit cycles emerge, which

could be highly relevant for public decision-makers. Second, an

extension to the model could be make, introducing a policy-

maker agent that could employ actions for epidemic containment.

The results from the synthetic decision-makers’ actions could

be compared to real-world policy decisions made during the

COVID-19 pandemic. Third, an analysis could be conducted to

quantify the amount of information (in bits) required by each

agent to make informed decisions in such contexts. Finally, a

potential extension could explore long-term infections not tied

to short-term events like a night out, but where the socio-

epidemiological co-dynamics remain critical, such as in diseases

like AIDS.
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