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Introduction: Rapid advancements in artificial intelligence and generative

artificial intelligence have enabled the creation of fake images and videos that

appear highly realistic. According to a report published in 2022, approximately

71% of people rely on fake videos and become victims of blackmail. Moreover,

these fake videos and images are used to tarnish the reputation of popular

public figures. This has increased the demand for deepfake detection techniques.

The accuracy of the techniques proposed in the literature so far varies with

changes in fake content generation techniques. Additionally, these techniques

are computationally intensive. The techniques discussed in the literature are

based on convolutional neural networks, Linformer models, or transformer

models for deepfake detection, each with its advantages and disadvantages.

Methods: In this manuscript, a hybrid architecture combining transformer

and Linformer models is proposed for deepfake detection. This architecture

converts an image into patches and performs position encoding to retain spatial

relationships between patches. Its encoder captures the contextual information

from the input patches, and Gaussian Error Linear Unit resolves the vanishing

gradient problem.

Results: The Linformer component reduces the size of the attention matrix.

Thus, it reduces the execution time to half without compromising accuracy.

Moreover, it utilizes the unique features of transformer and Linformer models to

enhance the robustness and generalization of deepfake detection techniques.

The low computational requirement and high accuracy of 98.9% increase the

real-time applicability of the model, preventing blackmail and other losses to the

public.

Discussion: The proposed hybrid model utilizes the strength of the transformer

model in capturing complex patterns in data. It uses the self-attention

potential of the Linformer model and reduces the computation time without

compromising the accuracy. Moreover, the models were implemented on patch

sizes of 6 and 11. It is evident from the obtained results that increasing the patch

size improves the performance of the model. This allows the model to capture

fine-grained features and learn more e�ectively from the same set of videos. The

larger patch size also enables the model to better preserve spatial details, which

contributes to improved feature extraction.
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1 Introduction

The rise of Artificial Intelligence (AI) based image generative

techniques such as Generative Adversarial Networks (GANs),

diffusion models, neural style transfer, and free swap applications

is a major cause of generating fake images and videos of people.

The ease of accessibility of such applications is the primary reason

for the boom in the number of fraudulent cases using deepfake

technology. Floating such videos on social media platforms are

causes of concern. A report shows that the number of deepfake

videos available online is growing exponentially (Tyagi and Yadav,

2023). Such videos and images may be used to blackmail, or fraud.

In addition, pornographic content was generated from various

public figures using image generation models to tarnish their

reputation (Westerlund, 2019). Manipulation of common people

using deepfakes of their close relatives is another issue observed

in many countries (Zandt, 2024). The report published in 2022

(Doss et al., 2023), shows that 71% of people are unaware of the

deepfake and rely on such videos. Therefore, there is an urgent need

for deepfake detection. Researchers proposed various techniques

for deepfake detection. These techniques are based on analyzing

facial and body movements to indicate manipulation, lighting

changes, or inconsistencies in images, expressions, or audio-visual

cues. For example, Lin et al. (2023) addressed the problem of

deepfake detection even on low-quality image datasets. They

proposed a multi-scale convolution based on EfficientNet and the

vision transformer model for deepfake detection. Their multi-scale

module can effectively capture the face details at different scales and

enhance the detection performance of the proposed model. They

employed their model on Celeb DF-v2 dataset (Li et al., 2020) to

prove their efficacy in deepfake detection. These models may stuck

in local optima and may report lower accuracy. The researchers in

Ewees et al. (2024) proposed a feature selectionmethod tominimize

the problem of local optima. Another research group, Ghorbanpour

et al. (2023) proposed a transformer-based detection algorithm

for fake news detection using text and images. Next, Ramadhani

et al. employed Video Vision Transformer (ViViT) architecture for

video deepfake detection. The system reported 92.52% F1 score

(Ramadhani et al., 2024) on the Celeb-DF version 2 dataset (Li

et al., 2020). ViTmodels can capture global dependencies in images,

allowing them to understand relationships between distant image

regions. Also, their computational cost is primarily dependent on

the number of patches rather than the entire image. The ViT

models can be computationally expensive for large-scale datasets

and high-resolution images. Linformer, a variant of the transformer

architecture, is designed to address the quadratic computational

complexity of self-attentionmechanisms in transformers. However,

it may result in a loss of expressive power, potentially affecting

the model’s ability to capture complex patterns in data. The

effectiveness of Linformer may vary depending on the specific task

and dataset, requiring careful tuning and experimentation.

It is evident from the above discussion that existing techniques

lack generalization and robustness. So, these are not efficient

in detecting deepfake content generated by different techniques.

Also, most of the techniques are proposed to detect deepfake

images, audio, and text. This leaves a scope for deepfake video

detection. The techniques proposed so far use Convolutional

Neural Networks (CNNs), or transformer, or Linformer models

for deepfake detection. As mentioned above, these techniques

have advantages and challenges. Thus, there is scope to introduce

techniques that are computationally less expensive and accurate

in deepfake detection. In this paper, the above-identified gaps are

minimized, and a hybrid model for deepfake video detection is

introduced. The model is an integration of the Vision transformer

(ViT) and Linformer models. The proposed model is fine-tuned

to reduce its computation cost. The major contributions of this

manuscript are as follows:

• To develop a hybrid model by integrating transformer and

Linformer models for video deepfake detection.

• To improve robustness and generalization ability of deepfake

detection techniques.

• To reduce the computation cost of deepfake detection without

compromising accuracy.

Following the introduction, the related works examine

previous studies relevant to deepfake detection. The methodology

section outlines the preparation of the data, the architecture

of the proposed model, the training of the model, and the

evaluation metrics used to evaluate the performance of the model.

Subsequently, the results section presents the findings derived by

testing the model. Finally, the conclusion section summarizes the

contributions to the field and suggests practical applications.

2 Related works

In this section, we discuss the available literature in the

domain of deepfake detection. We elaborate on contributions of

various researchers and highlight the limitations that need to be

addressed. Enes et al. presented a review of deepfake techniques

including definitions, datasets, performance metrics, and standards

employed in existing works (Altuncu et al., 2024). Heo et al.

integrated CNN features with patch-based positioning within

a vision transformer framework. This integration leverages the

strengths of both CNNs and transformers, specifically to capture

local artifacts more effectively. Additionally, they introduced a

distillation process where a distillation token, trained using binary

cross-entropy through a sigmoid function, helps in improving the

generalization of the model. This hybrid approach reported an

accuracy of 82.63%. However, it is effective in deepfake detection,

addressing both local and global feature extraction, there is a scope

for improving the accuracy of detection (Heo et al., 2023). Also, the

model is applied for fake image detection, leaving the scope to work

on fake video detection.

Usman et al. proposed a novel approach for detecting deepfake

images using a shallow vision transformer model. They divided

the images into non-overlapping patches, and utilized a softmax

layer for classification. Their model reported the AUC value of

95.9% and F1 score of 91.9% in distinguishing between authentic

and manipulated images on the DFDC dataset (Dolhansky et al.,

2020). Their approach proves the efficiency of the shallow vision

transformer, particularly in scenarios with limited training data

and computational resources. There is further scope to improve

generalization ability of the model so that it can work on images

or videos generated by various techniques. Also, the work can be
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enhanced by training it on geometric and appearance features to

differentiate real and manipulated images (Usmani et al., 2024).

Ghorbanpour et al. introduced the Fake News Revealer (FNR)

algorithm for the detection of fake news in social media. The

algorithm incorporates a ViT model to extract semantic and

contextual features from images in news content. Their approach

utilizes a multi-modal approach to detect fake news by integrating

textual and visual information. Experimental results reported on

publicly available social media news datasets comprising tweets

demonstrate the superior performance of the FNR algorithm

(Ghorbanpour et al., 2023).

Lin et al. proposed a new CNN-based method for deepfake

detection. The method combines a multi-scale module and an

MBConv block module in a dual-subnet structure. The multi-

scale module captures face details using dilation convolutions,

while the MBConv block module learns high-dimensional face

semantic information. The proposed method also introduced a

vision transformer module for final classification. The authors

carefully analyzed and designed each module of the proposed

model to enhance the detection performance (Lin et al., 2023).

Next, Coccomini et al. proposed the use of mixed convolutional-

transformer networks for video deepfake detection. They combined

pre-trained convolutional networks, such as EfficientNet B0, with

ViT model. The model achieved F1 score of 88.0%, which is close

to the state-of-the-art methods on the DFDC (Dolhansky et al.,

2020) and FaceForensics++ datasets (Rössler et al., 2019). They

did not use distillation or ensemble techniques to keep the model

simple. The authors also introduced a voting scheme for inferring

the presence of deepfakes in videos with multiple faces (Coccomini

et al., 2022). This technique utilizes all possible landmarks for

deepfake detection, so is computationally intensive.

Ramadhani et al. presented a research on video deepfake

detection based on Video Vision Transformer (ViViT) architecture.

The system utilizes landmark area images as input and extracts

spatiotemporal features using a combination of Depthwise

Separable Convolution (DSC) block and Convolution Block

Attention Module (CBAM) from tubelet. Computer Vision and

Machine Learning (CVML) in reference to Celeb-DF (v2) dataset

signifies that computer can see and understand images and videos.

Further the machine learning techniques can be employed to

analyze and process the information captured from these images

and videos. It achieved an accuracy of 87.18% and an F1 score of

92.52% (Ramadhani et al., 2024).

Passos et al. (2024) presented a review of the latest

techniques adopted for deepfake detection. They claimed that

robust unsupervised or semi-supervised approaches for deepfake

detection need to deal with continuously evolving deepfake

contents on social networks. Also, there is a strong demand to

minimize the time-consuming manual annotation of data. Further,

the accuracy of existing techniques is dependent on deepfake

generatingmethods. Themodels are ineffective if it is trained on the

deepfake dataset generated by one method and tested for another.

Thus, there is a need to develop robust models that can recognize

deepfake content generated by multiple techniques. Moreover,

there are limited studies on deepfake detection from video datasets.

Also, the existing techniques are computationally intensive.

Thus, it is apparent from the above discussion that deepfake

videos and images can be generated by multiple variants of

autoencoders, and generative adversarial networks (GANs). These

techniques can generate deepfake videos nearly indifferentiable

from real ones.Most of themethods proposed in the literature focus

on deepfake image detection. Thus, there is a need to address the

issue of deepfake video detection.Moreover, the existing techniques

are computationally intensive which raises the need for models

having low training time and high accuracy of deepfake detection.

To address these challenges, the researchers in this manuscript

proposed a hybrid model comprising the vision transformer and

the linformer models. To improve generalizability and robustness,

they trained the model on the dataset comprising videos collected

from various sources with differences in contrast, background, and

lighting etc.

3 Methodology

This section elaborates on the dataset used, the architecture

of the proposed model, training, and testing mechanisms of

the model.

3.1 Dataset

The Celeb DF-v2 dataset (Li et al., 2020) has been used to train

both the ViT and hybrid model developed by integrating the ViT

and Linformer models. The dataset consists of 590 real videos and

5,639 deepfake videos. For training the ViT and hybrid models,

a dataset comprising 1,000 images randomly selected from The

Celeb DF-v2 dataset (Li et al., 2020) was prepared. This dataset is

balanced and contains an equal number of real and fake videos.

The real videos feature a diverse set of celebrities, ensuring a wide

range of facial attributes, expressions, and lighting conditions. Each

video varies in duration from a few seconds to several minutes.

These videos include various backgrounds and motions, providing

a realistic and challenging dataset for deepfake detection. The

videos are divided into frames for deepfake detection.

3.2 Architecture of proposed model

The deepfake detection system proposed in this research

utilizes the Vision Transformer (ViT) architecture as a base

model (Al-hammuri et al., 2023). The model consists of the pre-

processing phase and the detection phase. To reduce the execution

time and improve accuracy, a Linformer (Linear Transformer)

(Wang et al., 2020), an efficient variant of standard transformers

is integrated. The details of the architectures are given in the

following subsections.

3.2.1 Vision transformer
This model is designed specifically for computer vision tasks.

An input image given to the model is represented with height (H),

width (W), and number of channels (C). The attention mechanism

used in ViT is defined in Equation 1.

Attention(Q,K,V) = softmax

(

QKT

√
D

)

V (1)

In Equation 1, Q, K, V, and D are queries, keys, values, and

dimensions of the input embeddings respectively.
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FIGURE 1

Architecture of vision transformer model.

Initially, the input image is converted into patches using a

rearrangement operation, followed by layer normalization. Next,

a linear projection to the transformer dimension is applied

to the projected embeddings, accompanied by another layer

normalization. Positional information is then added to the patch

embeddings via a positional embedding layer, and a class token

is introduced for classification tasks. The sequence of patches and

the class token are processed by the transformer module. After

this, mean pooling is applied to the transformer’s output. Finally,

the model’s output is normalized and projected to class scores

using a multilayer perceptron (MLP) head, consisting of a layer

normalization and a linear layer. The architecture of the ViT

model is shown in Figure 1, and its various components with their

functionalities are explained below.

• Linear Projection of Flattened Patches: The representation of

patches as vectors is flattened and then linearly projected to

obtain embeddings with a higher-dimensional representation.

It helps the model learn complex relationships between

different parts of the input.

• Position Embeddings: These are a set of vectors for each patch

location that is trained with gradient descent along with other

parameters. These are added to the patch embeddings because

the patches by themselves do not have any information about

their exact origin.

• Transformer Encoder: It consists of multiple layers of

self-attention mechanisms followed by feed-forward neural

networks. This is responsible for capturing contextual

information from the input patches.

• Multi-Head Attention: Instead of performing a single

operation, multiple operations are run in parallel. Each head

has its own set of Q, K, and V projections as shown in

Equation 1, allowing the model to capture different aspects of

relationships between the patches.

• Multi-Layer Perceptron (MLP) Head: It is a simple feed-

forward neural network consisting of several dense layers.

It includes a non-linear activation function. It employs

the Gaussian Error Linear Unit (GeLU) activation function

instead of the Rectified Linear Unit (ReLU) activation

function. This function can adapt more effectively to different

input scales. It ignores neurons with negative values, so

diminishes the vanishing gradient problem as encountered

in ReLU.

3.2.2 Linformer
Linformer is the Self-Attention with Linear Complexity. The

transformer module used in the ViT model is specified as an

instance of the Linformer class, an efficient variant of transformers

(Wang et al., 2020). In this study, the sequence length is

changed from 64 to 65. The sequence length denotes the total

number of patches and one class token. The extra class token is

required for the Linformer architecture. The standard attention

self-mechanism of the transformer incurs O(n²) time complexity.

Its space and time complexity are directly dependent upon the

sequence length. Linformer approximates this self-attention by

a low-rank matrix. Thus, it reduces the execution time to half

without compromising the accuracy. The architecture of the

Linformer model is shown in Figure 2. The attention scores are

also computed using a reduced-dimensional key matrix as defined

in Equation 2.
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A′ =

(

QK ′T
√
D

)

V (2)

In Equation 2, the original key matrix K is projected to a lower

dimension to reduce the size of the attention matrix. K’, and Q

are the projected key matrix, and query matrix respectively. D is

the dimensionality of the queries and keys, and A’ is the resulting

attention matrix after normalization. Thus, the complete attention

mechanism in Linformer is represented in Equation 3.

Attention(Q,K ′,V ′) = softmax

(

QK ′T
√
D

)

V ′ (3)

3.2.3 Hybrid transformer model
The ViT and Linformer models have been integrated to

reduce computational overhead while preserving strong feature

extraction capabilities. In the proposed architecture, standard

multi-head self-attention (MHSA) is replaced with Linformer’s

efficient self-attention. Here, the key (K) and value (V) matrices are

projected using a low-rank decomposition, reducing dimensions

while retaining essential information. This transformation reduces

ViT’s quadratic scaling to linear complexity, thereby decreasing

memory usage. The block diagram of the hybrid architecture is

presented in Figure 3. As shown in the figure, the input image

is divided into patches, which are then linearly projected and

encoded with positional information. The encoded patches are

subsequently passed to the encoder of ViT for classification into

fake and real images.

3.3 Training

The ViT and the proposed hybrid model of ViT and Linformer

models were implemented using Python 3.12 and PyTorch 2.0. The

code was executed on a machine with 64 GB RAM, Intel R© CoreTM

i9-10900K CPU @ 3.70 GHz, GeForce RTX 3080 Ti, and a disk

space of 3 TB. The system used the Ubuntu 22.04 operating system.

Initially, the dlib library (Davis, 2009) which includes models pre-

trained on the iBUG 300-W dataset (Sagonas et al., 2016), was used

for facial landmark detection. The dataset consists of 7,764 images

and was originally designed to detect 68 facial landmarks. However,

due to its high computational complexity, a custom shape predictor

(Yang et al., 2019) was developed to identify 25 essential landmarks

specifically for facial recognition, and reducing computation time.

For this study, 1,000 randomly selected videos from the Celeb-DF

v2 dataset were analyzed. The highest AUC scores were reported

when landmarks were selected from the central region of the face.

This is due to inconsistencies introduced by variations in head

poses. The dataset was manually annotated with 68 landmark

coordinates, stored as (x, y) integer pairs. An XML file contained

the bounding box coordinates of faces in the images, allowing

access to specific facial features such as the mouth, nose, eyes,

eyebrows, and jaw using predefined XML elements. The custom

selection of 25 landmarks was used to create the training and

testing datasets. The custom shape predictor model produced a 36

MB .dat file. A sample frame, with a bounding box around the

FIGURE 2

Architecture of Linformer model.

detected landmarks, is shown in Figure 4. Dlib also employs the

Histogram of Oriented Gradients (HOG) algorithm along with a

Support Vector Machine (SVM) for classification. However, it fails

to detect faces in all frames. To address this limitation, a CNN-

based model was used to detect faces that Dlib could not recognize.

In the next phase, the videos fromCeleb-DF v2 (Li et al., 2020) were

converted into individual frames. Each detected face was marked

with 25 facial landmarks, and for each landmark, an 11×11-pixel

region centered on the landmark was extracted. These 25 small

images were then concatenated.

Further, Dlib (Dadi and Pillutla, 2016) uses the Histogram of

Gradients (HOG) algorithm and Support Vector Machine (SVM)

for classification. But, it fails to detect faces in all the frames.

Therefore, a CNN model has been used to detect faces that were

not recognized by Dlib.

In the next phase, the videos from the Celeb DF-v2 dataset

were divided into individual frames. Landmarking of 25 points was

done on the faces in each frame. For each landmark, an 11×11-

pixel area centered around the landmark was extracted. Thus, for

25 landmarks, an image of 55×55 was obtained for each frame

after concatenating the 25 resulting images. The concatenation was

done to emphasize the features rather than the entire frame. Such

marked frames were given as input to the ViT the hybrid of ViT and

Linformer models to classify images into fake and real categories.

These models are trained with a batch size of 128, a learning rate

of 10e-4, and a seed of 142. The models are employed with the

Adam optimizer, and cross entropy loss function, and trained for

50 epochs. After 50 epochs, there is no decrease in the value of loss

function which indicates the models do not require more training.
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FIGURE 3

Architecture of hybrid transformer model.

FIGURE 4

Sample frame with drawn bounding box and facial landmarks.

3.4 Evaluation metrics

The performance of the model has been evaluated in terms of

accuracy, loss function, F1 score, and Area under curve (AUC) as

defined below. Detailed definitions of these metrics are available in

Ankita Gangwar et al. (2024) and Rainio et al. (2024). In addition,

the computational complexity of a model was reported in terms of

Giga Floating Point Operations (GLOPs).

• Accuracy: As defined in Equation 4, it is the ratio of

the number of correct predictions to real and fake

classes from the total number of predictions made by

the model.

Accuracy =
(

TR+ TF

TR+ TF + FR+ FF

)

(4)

In Equation 4, TR is the number of correct predictions

of real images. TF is the number of correct predictions of

fake images. FR is the number of incorrect predictions of real

images to fake class. FF is the number of incorrect predictions

of fake images to real class.

• Loss Function: The value of the loss function represents

the error between the actual and predicted results. It also

demonstrates the learning behavior of the model during

training. The weights of the deep learning model are adjusted

during training to find the optimal value of the loss function.

In this manuscript, binary cross entropy loss function is

used. It is defined in Equation 5. In this equation, N is

the total number of data points, tj is the classification

value 0 or 1. and pj is the Softmax probability for the

data point.

L = −
1

N

N
∑

j=1

[

tj log
(

pj
)

+
(

1− tj
)

log
(

1− pj
)]

(5)

• F1 score: It evaluates the predictive efficacy of the model based

on its class-wise performance rather than overall performance.

As defined in Equation 6, it combines the precision and recall

scores of a model.

F1 Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(6)

• AUC: It measures the two-dimensional area underneath the

entire Receiver Operating Characteristic Curve (ROC) from

the co-ordinates (0, 0) to (1, 1). It is a graph indicating the

performance of a classification model at all thresholds. It plots

the TP and FP rates.
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TABLE 1 Performance of models using a patch size of 6 pixels.

Archi-
tecture

Train
time

Acc
(%)

Loss F1 AUC GFLOPs
(Train)

Vision

trans-

former

5h 5m

6s

90.33 0.2363 0.905 0.967 1,962

Hybrid of

ViT and

Linformer

4h 27m

54s

93.95 0.1774 0.939 0.984 882

TABLE 2 Performance of models using a patch size of 11 pixels.

Archi-
tecture

Train
time

Acc
(%)

Loss F1 AUC GFLOPs
(Train)

Vision

trans-

former

6h 12m

46s

92.83 0.2751 0.935 0.985 1,963

Hybrid of

ViT and

Linformer

5h 6m

50s

95.25 0.2211 0.954 0.989 883

FIGURE 5

Confusion matrix for ViT base model with patch size 6.

4 Results

The performance of the ViT and the proposed hybrid model

have been evaluated on patch sizes of 6 and 11. The patch size was

selected arbitrarily to determine its impact onmodel’s performance.

From the experimental results shown in Tables 1, 2, it is evident

that increasing the patch size improves the performance of the

model. A large patch size provides more detailed information

from the images. This allows the model to capture fine-grained

features and learn more effectively from the same set of videos. The

larger patch size also enables the model to better preserve spatial

details, which contributes to improved feature extraction. On both

patch sizes, the models were executed for 50 epochs. The results

were presented using a confusion matrix, accuracy, loss, F1 score,

FIGURE 6

Confusion matrix for ViT base model with patch size 11.

FIGURE 7

Confusion matrix for hybrid ViT + Linformer model with patch size 6.

AUC, and Giga Floating Point Operations (GLOPs). Figures 5, 6

illustrate the confusion matrices for the ViT model with patch

sizes of 6 and 11, respectively. Similarly, the confusion matrices for

the hybrid model are depicted in Figures 7, 8 for the same patch

sizes. Additionally, Tables 1, 2 provide the accuracy, loss, F1 score,

AUC, and GLOPs for both configurations. It has been observed

that the hybrid of ViT and Linformer models converges faster and

achieves the maximum accuracy of 98.9% in merely 20 epochs. The

results obtained on reducing the patch size by 5 pixels are shown

in Table 2. ViT employs a quadratic self-attention mechanism,

causing the number of operations to grow exponentially, which

increases training time. Additionally, the quadratic computations

prolong gradient calculations, slowing down backpropagation.
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FIGURE 8

Confusion matrix for hybrid ViT + Linformer model with patch size

11.

In contrast, a hybrid of ViT and Linformer models accelerates

training by leveraging low-rank projections, reducing GLOPs

and backpropagation time. Linformer optimizes self-attention

through a linear approximation, enhancing memory efficiency and

computational speed by replacing quadratic calculations with linear

ones. It is evident from the results that reducing the patch size

reduces the training time. The training time of the ViT model

is reduced by 22.11% when the patch size is decreased from 11

to 6. Similarly, the training time of the proposed hybrid model

is reduced by 14.53% when pixel size is reduced from 11 to 6.

Moreover, the proposed hybrid model needs 15.32% and 21.4% less

time than the vision transformer model when it is trained on pixel

sizes 11 and 6 respectively. The reduction in computation time is

also supported by the values of GLOPs shown in the last column

of Tables 1, 2. The hybrid of ViT and Linformer model reports

approximately half values of GLOPs that is 882, and 883 at patch

sizes of 6 and 11 respectively. This shows that integrating Linformer

model with the ViT model reduces the number of computations.

However, there is a negligible change in the accuracy and values

of the loss function. The hybrid model achieved a lower loss of

0.1774. This value suggests the hybridmodel is better at minimizing

errors during training, contributing to its higher accuracy. It is

also clear from the results that the hybrid model of ViT, Linformer

converges to a better accuracy in lesser epochs than the base ViT

model. The hybrid model outperforms the standard ViT by 3.62%.

This improvement indicates that the Linformer component helps

enhance the model’s generalization and prediction capabilities. On

a batch size of 6, the hybrid model demonstrated an increase of

4.00% in accuracy, 3.76% in F1 score, and 1.76% in AUC, along

with a 24.92% reduction in loss. Similarly, with a batch size of 11,

the model showed an improvement of 2.61% in accuracy, 2.03% in

F1 score, and 0.41% in AUC. However, it reported a reduction of

17.70% in the loss function value. Thus, it is evident from the above

analysis that the hybrid model of ViT and Linformer demonstrates

superior performance across all evaluated metrics compared to the

ViT model. It achieves higher accuracy, lower loss, and better F1

and AUC scores, all while reducing training time. This proves that

the combination of ViT and Linformer leverages the strengths of

both architectures, making it a more efficient and effective model

for tasks requiring image classification.

5 Conclusion

In this manuscript, the objective of correctly detecting deepfake

videos generated by various techniques is achieved. The proposed

hybrid model utilizes the strength of the transformer model in

capturing complex patterns in data. It uses the self-attention

potential of the Linformermodel and reduces the computation time

without compromising the accuracy. The efficacy of the proposed

model is also compared with the Vision transformer model used

in literature for deepfake detection. The proposed hybrid model

reported 21.4% lesser training time than the vision transformer

model when both models were trained for 50 epochs on the dataset

prepared from the source available at Li et al. (2020). Further,

it reported a reduction of approximately 50% in Giga Floating

Point Operations (GLOPs). It proves significant improvement in

computational efficiency of the proposed model. Moreover, the

proposed model achieved robustness and generalizability. It is

effective in detecting deepfake videos or images generated by

different techniques. The analysis of the loss function values over

50 epochs shows minimal variation, indicating that the model does

not exhibit signs of overfitting or underfitting. This stability is a sign

of generalization and robustness. Thus, it can be integrated with

social media or news platforms etc. to avoid blackmailing or other

repercussions in life of people.
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