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Air conditioning energy consumption in buildings represents a considerable

percentage of total energy consumption, which underlines the importance

of implementing measures contributing to its reduction. Predicting energy

consumption is critical to making informed decisions and identifying factors

influencing power consumption. Machine learning is the most widely used

approach for prediction due to its speed, accuracy, and non-linear modeling.

In this study, three machine learning models were used to predict the air

conditioning energy demand in a classroom of an educational building in a

hot tropical climate. The models selected are SVR (Support Vector Regressor),

DT (Decision Tree), and RFR (Random Forest Regressor) due to their wide

use in the literature; therefore, the goal is to establish which one o�ers the

best performance for this case study based on a comparative analysis using

performance metrics. Cross-validation was used to perform robust training.

Twenty-two input variables were considered: climatological, operational, and

temporal. Occupancy is the variable with the highest correlation with air

conditioning consumption; these two variables have a positive relationship of

0.65. Monitoring was carried out for 72 days, including weekends. Six study

scenarios were considered, in which the monitoring period varied, influencing

the number of samples. In addition, two sensitivity analyses were performed by

modifying the time interval of the data (1, 5, 10, 20, 30, and 60 min) and the

data split (50:50, 60:40, 70:30, 80:20 and 90:10). The evaluation of the models

was performed using RMSE, MAE and R2 metrics, to di�erent characteristics and

approaches to error measurement. During the training phase, the RFR model

achieved a coe�cient of determination (R2) of 0.97, while the SVR obtained

an R2 of 0.78 in the test phase. Finally, it is concluded that using shorter time

intervals (every 1 min) in the data improves the performance of the predictive

models. Splitting the data into 80:20 and 90:10 ratios resulted in the lowest RMSE

values for the three models evaluated. Training the models with a larger amount

of data allows for capturing more representative patterns, which improves their

generalization ability and performance on new data.
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1 Introduction

Globally, heating, ventilation, and air conditioning (HVAC)

systems can account for up to 40% of total energy consumption

in buildings (residential, commercial, educational, and industrial)

(Kaushik and Naik, 2024; Gao et al., 2019). This consumption could

double by 2050 if no action is taken; however, implementing passive

designs, promoting behavioral changes, and using more efficient

equipment can help reduce demand and alleviate pressure on

electricity systems (Agency, 2023). Climate change, population and

income growth, and thermal comfort preferences increase cooling

consumption (Santamouris, 2016; Tocchio et al., 2024).

Accurate energy consumption prediction helps improve

resource efficiency and promote sustainability (Zhang and Pei,

2024). In addition, this prediction is critical for improving air

conditioning (AC) system operating efficiency and electricity

demand response (Huang et al., 2024; Yang et al., 2024). It

is possible to optimize the performance of cooling systems

through optimal control, maximizing their energy efficiency and

improving their performance under various operating conditions.

This strategy allows dynamically adjusting system parameters,

achieving more precise temperature regulation, reducing energy

consumption, and extending equipment life (Xue et al., 2024).

Studies have been conducted to reduce energy consumption

without affecting thermal comfort by ensuring a balance between

energymanagement and indoor environmental quality (Ogundiran

et al., 2024).

Forecasting estimates energy consumption for a specific time

in the future. The literature highlights four main approaches for

this forecasting type: statistical methods, white box, black box, and

gray box models. Each approach has advantages and disadvantages,

which require the application of criteria to choose the most

appropriate one according to the case study, the prediction horizon,

and the type of data available, among other factors. In recent years,

machine learning models, also known as black box models, such

as Artificial Neural Networks (ANN), Recurrent Neural Networks

(RNN), Deep Neural Networks (DNN), Multi-Layer Perceptron

(MLP), Decision Trees (DT), Multiple Linear Regression (MLR),

Linear Regression (LR), Support Vector Machine Regression

(SVR), Random Forests (RF), Gradient Boosting eXtreme (XGB),

etc. have been preferred by researchers due to their speed and

accuracy. These models have shown remarkable improvements

in predicting energy consumption in buildings, especially in

residential, commercial, and educational sectors, facilitating energy

management, and implementing energy-saving strategies (Ortega-

Diaz et al., 2023).

Recently, studies have been conducted on predicting cooling

energy demand using machine learning techniques (Saeideh et al.,

2024). An example is using machine learning and simulation

to explain air conditioning in buildings (Duhirwe et al., 2024).

Abbreviations: AC, Air Conditioning; ANN, Artificial Neural Network; DT,

Decision Tree; HVAC, Heating, Ventilation, and Air Conditioning; LSTM,

Long Short-Term Memory; MAE, Mean Absolute Error; RFR, Random Forest

Regressor; RMSE, Root Mean Square Error; SVM, Support Vector Machine;

SVR, Support Vector Regressor; R2, Coe�cient of determination.

Vergés et al. (2024) used neural networks to evaluate the energy

implications of HVAC systems in nursing homes during the

cooling season. Their study, which was based on data from eight

nursing homes, showed excellent predictive ability (R2 = 0.95) and

highlighted that adaptively adjusting operating temperatures can

achieve energy savings of up to 23.4%. This work is especially

relevant in warmer and drier climates, where energy efficiency is

crucial for the comfort and wellbeing of residents. A model was

developed to estimate the cooling capacity of air conditioners in real

time using non-intrusive, low-cost, scalable parameters measured

from the indoor unit. These parameters include three refrigerant

pipe temperatures, compressor power, and other powers, which

allow the capture of operating conditions and improve the model’s

accuracy. The artificial neural network processes this data to

identify patterns and accurately estimate system performance

(Sholahudin et al., 2024). Sundaram et al. (2024) introduced the

use of LSTM networks to predict energy consumption in residential

buildings with HVAC systems in the design phase, demonstrating

superior accuracy (R2 = 0.97) and higher training efficiency (2.69 s

for more than 500 test cases) compared to DNN and ANN models.

This advance enables accurate estimates before construction and

facilitates energy efficiency improvements from the earliest design

stages. Liu et al. (2024) conducted a comparative analysis of

various models for predicting air conditioner energy consumption

across different periods in large public buildings. Additionally,

techniques such as Support Vector Machines (SVMs), Artificial

Neural Networks (ANNs), Narrow Neural Networks (NNN), and

optimizable SVMs have been employed to forecast electricity usage

in office buildings equipped with active chilled beam systems

(Hajimirza Amin et al., 2024).

In contrast to other studies, some similarities and differences

are found. For example, Saeideh et al. (2024) used only 768 samples

of 9 physical variables to predict cooling consumption in residential

buildings. In contrast, our study incorporates a broader set of

variables influencing energy consumption and a more significant

amount of data. The variables they considered are related to

orientation, glazing area, relative compactness, total height, and

surface area of the buildings. In other words, they considered

physical variables not considered in this study since we are dealing

with a single building, and these variables are constant over time.

For this reason, the variables analyzed in this study are mainly

climatological, operational, and occupancy variables. The accuracy

obtained by Havaeji et al. was 97.4%, which is comparable to the

95% accuracy achieved in this study. The strength of our research

lies in its ability to monitor various classroom characteristics over

an extended period, capturing different scenarios that occur over

several days. Additionally, although the buildings studied have

other uses, the SVR model demonstrated an adequate ability to

predict future values. Alawi et al. (2024) used the same data set

as (Saeideh et al., 2024) generated through simulation. They used

SVR and RF and split the data in a 70:30 ratio. However, they

did not evaluate the impact of varying this data distribution.

They took eight input variables for prediction and then presented

various scenarios by performing input combinations. In another

study, it was observed that the shortest time interval (10 min)

provided the best performance, which aligns with the findings of

this research. The models performed best using data with reduced
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time intervals (Liu et al., 2024). Another study used synthetic

data from office buildings to predict cooling system consumption.

They also trained the SVR and obtained an R2 of 0.95 as we did

(Hajimirza Amin et al., 2024). Simulation-generated data require

less effort and usually represent ideal conditions. In contrast, data

collected through sensors and monitoring equipment involve more

work but provide a more accurate and realistic representation of

observed conditions.

Although several studies have been conducted on predicting

energy consumption in buildings, there is a lack of research on

the behavior of air conditioning consumption in classrooms. It is

necessary to carry out studies of the interior spaces of a building to

have a detailed analysis of its behavior. In this context, this study

aims to evaluate the performance of three machine learning models

to predict AC consumption in a classroom. The performance is

evaluated using RMSE, MAE, and R2 metrics.

2 Methodology

2.1 Case study

The case study of this research is a classroom in an educational

building located in Bucaramanga, Colombia (Figure 1). This city

has a tropical climate, which is warm, humid, and rainy throughout

the year, with temperatures ranging between 18◦C and 28◦C

(Underground, 2024). Bucaramanga is geographically located at

latitude 7.1193◦ north and longitude 73.1227◦ west. The classroom

is used for undergraduate and graduate classes, mainly in electrical

engineering, electronics, and telecommunications. The classroom

is located on the fourth floor of the building and is equipped with

two 36,000 BTU/h fan coil cassette air conditioners (Figure 2), as

well as cross and forced ventilation. It has an area of 77.18 m2, a

capacity for 34 people, 12 luminaires of 80 W, two flood lamps of

28 W, a projector, television, computer, and two air extractors.

2.2 Data collection

The data used in this research came from four primary sources:

an energy meter, a weather station, wireless sensors, and a video

camera (Figure 3). The sensors and camera were installed inside the

classroom, while the weather station was located on the building’s

terrace on the sixth floor. The energy meter was located on the

fifth floor, where the general low-voltage switchboard for the air

conditioners is located. A detailed description of the equipment,

the time stamps used for monitoring, and the selected variables can

be found in Table 1. The monitoring was done for approximately

two and a half months, from February 19 to April 30, 2024.

2.3 Data processing

For data processing, it was necessary to merge the data from

each monitoring equipment to have a final database (Figure 4).

Each equipment generates a comma-separated file (CSV) with the

variables it monitors, except for the video camera, which provides

the videos. The counting of people and computers was carried out

manually from the videos. Using Python, a table is generated that

integrates the most important variables: energy consumption of

air conditioners, external climatic variables, internal or operational

variables, the number of occupants, and computers. The Monnit

sensors have a 10-min time stamp; it was necessary to interpolate

the data to reduce the time stamp to 5 min. This interpolation

ensures that all variables in the database have the same time

stamp. Tables 2–4 show the statistical description of the data. The

categorical variables in the dataset are explained in Table 5. Each

numerical value represents a categorical or characteristic type of the

variable.

2.3.1 Normalization
Before training the models, it is necessary to normalize the data

to improve its integrity, avoid biases due to influential variables,

and help the training process. It is decided to use StandardScaler, a

normalization technique that standardizes the data by removing the

mean and adjusting the scale so that the variance equals one. The

standard value of a variable x is calculated as shown in Equation 1:

z =
(x− u)

s
(1)

The z-value measures how far a value x is from the mean u of a

data set, expressed in terms of the standard deviation s. It indicates

how many standard deviations a value is above or below the mean.

If z > 0, the value is above the mean; if z < 0, the value is below the

mean; and if z= 0, the value matches the mean exactly. x represents

the specific value being analyzed, u is the average of all values in the

data set, and the standard deviation s measures the dispersion or

variability of the data relative to the mean.

2.4 Model training

The data normalization and model training process was

conducted using the Python programming language. Various

libraries were employed to facilitate the process, including sklearn,

tensorflow, pandas, matplotlib, and others. Table 6 shows the

Python libraries used for model training, their function, and the

model used. The models presented below were selected because of

their wide application in regression tasks. There is no definitive

guide in the literature for choosing a specific model, as the choice

depends on the case study and data characteristics. Each of these

models has proven effective in different contexts, making them

suitable for evaluating their performance in this work. Additionally,

hyperparameter tuning was performed for each model to optimize

its performance and ensure the best possible results for the specific

dataset used.

2.4.1 Cross-validation
Cross-validation is a technique used to evaluate the overall

performance of a model and its effectiveness on unseen data. The

purpose is to avoid underfitting the training data by ensuring

the model generalizes well to other data. The data were divided

into training and testing sets in an 80:20 ratio. The type of cross-

validation used was kFold, which divides the training data set into
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FIGURE 1

Case study. (A) Electrical, electronic and telecommunications engineering building. (B) Classroom.
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FIGURE 2

Classroom’s air conditioning.

FIGURE 3

Classroom monitoring.

“k” parts or folds in a balanced manner and then multiple iterations

of training and validation. We defined the value of k as 4, as

we consider it appropriate given the limited size of the data set,

which makes further subdivision difficult. In addition, this value

maintains a low computational cost and allows us to achieve a

reasonable balance between bias and variance.
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TABLE 1 Monitoring equipment, characteristics, sampling time, and monitored variables.

Equipment Characteristics Time stamping Variables

ACUREV 2020 Multi-circuit power and energy meter

Monitors 9 single-phase circuits

external 333 mV CT input

5 min Energy [Wh]

DAVIS VANTAGE PRO 2 Professional quality weather station

Wireless wide range of sensors

5 min Outdoor temperature [◦C] Outdoor humidity [%] Dew

point [◦C] Wind speed [m/s] Wind direction (Categorical)

Heat index [◦C] Atmospheric pressure [mmHg] Rain rate

[mm/hr] Solar radiation [W/m2] UV index cooling degree

days [◦C]

CAMERA Smart home camera with motion

detection and 1080p resolution two-way

conversation.

5 min Occupant number [#] Computer number [#]

MONNIT Wireless sensors: humidity, open closed,

and PIR

10 min Indoor humidity [%] Indoor temperature [◦C] Movement

(Categorical) Opening and closing of door and windows

(Categorical)

Variables that do not have units are categorical or have no units.

FIGURE 4

Data processing scheme.

2.4.2 Support vector regressor (SVR)
SVR is a Support Vector Machine (SVM) used for regression

tasks. This algorithm works as follows: for each vector of input

parameters X and its corresponding output vector Y , SVR relates

these vectors using Equation 2 (Walker et al., 2020).

Y = Wϕ(X)+ b (2)

Where W is the vector of weights and b represents the bias.

These depend on the selected kernel function, which quantifies

the similarity of two observations. In this study, the radial basis

function (RBF) kernel transforms data into a higher-dimensional

space, facilitating linear separation. It measures similarity using the

Euclidean distance between points, enabling algorithms to capture

complex patterns more effectively (Hofmann et al., 2008).

2.4.3 Decision tree (DT)
This algorithm is used for regression and classification. It is

similar to a tree, containing decision nodes and leaf nodes. This

structure is generated through recursive partitioning of the data

by the algorithm based on the values of the input features. The

partition data is mined using the specific partitioning criterion

for each decision node, which corresponds to a feature. The leaf

nodes, on the other hand, represent the class or expected value.

Decision trees can detect complex non-linear correlations between

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2025.1520574
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ortega-Diaz et al. 10.3389/fdata.2025.1520574

TABLE 2 Data description 1.

Energy
consumption

T. Outdoor H. Outdoor Dew point Wind speed Wind
direction

Heat
index

Atmospheric
pressure

Count 20,435 20,435 20,435 20,435 20,435 20,435 20,435 20,435

Mean 38.8 25.0 80.7 21.3 0.6 243.9 27.0 753.4

Std 108.8 2.7 8.8 1.5 0.8 106.1 3.7 1.6

Min 0.0 19.0 53.0 15.8 0.0 0.0 20.2 748.6

25% 0.0 22.9 74.0 20.3 0.0 157.5 23.9 752.3

50% 0.0 24.7 80.0 21.3 0.0 202.5 26.1 753.5

75% 0.0 26.9 87.0 22.5 0.9 360.0 29.4 754.5

Max 413.9 32.8 98.0 24.7 3.6 360.0 38.8 758.1

TABLE 3 Data description 2.

Rain rate Solar
radiation

UV index Cool degree
days

Door status Windows
status

T.
Indoor

H. Indoor

Count 20,435 20,435 20,435 20,435 20,435 20,435 20,435 20,435

Mean 0.0 191.9 1.4 0.0 0.9 5.8 25.7 64.8

Std 0.1 284.6 2.4 0.0 0.3 0.8 1.5 6.2

Min 0.0 0.0 0.0 0.0 0.0 0.0 20.5 39.4

25% 0.0 0.0 0.0 0.0 1.0 6.0 24.7 61.6

50% 0.0 1.0 0.0 0.0 1.0 6.0 25.9 65.7

75% 0.0 316.0 2.3 0.0 1.0 6.0 26.9 69.2

Max 5.1 1254.0 11.4 0.1 1.0 6.0 29.2 79.3

TABLE 4 Data description 3.

Motion Occupant number Computer number Occupancy Day of the
week

Time of
the day

Working
day

Count 20,435 20,435 20,435 20,435 20,435 20,435 20,435

Mean 0.1 3.1 0.4 0.2 2.91 11.52 0.71

Std 0.4 7.3 1.7 0.4 0.0 0.0 0.0

Min 0.0 0.0 0.0 0.0 1.0 5.0 0.0

25% 0.0 0.0 0.0 0.0 3.0 12.0 1.0

50% 0.0 0.0 0.0 0.0 5.0 18.0 1.0

75% 0.0 0.0 0.0 0.0 6.0 23.0 1.0

Max 1.0 32.0 21.0 1.0 2.0 6.9 0.45

the features and the target variable and are suitable for working with

numerical and categorical features (Saeideh et al., 2024).

2.4.4 Random forest regressor (RFR)
RFR (Random Forest Regressor) is a prediction model that

groups multiple DTs trained by bagging and random variable

selection. Although DT uses recursive partitioning, it is an

unstable learner, as small changes in the data can completely alter

the tree structure. RF solves this problem using multiple trees

instead of a single tree, which reduces instability by combining

predictions from diverse trees. This diversity helps to compensate

for instability, as DT is unbiased and, on average, provides correct

predictions. However, combining similar trees would not reduce

instability (Wang et al., 2018).

2.5 Model evaluation

The models are evaluated through performance metrics,

which measure the models’ ability to make accurate predictions.

They compare the values obtained with the actual or expected

values and provide a quantitative value of that relationship. The

metrics selected in this study are the coefficient of determination
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TABLE 5 Values of categorical variables.

Variable Meaning Value

Day of the week Monday to Sunday 0–6

Time of the day 0 hours to 23 hours 0–23

Working day Not working day

Working day

0

1

Wind direction N

NNE

NE

ENE

E

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

−−−

0

22.5

45

67.5

90

112.5

135

157.5

180

202.5

225

247.5

270

292.5

315

337.5

360

Door status Closed

Open

1

0

Windows status Number of windows closed 0–6

Motion Motion

No motion

1

0

Occupancy Occupied

Unoccupied

1

0

(R2), Mean Absolute Error (MAE), and Root Mean Square

Error (RMSE). The coefficient R2 indicates the proportion of

the variability in the dependent variable that the independent

variables can explain. The MAE represents the average differences

between the actual and predicted values. The RMSE measures the

standard deviation of the prediction errors. Various performance

metrics allow for evaluating the models from different perspectives,

providing a comprehensive assessment, as each metric focuses on

distinct aspects of the prediction error. For example, the R2 explains

the percentage of data variability captured by the models, the MAE

is easy to interpret and is robust to outliers, and the RMSE reflects

the prediction errors in the units of the target variable and penalizes

significant errors. The above metrics are defined as follows:

R2
= 1−

∑n
i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − ȳ
)2

(3)

MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣ (4)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(5)

Where yi is the actual data, ŷi is the predicted values, ȳ is the

average value of the dependent variable, and n is the number of

observations. These errors were selected because they are the most

TABLE 6 Description of the libraries used.

Library Function Model used

Matplotlib Creation of static, animated, and

interactive plots and

visualizations.

show, figure, xticks, ylabel,

xlabel, grid, subplots, plot,

scatter, title, legend

Pandas Data manipulation and analysis

using structures like DataFrame

and Series.

read_csv, Dataframe,

to_datetime, date_range

Tensorflow Creation and training of machine

learning models and neural

networks.

-

Sklearn Implementation of machine

learning algorithms and

modeling tools.

model_selection, metrics,

linear_model, svm, ensemble

Numpy Manipulation of arrays and

advanced mathematical

operations.

sqrt, mean

Seaborn Data visualization based on

Matplotlib with statistical

analysis support

-

Scikit-learn Data visualization based on

Matplotlib with statistical

analysis support.

preprocessing,

model_selection,

linear_model, metrics, svm,

ensemble, tree, datasets,

model_selection

commonly used in the literature to evaluate the performance of

predictive models. Using multiple metrics allows a more complete

picture of model performance, as each error provides different

information on accuracy and generalizability.

2.6 Sensitivity analysis

Two sensitivity analyses are performed, the first consisting

of varying the time interval of the data. We evaluate how the

models perform with 1, 5, 10, 20, 30, and 60-min intervals. The

intervals were selected to vary uniformly up to 1 h. Intervals over

60 min were not considered, which would significantly reduce the

available data. Generally, the literature states that the maximum

interval used is 1 h. This analysis uses the RMSE as the metric to

compare the models. The metric to be reviewed is the R2, taking

the entire data set (20,435 samples). The second sensitivity analysis

is the variation in the proportions in which the test and training

data are split. The splits considered are 50:50, 60:40, 70:30, 80:20,

and 90:10. The model’s accuracy is expected to decrease as the

granularity of the data increases. Cross-validation is applied in both

sensitivity analyses, dividing the data into 80% for training and 20%

for testing.

3 Results and discussion

Figure 5 presents the behavior of the number of occupants,

energy consumption, indoor and outdoor temperature, and

humidity on Tuesday, March 5, 2024. Tuesdays are the days with

the highest energy consumption and flow of people. Figure 5A

shows that classes begin at ∼8:00 a.m.; however, no energy
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FIGURE 5

Behavior of some variables on March 5, 2024 (A) Energy

consumption and occupancy behavior. (B) Indoor temperature and

humidity behavior. (C) Outdoor temperature and humidity behavior.

consumption is detected at that time due to the fresh climate

characteristic of the city. At 10:00 a.m., although the number of

people in the classroom decreases slightly, the air conditioners are

turned on. There are no classes during midday between 12:00 p.m.

and 2:00 p.m., so there is no occupancy or energy consumption.

From 2:00 p.m. to 8:00 p.m., there is an increase in energy demand

due to the use of the cooling system. In the first minutes of

6:00 p.m., there was a decrease in the occupancy and energy

consumption values, corresponding to a change of class that left the

space unoccupied. Figure 5B illustrates the same day’s temperature

and humidity dynamics inside the classroom. In the period from

8:00 a.m. to 10:00 a.m., there was an increase in both variables; the

entry of people into the space and the turned-off state of the ACs

were the leading causes of this increase. From 10:00 a.m. to 12:00

p.m., the indoor temperature and humidity decreased due to the

turning on of the ACs, and the same happened from 2 to 8 p.m.

At midday, the temperature and humidity increased significantly,

reaching 27◦C and 60% moisture, respectively. Figure 5C shows

the behavior of the humidity and outside temperature, which have

an inversely proportional relationship. At ∼9 a.m., the outside

temperature increases, coinciding with when the ACs are turned

on in the classroom.

Figure 6 shows the linear correlation plot between the variables

in the data set with AC power consumption. The correlation

describes the direction and strength of the relationship between

the variables. In this case, the variables were ordered in descending

order where occupancy, number of occupants, and indoor

humidity correlate with the absolute value of 0.5. Indoor humidity

has a negative correlation, as AC consumption increases, the

humidity in the classroom decreases.

In the training, six data sweep scenarios were considered

to evaluate the models’ performance by varying the number of

samples and monitoring period. These scenarios were selected

based on the data from each monitored month. The vacation week

was excluded, as no energy consumption was recorded during that

period, which occurred in March 2024.

• Scenario 1: Take the complete dataset (20,435 samples)

• Scenario 2: Take the whole dataset and delete the vacation

week (18,131 samples)

• Scenario 3: Take only February data (3,168 samples)

• Scenario 4: Take only March data (8,712 samples)

• Scenario 5: Take March data and remove data from the

vacation week. (6,408 samples)

• Scenario 6: Take only April data (8,555 samples)

Figure 7 illustrates the behavior of the models in each of the

scenarios during the training and testing process. Figure 7A shows

the performance of themodels using 80% of the data corresponding

to the training set. Cross-validation was used so that the values

of the metrics are the average value of the results of each fold.

For the three models evaluated, it is observed that the MAE,

RMSE, and R2 present their best results in scenario 4. The best-

performing model was the RFR, with an RMSE of 18.05 Wh, an
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FIGURE 6

Correlation matrix.

MAE of 4.98 Wh, and an R2 of 0.97. Based on the above, the period

corresponding to March presents consumption patterns and input

variables that favor the best performance of the models compared

to other scenarios. The process of testing with data not seen by the

models is shown in Figure 7B, the highest R2 value was 0.78, and

the lowest RMSE was 49.77 Wh with the SVR model in scenario

1. As for the MAE, the slightest error is 15.40 Wh obtained by the

RFR model in scenario 4. From these results, it can be inferred that

although a model may show excellent performance during training,

its predictive ability may decrease when evaluated with new data.

Such is the case of the RFR, which learns very well with training

data but significantly decreases its predictive ability with test data.

In addition, scenario 1, which did not yield the best metrics during

training, allowed the models to learn more valuable patterns and

maintain their range of error values.

The performance of the models is evaluated by varying the

time stamping (Figure 8). The results shown correspond to the

evaluation of the test data. Through R2, it is possible to pinpoint

the effects of decreasing the time stamping of the data. The SVR

and RFR models were above DT for all stamping types. RFR

obtained an R2 of 0.95 with 1-min stamping (103,676 samples),

the highest of all combinations. Increasing the time stamping or, in

other words, decreasing the number of samples reduces the model’s

ability to generalize and adequately predict the energy consumption

for cooling in the classroom.

Figure 9 explains the behavior of the RMSE when modifying

the data split at the training stage (cross-validation). The data split

has the form a:b, where a is the percentage of training data and b is

the percentage of validation data. The DT model performs less well

than SVR and RFR for all data fractions. The errors of the other

two models vary between 49 and 52 Wh, and they present some

fluctuations where the 70:30 fraction has the highest RMSE value.

The 90:10 fraction of the SVR model is the type of data separation

that provides the lowest error. Thus, it can be deduced that the

smaller the amount of test data and the larger the proportion of

training data, the more clearly models can learn patterns from

the models. The model is expected to know better with a more

significant amount of data used for training. Sensitivity analyses

were performed by evaluating the three errors considered in this

study. However, the R2 for time stamping variation and the RMSE

for data splitting best reflect the behavior of the models.

This study does not intend to generalize the energy

consumption prediction in buildings but is a starting point

for future research. In particular, it focuses on a specific case:

the energy consumption of AC systems in classrooms. There is

still a need for studies that address total building consumption

and comprehensively consider factors such as climate, space

use, occupancy, geographic location of the building, electronic

equipment used, and type of construction, among others. In

addition, a 72-day monitoring period is insufficient to generalize
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FIGURE 7

Errors at di�erent stages of modeling (A) Model performance in the training process. (B) Final performance with test data.
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FIGURE 8

Performance of models for di�erent time stamps.

FIGURE 9

Performance of models for di�erent data separation.

the results or develop a highly accurate model. More exhaustive

and prolonged monitoring is required to more accurately interpret

the energy consumption behavior of the AC systems in these

spaces. This methodology could be extended to other classrooms,

different areas of a building, or even entire buildings, provided

that the same equipment is installed and variables are monitored

consistently, facilitating comparison of results.

4 Conclusions

The variables that demonstrate a significant correlation with

energy consumption for refrigeration in the classroom are

occupancy, the number of occupants, indoor humidity, and

movement. Tuesdays are the days of the week when most classes

are taught in the classroom. Selected on March 5, 2024, it is

evident that the dynamics of the use of the AC are related to

the occupation, use of space, and the city’s climate. Occupancy

influences energy consumption due to the use of electronic

equipment, lighting, and air conditioning. The use of space is

related to occupancy schedules and is directly related to energy

consumption. Climate is also a determining factor: in tropical

climates, air conditioning is constant, while in temperate climates,

where there are seasons, energy consumption varies according

to the time of year, alternating between heating and cooling.
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In addition, cultural factors also influence energy consumption

patterns since occupants’ practices and preferences can directly

affect the use of air conditioning and lighting systems. In the case

of the data sweep scenarios, it was found that the RFR model

presents an excellent level of generalization with the training data;

however, in the testing stage, the SVR model performs more

accurate predictions. Finally, the trend in the prediction of the

models is that the R2 decreases as the time stamping of the data

decreases. Because of the above, a data set with reduced time

intervals close to 1 min is recommended. Considering 80% or more

of the data for training is a good practice when looking for models

to learn complex patterns, especially with large, information-rich

datasets. Better generalization capabilities are often achieved if the

validation set adequately reflects the variability of the data. The

results of this study provide a basis for future research aimed at

improving energy consumption prediction models. These models

can be integrated into building energy management systems, such

as BAS (Building Automation System), BEMS (Building Energy

Management System), or digital twins. Implementing these systems

allows for more efficient energy consumption management,

decision-making, preventive and corrective measures, and timely

maintenance. In addition, building managers can invest in these

systems and recover the investment through optimization and

efficient energy use.
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