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Introduction: Vaccination is critical for reducing childhood mortality, yet

completion rates for the third dose of the pentavalent vaccine (Penta 3) in

East Africa remain inadequate. This study aims to predict Penta 3 vaccination

dropout using a stacking ensemble machine learning model with Demographic

and Health Survey (DHS) data. The objective is to identify predictors of dropout

and enhance intervention strategies.

Methods: The study utilized seven base machine learning algorithms to create

a stacked ensemble model with three meta-learners: Random Forest (RF),

Generalized Linear Model (GLM), and Extreme Gradient Boosting (XGBoost). The

H2O package facilitated the development of base learners and the stacking of

super learners. Feature selection (FS) and comparisons were performed using the

LASSO and Boruta algorithms. The selected features were one-hot encoded, and

ordinal encoding was applied where appropriate. Hyperparameter optimization

(HPO) and comparisons were conducted using grid search and random search.

Model performance was assessed using five key metrics, including accuracy and

the area under the curve (AUC). SHAP (Shapley Additive Explanations) values

were used to interpret the model outputs and identify influential predictors. The

experimental design was employed to present the results.

Results: Four experiments were conducted to evaluate feature selection and

HPO methods. All stacked ensemble models outperformed individual learners,

with the XGBoost meta-learner optimized with grid search and LASSO FS

achieving the highest performance: 93.9% accuracy and 99.4% AUC. While RF

and GLM meta-learners were also evaluated, they were outperformed by the

XGBoost meta-learner. SHAP analysis revealed key features influencing Penta

3 dropout, including the place of delivery, decision-making autonomy, the

mother’s level of earning, and healthcare access. Home delivery increased the

risk of dropout, while postnatal care by midwives and health insurance coverage

lowered dropout likelihood.

Conclusion and recommendation: This study provides insights into the factors

influencing Penta 3 vaccination dropout in East Africa. To reduce dropout rates,

interventions should focus on enhancing maternal livelihood opportunities,
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improving healthcare access in rural areas, and promoting institutional deliveries.

KEYWORDS

Penta 3 vaccination, stacked ensemble model, SHAP values, East Africa, machine

learning

Introduction

Childhood vaccination dropout is an ongoing public health
challenge, particularly in sub-Saharan Africa, where achieving
high vaccination coverage remains a priority. Among the vaccines
included in the Expanded Program on Immunization (EPI), the
pentavalent vaccine is essential for protecting children from five
life-threatening diseases: diphtheria, tetanus, whooping cough,
hepatitis B, and Haemophilus influenzae type B. While significant
progress has been made in expanding vaccine coverage across
many regions, the third dose of the pentavalent vaccine (Penta3)
continues to see relatively low completion rates, especially in low-
and middle-income countries, including those in East Africa. The
failure to complete the full pentavalent series, particularly the third
dose, poses serious public health risks, as incomplete vaccination
leaves children vulnerable to preventable diseases and undermines
efforts to achieve herd immunity. Addressing this dropout issue
is crucial for improving vaccination coverage and preventing
further strain on healthcare systems in the region (World Health
Organization, 2023).

Various factors contribute to the high rates of pentavalent
vaccine dropout. Logistical challenges, including limited access
to healthcare facilities, transportation barriers, and inadequate
infrastructure in rural areas, make it difficult for parents to return
for subsequent doses. Additionally, misinformation and vaccine
hesitancy, often fueled by myths and misinformation circulating
through the community and social media, lead many caregivers
to question the safety and necessity of vaccines. These issues are
exacerbated by weak health systems that struggle with maintaining
consistent vaccine supplies and outreach programs. Consequently,
children in the region remain at heightened risk for vaccine-
preventable diseases, and healthcare systems are further burdened
by the failure to complete vaccination schedules (Tsegaw et al.,
2024; World Health Organization, 2023).

This study aims to develop and evaluate a stacked ensemble
machine learning model that can accurately predict pentavalent 3
vaccination dropout in East Africa and address these challenges

Abbreviations: AUC, Area Under the Curve; AUC-ROC, Area Under

the Receiver Operating Characteristic; Boruta, Boruta Algorithm; DHS,

Demographic and Health Survey; DPT-HepB-Hib, Diphtheria-Hepatitis B and

Haemophilus Influenza; EDHS, Ethiopian Demographic and Health Survey;

EPI, Expanded Program of Immunization; F1 Score, F1 Score (harmonic

mean of precision and recall); GLM, Generalized Linear Model; ML, Machine

Learning; PCA, Principal Component Analysis; Penta 3, Pentavalent 3

Vaccination; RF, Random Forest; ROC, Receiver Operating Characteristic;

SEL, Stacked Ensemble Learner; SHAP, Shapley Additive Explanations;

SMOTE, Synthetic Minority Over-sampling Technique; WHO, World Health

Organization; XGBoost, eXtreme Gradient Boosting.

by developing a robust prediction model. The model’s goal
is to identify and analyze the key predictors contributing to
vaccination dropout, with the intention of providing actionable
insights for targeted public health interventions. By employing
a data-driven approach, this study fills a significant gap in
the existing literature on vaccine dropout, offering a more
objective and precise understanding of the issue. Additionally,
it showcases the utility of machine learning models in public
health research, demonstrating how such tools can be applied to
complex, real-world problems that are difficult to address using
traditional methods.

This research makes several important contributions. First, it
introduces the use of a stacked ensemble machine learning model
to predict Penta3 dropout, a novel methodology in the context
of vaccine dropout prediction. This model integrates multiple
machine learning algorithms to improve prediction accuracy and
robustness, offering a significant advancement over stand-alone
models, which have been more commonly used in similar studies.
Second, this study has practical implications for policymakers
and public health organizations, including the World Health
Organization (WHO), that are working to improve vaccination
completion rates. Despite the WHO’s goal of achieving 90%
coverage for the third dose of the pentavalent vaccine, many East
African countries are still far from this target (World Health
Organization, 2020, 2024). By identifying the socioeconomic,
geographic, and healthcare system factors that influence vaccine
dropout, this study provides evidence-based recommendations for
interventions that are tailored to the specific needs and challenges
of the region.

From a theoretical perspective, this research contributes to the
growing field of machine learning applications in public health.
By using a stacked ensemble framework, the study demonstrates
how this technique can capture complex, non-linear relationships
between various factors influencing vaccination behaviors. The
approach used in this study is not only applicable to Penta3
dropout but also has the potential to inform similar studies in other
areas of public health where predicting health-related behaviors
can enhance intervention strategies. Additionally, this work offers
new insights into the theoretical understanding of vaccination
behavior by analyzing how different factors, ranging from socio-
economic to health system-related, interact to affect vaccination
completion rates.

In conclusion, this study presents a novel machine learning-
based framework for predicting Penta3 dropout in East Africa,
addressing a gap in existing research while providing a detailed
analysis of the factors contributing to vaccination dropout. The
insights gained from this study can inform future research and
public health policies aimed at improving vaccination coverage and
reducing dropout rates. Ultimately, the findings have the potential
to guide targeted interventions that can contribute to better child
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health outcomes in East Africa and other similar regions around
the world.

Related works

The prediction of vaccination dropout using machine learning
(ML) techniques has gained increasing attention in recent years.
Various studies have explored different methods for predicting
vaccination behavior and outcomes. However, most of these
studies focus on overall vaccine dropout (not specific vaccines),
use statistical methods, focus on a single country, do not use
model interpretability analysis like SHAP, and/or rely on single
machine learning algorithms, often limiting their predictive power
by not leveraging the strengths of multiple algorithms through
ensemble learning.

One early work by Chandir et al. (2018) applied decision tree-
based models to predict childhood vaccination dropout in low-
resource settings. The model showedmoderate success, particularly
in identifying key predictors, such as maternal education and
distance to health facilities, but struggled with generalization across
different datasets. This study demonstrated the potential of ML
models but highlighted the need for more sophisticated approaches
to handle complex socio-demographic patterns. Similarly, a study
by Kayembe-Ntumba et al. (2022) used logistic regression models
to predict overall vaccination dropouts, focusing on a few socio-
economic factors such as rural residence, unavailability of seats, and
lack of a reminder system.While the study succeeded in identifying
high-risk groups for dropout, the model lacked flexibility and failed
to account for non-linear relationships between variables, reducing
its overall predictive performance.

More recent studies have turned to ensemble methods
to improve model performance. For instance, Demsash et al.
(2023) employed Random Forests (RF) and Gradient Boosting
Machines (GBM) to predict childhood vaccination in Ethiopia,
demonstrating an increase in accuracy compared to single models.
However, their study was limited since only one country was
involved (i.e., Ethiopia), it was not focused on a specific childhood
vaccine, no model interpretability method was employed, and only
individual models were evaluated. Similarly, Nwachukwu (2024)
applied machine learning techniques to predict immunization
completion in Ogun State, Nigeria. The study employed Logistic
Regression, Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN) models to analyze immunization patterns using
retrospective data from 8,808 immunization records. Logistic
Regression was favored with an accuracy of 99.77%, outperforming
SVM and KNN. While the study provided valuable insights into
immunization in a specific region of Nigeria, it lacked other strong
ML models such as XGBoost and RF and also lacked model
interpretability tools such as SHAP analysis and did not focus on
vaccination dropout explicitly, but rather on overall completion
rates. Furthermore, the data was limited to a single locality
within Nigeria, limiting its generalizability to broader regions like
East Africa.

In a separate study conducted in The Gambia, Ntenda et al.
(2022) utilized Generalized Estimating Equation (GEE) models to
examine the determinants of pentavalent and measles vaccination

dropouts using data from the 2019–20 Gambia Demographic
and Health Survey. This study identified key factors influencing
dropout rates, such as antenatal care attendance, possession of a
health card, and urban residency. While the study was important
for highlighting vaccination challenges in The Gambia, it focused
primarily on statistical methods and did not incorporate advanced
machine learning techniques. Additionally, the scope was limited
to The Gambia, without extending to other East African countries.

In contrast to these approaches, our study takes a more
advanced approach by employing a stacked ensemble model,
integrating predictions from multiple base learners such as Naive
Bayes, Random Forests, Gradient Boosting Machines, eXtreme
Gradient Boosting, and Deep Learning, among others. The novelty
of our approach lies primarily in the stacking process, where a
meta-learner is used to combine the predictions of base models,
leveraging the strengths of each learner while mitigating their
weaknesses. This model architecture allows for enhanced predictive
accuracy and robustness, particularly in handling the complex,
non-linear relationships often present in socio-demographic data.
Previous studies, such as those by Hu et al. (2021), have shown
that stacking models outperform traditional ML algorithms in
healthcare settings, but their focus was limited to predicting
hospital admissions rather than vaccination dropout. By extending
this methodology to the prediction of Pentavalent 3 vaccination
dropout, we address a critical gap in the literature.

Moreover, by leveraging comprehensive, high-quality,
and representative data from the DHS, we enhanced model
interpretability and transparency using SHAP analysis, which is
not applied in the related works mentioned. Our study’s unique
focus on Pentavalent 3 dropout across multiple East African
countries makes it a significant contribution compared to single-
country or general vaccination studies. These combinations not
only improve predictive performance but also provide insights
into the key drivers of Penta 3 vaccination dropout in East Africa,
making it highly relevant for policymakers and public health
practitioners working toward vaccine coverage in the region.

Methods

Data source

The study utilized data from the Demographic and Health
Surveys (DHS) conducted across multiple East African countries.
DHS surveys are nationally representative and provide
comprehensive information on health indicators, including
vaccination coverage and demographic characteristics. Specifically,
we accessed the latest available DHS datasets for each country in the
region, ensuring consistency and relevance across the study period.
These datasets are publicly accessible and rigorously collected using
standardized methodologies, which enhances the reliability and
comparability of our findings. By leveraging DHS data, we aimed to
capture the diverse socio-demographic profiles and health service
utilization patterns that influence vaccination behaviors in East
Africa. Ethical considerations regarding data use and participant
anonymity were adhered to, respecting the confidentiality and
rights of survey respondents (The DHS Program, 2024).
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Modeling software and packages

The machine learning analysis for this project was conducted
using the R programming language, primarily in a Google
Collaboratory environment. The h2o package was utilized to
implement a stacked ensemble model consisting of seven
base learners.

The integration of these tools provided a robust framework for
model development and optimization. The choice of Collaboratory
facilitated efficient computation without the need for local
hardware resources, ensuring scalability and accessibility in the
research workflow.

Study variables

Target
The primary outcome variable examined in this study was

Penta 3 vaccination dropout, defined as the failure to complete
the third dose of the pentavalent vaccine within the recommended
timeframe (1= dropped out and 0= received/completed).

Features
Predictive variables encompassed a wide array of socio-

demographic, economic, and geographic factors known to
influence vaccination behaviors. These included maternal age,
educational attainment, household income, urban or rural
residence, distance to the nearest health facility, and accessibility
to healthcare services. Each variable was carefully selected based
on its theoretical relevance and empirical evidence linking it to
vaccination uptake and completion rates in low-resource settings.
The complete list of features and their label is presented in the
Supplementary Table 1.

Data preprocessing

To prepare DHS data for a stacked ensemble machine
learning model, comprehensive preprocessing is required. Data
cleaning, addresses inconsistencies, duplicates, and incorrect
values, ensuring that only high-quality information informs model
training. Target and feature engineering refines both target
variables and predictors to optimize predictive accuracy. This
includes techniques like lumping categories in sparse variables,
feature selection with Boruta or Lasso regularization for relevance,
feature encoding (one-hot, ordinal, label), and removing highly
correlated features to reduce multicollinearity. Handling missing
values involves imputing or, if appropriate, removing missing
data points to preserve dataset integrity, minimizing biases from
incomplete entries (Luengo et al., 2020).

Moreover, splitting the data into training and test sets
provides a framework for evaluating model performance, ensuring
that the ensemble generalizes well across unseen data. Here, a
carefully designed resampling strategy enhances model robustness
by creating training subsets that reduce overfitting, which
is particularly important in ensemble models that combine

predictions from diverse learners. Finally, managing imbalanced
data ensures that classes in the target variable are proportionally
represented, typically through techniques like the Synthetic
Minority Over-sampling Technique (SMOTE) or under-sampling,
which prevents dominant classes from skewing model predictions.
Together, these preprocessing steps create a balanced, well-
prepared dataset, critical for building an effective stacked ensemble
model that delivers robust predictions from large datasets like DHS
data (Werner de Vargas et al., 2023).

Base learners and stacked ensemble model

In this study used a stacked ensemble machine learning model
that integrates the predictions of seven distinct base learners: Naive
Bayes (NB), Generalized LinearModel (GLM), Decision Tree (DT),
Deep Learning (DL), Random Forest (RF), Gradient Boosting
Machine (GBM), and Extreme Gradient Boosting (XGB). This
ensemble approach is designed to enhance predictive performance
by leveraging the unique strengths of each individual model while
mitigating their weaknesses.

NB is a probabilistic classifier based on Bayes’ theorem,
which assumes independence among features. This model is
particularly effective for text classification tasks and performs
well with smaller datasets. The GLM is a flexible extension of
traditional linear regression that accommodates various types of
response variables through the use of different link functions.
This model facilitates the interpretability of coefficients, enabling
insights into the impact of predictors. A DT model structures
data through a tree-like diagram, making decisions based on the
most significant attribute at each node. While easy to interpret
and visualize, decision trees can be prone to overfitting if not
managed appropriately.DL employs neural networks with multiple
layers to identify complex patterns in high-dimensional data.While
deep learning excels in tasks involving images and text, it typically
requires substantial datasets and computational resources. RF is
an ensemble model that constructs multiple decision trees using
random subsets of the training data and features. This method
enhances predictive accuracy by reducing overfitting through
the aggregation of predictions from individual trees. GBM is
an ensemble learning method that builds models sequentially,
primarily used for regression and classification tasks. It combines
multiple weak learners, typically decision trees, to create a strong
predictive model by optimizing the model’s weights based on the
errors of previous iterations. This approach enhances accuracy and
reduces prediction errors over time. XGoost is a powerful boosting
algorithm that builds models sequentially, with each new model
addressing the errors made by its predecessor. Renowned for its
efficiency and accuracy, XGBoost has demonstrated exceptional
performance in various machine learning model comparisons
(Shetty and Whitfield, 2023).

Stacking process

The process of stacking involves several key steps. First, each
of the seven base learners are trained on the same training
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dataset. This initial training phase allows each model to learn
from the data, capturing different patterns and relationships. The
predictions generated by these models are stored for subsequent
use, forming a diverse set of outputs. The next step involves creating
a new feature set based on the predictions from the base learners.
While some R packages (like h2o) provide a built-in mechanisms
to automatically create meta-features as part of their stacking
implementations, others (like caret andmlr3) do not. In these cases,
predictions must be manually extracted and assembled from base
learners into a new feature set for the meta-learner. In this study,
the “h2o.stackedEnsemble” function of the “h2o” package
automatically generates these predictions from the trained base
learners, creating what is often referred to as meta-features. When
cross-validation is used during the training of base learners, h2o
ensures that the meta-features are based on out-of-fold predictions
to prevent data leakage, thereby maintaining the integrity of the
validation process.

Next, a meta-learner algorithm, which can be another model
such as logistic regression, random forest, or eXtream gradient
boosting, is then selected and trained on the meta-features. During
this phase, the meta-learner learns how to optimally combine
the outputs of the base learners to produce a final prediction.
The choice of meta-learner can influence the performance of the
ensemble, as it determines how to weigh the contributions from
each base model. Lastly, the trained meta-learner produces the final
predictions for unseen data. When new input data is provided,
the base learners generate their respective predictions, which are
then fed into the meta-learner. The meta-learner synthesizes these
inputs, producing a robust final prediction that combines the
insights gained from all base learners (Verma et al., 2024).

Stacked ensemble model offers numerous advantages,
including improved performance through the integration of
diverse model strengths, which enhances predictive accuracy
and robustness. By leveraging multiple algorithms, the ensemble
approach reduces the risk of overfitting, as it combines the
strengths of various models while minimizing their individual
weaknesses. Additionally, the flexibility of the stacking framework
allows for the inclusion of various types of base learners, enabling
researchers to tailor their ensemble to the specific characteristics
of their dataset and the nature of their predictive task. Overall,
stacked ensembles represent a powerful and versatile strategy for
achieving superior performance in machine learning applications
(Dey and Mathur, 2023). An architecture representing the model
building process is presented in Figure 1.

Hyperparameter optimization (HPO) and
performance metrics

The hyperparameter optimization (HPO) process for a stacked
model with seven base learners involves multiple stages, each
aimed at optimizing the performance of the model ensemble. First,
individual base learners are trained and tuned separately. Each
learner has its own set of hyperparameters, such as learning rate,
regularization strength, number of estimators, and depth of trees in
case of tree-based algorithms.

This study experimented with grid search HPO and systematic
random search HPO, both combined with cross-validation,
to compare and identify the optimal hyperparameters for
each base learner. Cross-validation helps prevent overfitting,
ensuring that the selected hyperparameters generalize well to
unseen data.

After tuning the base learners, their predictions on the training
data set are used as input features for the second layer of the stacked
model, typically referred to as the meta-learner. The meta-learner
is another machine learning algorithm tasked with combining
the predictions from the base learners in a way that minimizes
overall prediction error. The hyperparameters of this meta-learner
are crucial as well, and they require tuning similar to the base
learners. This can be done independently or as part of a larger
optimization process that considers both base and meta-learner
hyperparameters simultaneously.

During the entire process, cross-validation is employed at
different stages to prevent information leakage from the base
learners to the meta-learner. This is often done using techniques
like k-fold cross-validation or nested cross-validation, where
the base learners are trained and tuned in the inner loop,
while the meta-learner is trained and tuned in the outer loop.
Once the final hyperparameters for both the base learners and
the meta-learner are identified, the model is retrained on the
full training dataset using the optimized settings. The final
stacked model is then evaluated on a held-out test set to
ensure robust performance. Hyperparameter tuning for stacked
models, while complex, aims to exploit the strengths of each
base learner and combine them in a way that maximizes
predictive accuracy while minimizing overfitting (Zhang et al.,
2023).

To evaluate the performance of the stacked ensemble model,
several metrics were employed, including accuracy, precision,
recall, area under the receiver operating characteristic curve
(AUC-ROC), and F1 score. Accuracy measures the proportion
of true positive and true negative predictions among the total
number of instances examined, providing a general indication
of model effectiveness. However, it may not adequately reflect
performance in imbalanced datasets, prompting the use of
additional metrics.

Precision, also known as positive predictive value, quantifies
the number of true positive predictions divided by the sum
of true positives and false positives. This metric highlights the
model’s ability to correctly identify positive instances, which
is particularly important in contexts where the cost of false
positives is high. Recall, or sensitivity, measures the proportion
of true positive predictions relative to the total number of actual
positives, thus providing insight into the model’s effectiveness in
capturing all relevant cases. The AUC-ROC metric assesses the
model’s ability to distinguish between positive and negative classes
across various threshold settings, summarizing its performance
in terms of both sensitivity and specificity. Finally, the F1

score is the harmonic mean of precision and recall, offering a
balance between the two metrics and providing a single measure
to evaluate model performance, particularly in scenarios where
false negatives and false positives carry different implications.
Together, these metrics provide a comprehensive evaluation
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FIGURE 1

Model-building architecture for a stacked ensemble machine learning model for the prediction of pentavalent 3 vaccination dropout in East Africa.

of the model’s predictive performance, facilitating comparisons
with other modeling approaches in the study (Rainio et al.,
2024).

An experimental design process was used, involving a
structured approach to ensure high internal validity. Experimental
study designs follow a set of established rules and techniques
specifically created for conducting scientific research.

Model interpretability

The interpretability process for a stacked ensemble model
with multiple base learners focuses on understanding the
contributions of individual models and how their predictions

are integrated by the meta-learner. A crucial component of this
interpretative framework is the application of SHAP (Shapley
Additive Explanations) values, particularly for the best-performing
model within the ensemble. By utilizing SHAP values, researchers
can gain insights into the specific contributions of each feature
to the predictions made by this top-performing model. This
method quantifies the importance of features while accounting
for interactions, thus allowing for the identification of influential
variables that drive the model’s decisions. This analysis provides a
clear understanding of the decision-making processes within the
best-performing learner, laying a solid groundwork for interpreting
the ensemble’s overall effectiveness.

SHAP values can be employed at this level to elucidate
how much the top-performing model’s predictions contribute
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to the overall ensemble output, providing insights into the
dynamics of the stacked model. While SHAP serves as the
primary interpretability tool, additional methods such as
integrated gradients and permutation feature importance can
complement this analysis by offering broader perspectives on
feature influence across the ensemble. Local interpretability
methods, like LIME (Local Interpretable Model-agnostic
Explanations), can further clarify individual predictions by
approximating the model’s behavior around specific instances. By
emphasizing SHAP values for the best-performing model within
this interpretative framework, the study enhances the transparency
and trustworthiness of the stacked ensemble model’s predictive
capabilities, facilitating a comprehensive understanding of the
underlying mechanisms driving its decisions (Baptista et al., 2022).

Ethical approval

This study utilized secondary data obtained from the
Demographic and Health Surveys (DHS), which are publicly
available datasets. As this research involved only anonymized data
with no direct interaction with participants, further ethical review
was not required. All analyses were conducted in compliance with
ethical standards for research involving secondary data.

Results

Baseline characteristic

After the DHS data from the 10 East African countries was
cleaned and merged, there were a total of 61,714 instances.
Of those, 9,206 (14.9%) failed to complete (had dropped out
of) the Penta3 vaccination. Among the 52,508 children who
completed their vaccination, 75.2% of those living in rural areas
completed the vaccination compared to 24.8% in urban areas.
Children whose mothers had no education had a lower completion
rate (18.1%) and a higher dropout rate (25.3%) compared to
those with primary education (49.5% completed, 47.8% dropped
out). Wealthier families had a higher vaccination completion
rate (37.2%) compared to poorer households, where 43.7% of
children dropped out. Mothers whose babies were delivered
at government health facilities had a much higher vaccination
completion rate (78.3%) compared to home deliveries (17.0%)
(Supplementary Table 2).

Furthermore, children whose mothers were aged 20–29 had the
highest Penta3 vaccination completion rates, with 26.2% for those
aged 20–24 and 25.6% for those aged 25–29. The dropout rates were
also higher in these age groups, at 28.2% and 24.1%, respectively.
Among countries, Kenya had the highest completion rate at 16.3%,
while Uganda showed the highest dropout rate at 18.9%. Moreover,

FIGURE 2

Distribution of samples from each East-African Country: Penta3 vaccination dropout prediction.
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FIGURE 3

(A, B) LASSO and Boruta feature selections for a stacked ensemble machine learning model for the prediction of pentavalent 3 vaccination dropout in

East Africa.

mothers with higher education levels (secondary and above) had
notably better completion rates (26.7% and 5.6%, respectively),
reflecting a clear association between maternal education and
vaccination completion (Figure 2 and Supplementary Figure 1).

Data preprocessing results

The dataset used in this study comprised a range of socio-
economic, demographic, and health-related variables, which were
initially subjected to extensive preprocessing steps to ensure
suitability for machine learning modeling. Given the varied nature
of the data, several stages of preprocessing were carried out to
handle missing values, and categorical features. This was crucial to
improve the quality of the data and ensure that it could effectively
be used to build the stacked ensemble model.

First, the dataset was extracted from the DHS (Demographic
and Health Survey) database, encompassing data from multiple
East African countries. Two features (i.e., husband’s educational
status and husband’s occupational status) had low levels of missing
data, with 3.7% and 2.9%, respectively, while husband’s age had
a moderate level of missingness at 9.7%. Consequently, mode
imputation was applied to the first two features. The most frequent
category (mode) for each feature was identified and used to replace
the missing values. For the feature “husband’s age,” the pattern of
missingness was analyzed and found to be Missing at Random
(MAR). Given this missingness pattern, the recommended model-
based imputation method (i.e., KNN) was performed using the
KNN function of the VIM package. This ensured that the dataset
retained as much information as possible without introducing
distortions caused by missing data.

Once the missing values were addressed, feature engineering
was performed. Derived features were created to capture complex
interactions between variables. The media exposure variable

was constructed by integrating the frequency of radio listening,
newspaper reading, television viewing, and internet usage. The
healthcare access feature was created based on whether the mother
faces challenges in obtaining permission from her husband to visit a
hospital, securing the funds required for treatment, overcoming the
distance to the healthcare facility, or if attending the facility alone
poses a difficulty.

Experimental results and comparisons

We performed different experiments and comparisons for both
Boruta and LASSO feature selection methods with performance
metrics obtained from Random Search HPO andGrid Search HPO.

Experiment I: feature selection
For experimentation purposes, both the LASSO (Least Absolute

Shrinkage and Selection Operator) and the Boruta algorithm were
used to identify and select the most relevant features from the
dataset. For LASSO, since it requires numeric features, a matrix
of encoded features and the target variable was constructed from
the data, with the intercept column removed. Cross-validation was
used to train the LASSO model and determine the optimal lambda
(regularization parameter). The final LASSO model, fitted with
the optimal lambda, identified important features with non-zero
coefficients, while 26 features were eliminated. Features with both
positive (direct relationship) and negative (inverse relationship)
LASSO coefficients were considered important, as displayed in
Figure 3A.

Unlike LASSO, which operates strictly on numerical features,
Boruta does not require one-hot encoding for categorical variables.
Therefore, it was performed before encoding to keep the feature
space manageable and preserve the original relationships. As a
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result, the Boruta algorithm deemed eight features irrelevant and
rejected them from further analysis. This process reduced the
total number of features from 24 to 16. The results of the feature
selection process by Boruta, including the importance of each
variable and the rejection of the eight aforementioned features, are
presented in Figure 3B.

Before model building, all categorical features deemed
important by Boruta were transformed using one-hot encoding,
while ordinal encoding was applied to “Educational Status
of the Mother and Husband” to facilitate integration into
machine learning models, which typically require numerical input.
This transformation increased the number of features in the
dataset from 16 to 63. Subsequently, highly correlated features
were identified and removed using the “findCorrelation”
function, which further reduced the number of features to
51. These preprocessing steps ensured that the categorical data
were effectively utilized, enhancing model performance without
compromising generalizability. The correlation matrix is illustrated
on Supplementary Figure 2.

Experiment II: model building and optimal
hyperparameters
Model building

To build the models, the dataset was divided into a training
set comprising 70% of the data (43,199 instances) and a test
set comprising 30% (18,515 instances). Class imbalance was a
significant concern, as the dropout rate from the Penta3 vaccine
fell well below the threshold for a balanced dataset, where the
minority class constitutes <30%−40% of the total. The imbalance
ratio in the dataset was 5.71:1, indicating that for every instance of
a child who dropped out (class 1), there were ∼5.71 instances of
children who completed their vaccination (class 0). This imbalance
posed a risk of biased predictions favoring the majority class.
To mitigate this issue, the Synthetic Minority Over-sampling
Technique (SMOTE) was exclusively applied to the training set to
generate synthetic samples for the minority class (children who
dropped out of the Penta3 vaccination), thereby ensuring that
no data leakage occurred during model evaluation. The SMOTE
parameters, including the number of nearest neighbors (K= 5) and
the duplication size (dup_size = 0), were set to their default values
in the SMOTE function.

This technique effectively balanced the dataset, ensuring that
the predictive models will not be biased toward the majority
class while preserving the characteristics of the minority class and
minimizing the risk of overfitting. The distribution of the target
variable before and after the application of SMOTE is presented in
Supplementary Figure 3.

Seven base learners were trained: Generalized Linear Model
(GLM), Naive Bayes (NB), Decision Tree (DT), XGBoost (XGB),
Random Forest (RF), Gradient Boosting Machine (GBM), and
Deep Learning (DL). Each model was individually optimized
using 10-fold cross-validation to prevent overfitting and ensure
generalizability. The cross-validation was performed using
stratified folds for all models except the GLM, which used modulo
fold assignment. This approach preserved class balance across folds
and ensured that the models generalized well to unseen data.

After training the base learners, their predictions were
combined using a meta-learner in a stacked ensemble approach.
Three different meta-learners were tested: XGBoost, Random
Forest, and GLM. For each stacked ensemble, out-of-fold
predictions from the base learners were used as features
for the meta-learner, preventing data leakage and ensuring
robust performance.

As the stacked ensemble model inherits the nfolds from base
learners, a stacked cross-validation was, by default, employed for
the meta-learner training. Each base learner was trained on 90%
of the training data and generated out-of-fold predictions for the
remaining 10%. These out-of-fold predictions were then passed to
the meta-learner for training. Since the meta-learner was trained
only on predictions generated from data that were held out from
the base learners’ training process, this prevents any form of
information leakage. The key fact here is that the meta-learner did
not have access to the raw features or base learner predictions from
the same folds during training. This cross-validation process was
repeated for all folds, ensuring that for each instance in the dataset,
the correspondingmeta-learner prediction was based solely on out-
of-fold base learner predictions, which preserves the integrity of
the model evaluation and avoids overfitting. Furthermore, early
stopping was implemented in models like XGBoost, Gradient
Boosting Machine (GBM), Random Forest, and Deep Learning to
halt training when the performance did not improve for 50 rounds.
AUC was used as a stopping metric.

Random search hyperparameters

The same systematic random search hyperparameter values
were used for both experiments with Boruta and LASSO.
The Generalized Linear Model (GLM) was trained with L2
regularization (alpha = 0.1) and the “binomial” family for binary
classification. The glm function of h2o is a general framework
for Generalized Linear Models (GLMs), and configuring it with
the “binomial” family specifies logistic regression for binary
outcomes. A single decision tree was trained with ntrees = 1, a
maximumdepth of 30, andmin_rows= 1. XGBoost was configured
with 1,000 trees, a learning rate of 0.05, and a maximum depth of
3, with early stopping after 50 rounds. The Random Forest model
used 500 trees, a maximum depth of 20, and a sample rate of 0.8,
while the GBM was set to 500 trees, a learning rate of 0.01, a
maximum depth of 7, and early stopping after 50 rounds based on
AUC. Lastly, the deep learning model had two hidden layers of 100
nodes each and was trained for 10 epochs, with early stopping after
50 rounds based on AUC. This model with two hidden layers and
complex configuration fits the general definition of deep learning,
which involves models with more than one layer of transformation
(Table 1).

Experiment III: performance metrics with Boruta
FS for both HPO methods

Table 2 presents the performance metrics for seven base
learners and three Stacked Ensemble Models (SEMs) using the
Boruta Feature Selection method under two hyperparameter
optimization (HPO) approaches, Grid Search and Random Search.

Among the Stacked Ensemble Models (SEMs), the Random
Forest-based ensemble using Grid Search delivers an outstanding
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AUC of 0.872 with a high Accuracy of 0.825, making it the top
performer overall. The XGBoost-based ensemble also performs
well, achieving a solid F1-score of 0.804 with Random Search,
showcasing its balanced precision and recall. Additionally, the
GLM-based ensemble using Grid Search shows competitive results,
with a respectable AUC of 0.832 and an F1-score of 0.764,
demonstrating its reliability as a meta-learner. These results
highlight the effectiveness of different meta-learners in stacked
ensemble models, with Random Forest-based ensembles standing
out as the most robust (Table 2).

TABLE 1 Random search HPO values for Penta-3 vaccination dropout

prediction.

Base learner Hyperparameters Values

Decision tree ntrees, max_depth,

min_rows

1, 30, 1

XGBoost ntrees, learn_rate,

max_depth,

stopping_rounds

1,000, 0.05, 3, 50

Random forest ntrees, max_depth,

sample_rate, min_rows

500, 20, 0.8, 1

GBM ntrees, learn_rate,

max_depth, min_rows,

stopping_rounds

500, 0.01, 7, 5, 50

Deep learning hidden, epochs,

stopping_rounds

(100, 100), 10, 50

Experiment IV: performance metrics with LASSO
FS for both HPO methods
Performance metrics of LASSO FS with random search

HPO

For the models using LASSO feature selection with Random
Search hyperparameter optimization, the XGBoost-based ensemble
achieves the highest overall performance, with an AUC of 0.961
and an impressive Accuracy of 0.901, highlighting its strong
predictive capability. Similarly, the Random Forest-based ensemble
also performs exceptionally well, with an AUC of 0.953 and an
Accuracy of 0.899. Meanwhile, the GLM-based ensemble shows
consistent results, with an AUC of 0.957 and an Accuracy of
0.902, proving to be a competitive option. These stacked ensembles
consistently outperform the individual base learners across most
metrics, particularly in terms of AUC and Accuracy (Figure 4 and
Table 3).

Performance metrics of LASSO FS with grid search HPO

The grid search for XGBoost evaluated 108 models, with the
best model achieved using a learning rate of 0.1, max depth of 9,
200 trees, 3 minimum rows, and a sample rate of 0.8. The GBM
grid search evaluated 110 models, and the best combination was
obtained with a learning rate of 0.1, max depth of 10, 26 trees,
5 minimum rows, and a sample rate of 0.8. The RF grid search
evaluated 181 models, with the top-performing models using a max
depth of 30, 13 trees, 1 minimum row, and a sample rate of 0.8.
The NB grid search, with only 3 models evaluated, showed similar

TABLE 2 Performance metrics of Boruta FS with both random search and grid search HPOs: Penta 3 dropout prediction.

Model HPO method AUC Accuracy Precision Recall F1-score

XGBoost Grid search 0.824 0.826 0.821 0.805 0.809

Random search 0.813 0.815 0.814 0.798 0.799

GBM Grid search 0.836 0.834 0.835 0.811 0.819

Random search 0.822 0.824 0.826 0.806 0.809

Random forest Grid search 0.814 0.817 0.823 0.804 0.809

Random search 0.801 0.803 0.805 0.782 0.789

Naive Bayes Grid search 0.697 0.685 0.717 0.699 0.699

Random search 0.672 0.637 0.757 0.678 0.707

Logistic regression Grid search 0.707 0.696 0.702 0.636 0.663

Random search 0.685 0.673 0.786 0.754 0.764

Deep learning Grid search 0.738 0.704 0.787 0.632 0.697

Random search 0.705 0.685 0.752 0.621 0.678

Decision tree Grid search 0.774 0.756 0.714 0.685 0.694

Random search 0.753 0.713 0.705 0.658 0.674

SEM XGB meta Grid search 0.807 0.784 0.827 0.787 0.799

Random search 0.798 0.766 0.792 0.824 0.804

SEM RF meta Grid search 0.872 0.825 0.852 0.772 0.808

Random search 0.861 0.813 0.834 0.764 0.793

SEM GLMmeta Grid search 0.832 0.793 0.796 0.747 0.764

Random search 0.814 0.771 0.818 0.727 0.762

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2025.1522578
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Alemayehu et al. 10.3389/fdata.2025.1522578

FIGURE 4

ROC-AUCs of LASSO FS with and random search HPO: Penta 3 dropout prediction in East-Africa.

performance with Laplace smoothing values of 0, 1, and 2. The
GLM grid search evaluated 16 models, and the best combination
was alpha = 0.0 and lambda = 0.001, with minimal variations in
performance across other similar values. The deep learning grid
search evaluated multiple configurations, and the best model was
achieved with hidden layers of (100, 100), 10 epochs, and a learning
rate of 0.01. Finally, the Decision Tree grid search identified the
optimal model with a max depth of 10, 5 minimum rows, and a
sample rate of 0.8 (Table 4).

In this final experiment using LASSO feature selection with
Grid Search HPO, the XGBoost-based ensemble stands out once
again with the highest AUC of 0.994 and a strong Accuracy of 0.939,

demonstrating its consistent performance across experiments.
The GLM-based ensemble matches its AUC of 0.990, along
with a comparable Accuracy 0.936, proving its reliability and
competitiveness. Meanwhile, the Random Forest-based ensemble
follows closely with an AUC of 0.983 and an Accuracy of 0.935
(Figures 5, 6).

When compared to the previous experiments, both feature
selection methods, Boruta and LASSO, yielded strong results,
particularly for the stacked ensembles, which consistently
outperformed the individual base learners. The Grid Search HPO
method, especially in this LASSO feature selection experiment,
delivered slightly better overall performance than Random Search,
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TABLE 3 Performance metrics of LASSO FS with random search HPO: Penta 3 dropout prediction.

Model Accuracy Precision Recall F1 score

NB 0.504 0.484 0.937 0.638

DT 0.774 0.736 0.798 0.766

GBM 0.860 0.886 0.804 0.843

RF 0.810 0.807 0.780 0.793

DL 0.552 0.517 0.930 0.664

XGB 0.870 0.949 0.763 0.846

GLM 0.514 0.489 0.947 0.645

SEM XGB meta 0.901 0.922 0.860 0.890

SEM RF meta 0.899 0.939 0.839 0.886

SEM GLMmeta 0.902 0.918 0.866 0.892

TABLE 4 Hyperparameter tuning results: grid search HPO parameter ranges and optimal values for Penta-3 vaccination dropout prediction.

Model name Hyperparameter Range Default value (R) Optimal value

XGBoost ntrees c(100, 200, 400, 600, 800, 1,000) 100 200

learn_rate c(0.01, 0.05, 0.1) 0.3 0.1

max_depth c(3, 6, 9, 12) 6 9

min_rows c(3, 5, 10, 13, 15) 10 3

sample_rate c(0.7, 0.8, 0.9) 1 0.8

GBM ntrees c(100, 200) 100 260

learn_rate c(0.01, 0.05, 0.1) 0.1 0.1

max_depth c(5, 10, 15) 6 10

min_rows c(3, 5, 10) 10 5

sample_rate c(0.8, 0.9) 1 0.8

Random forest ntrees c(50, 100, 200) 500 100

max_depth c(10, 20, 30) 20 30

min_rows c(1, 5, 10) 1 1

sample_rate c(0.7, 0.8, 0.9) 1 0.8

Naive Bayes laplace c(0, 1, 2) 1 1

use_all_factor_levels c(TRUE, FALSE) FALSE TRUE

Logistic regression (GLM) alpha c(0, 0.1, 0.5, 1) 0.5 0

lambda c(0, 0.001, 0.01, 0.1) 0 0.001

Deep learning hidden c(50, 50), c(100, 100), c(50, 100, 50) c(50, 50) c(100, 100)

epochs c(10, 20, 50) 10 10

learning_rate c(0.01, 0.05, 0.1) 0.01 0.01

activation c(“Rectifier,” “Tanh,” “Maxout”) “Rectifier” “Rectifier”

Decision tree max_depth c(5, 10, 15) 30 10

min_rows c(1, 5, 10) 20 5

sample_rate c(0.7, 0.8, 0.9) 1 0.8

with noticeably higher AUC scores across all SEMs. Notably, the
XGBoost and GLM-based ensembles achieved perfect alignment
in key metrics here, while in previous experiments, XGBoost
ensembles generally held a slight edge (Figures 5, 6).

These final results confirm that stacked ensemble models,
especially those using Random Forest and XGBoost as
meta-learners, deliver robust and accurate predictions,
with LASSO feature selection combined with Grid
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FIGURE 5

Performance metrics of LASSO FS with and grid search HPO: Penta 3 dropout prediction in East-Africa.

Search yielding the strongest overall performance across
all experiments.

Due to its overall superior performance, the XGBoost Meta-
Learner Stacked Ensemble, built with LASSO-selected features
and optimized through Grid Search, was selected for further
analysis using advanced interpretability tools like SHAP (SHapley
Additive exPlanations) bar and beeswarm plots, providing deeper
insights into feature contributions and model behavior. Overall,
these results demonstrate that the stacked ensembles effectively
leveraged the strengths of the base learners, leading to a significant
improvement in predictive performance.

Model interpretability

The output of the SHAP (SHapley Additive exPlanations)
values reveals intricate insights into the attributes influencing
predictions made by the best-performing Stacked Ensemble
XGB-Meta learner Model. This SHAP matrix highlights the
contributions of each feature to the model’s output.

In analyzing the SHAP BeeSwarm plot for model
interpretability, several nuances must be considered to avoid
misinterpretation. Features with a mix of colors where both high
(golden) and low (purple) feature values have SHAP values that
vary between positive and negative impacts, suggest the presence
of non-linear relationships or interactions between features. In
such cases, high values of the feature can contribute positively to

the model’s predictions for some instances, while contributing
negatively for others, indicating that the feature’s influence is
context-dependent. From a practical decision-making perspective,
this means that interventions or policies relying on these features
must be carefully tailored to specific subgroups or conditions. For
example, a feature might be highly beneficial for one group but
could have adverse effects or little relevance in another, suggesting
the need for personalized or context-aware strategies.

Additionally, features for which data points (instances)
predominantly cluster around the SHAP value of 0, with minimal
horizontal spread, indicate that these features have little to no
impact on most predictions. These features may be irrelevant or
redundant for the model’s decision-making process, though they
might occasionally have a significant effect in a small subset of
instances. Careful attention to such patterns ensures that only
meaningful features are prioritized for interpretation or model
refinement, avoiding overemphasis on features with low or highly
conditional importance (Mane et al., 2024; Lundberg et al., 2020).

In terms of research direction, these findings point to areas
where further investigation is needed to understand the contexts
or subpopulations where these features hold more weight. This
could guide future studies to explore the non-linear relationships
or interactions identified through the SHAP analysis, ultimately
informing both model refinement and the development of more
targeted, effective interventions or policies.

Considering these facts, seven features (place of delivery,
health insurance, healthcare access, type of health professional
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FIGURE 6

ROC-AUCs of LASSO FS with and grid search HPO: Penta 3 dropout prediction in East-Africa.

who performed the post-natal check-up, wealth index, and who
decides on the healthcare need of the family) visualized in the
SHAP BeeSwarm and bar plots were identified as having significant
and interpretable contributions to the model’s predictions. These
features exhibited considerable SHAP value variability and
relatively clear patterns of influence, highlighting their importance
in driving themodel’s decisions. In contrast, the remaining features,
characterized by either tight clustering around the zero SHAP
value or a lack of clear directional impact, were deemed less
influential. Their mixed and limited spread suggests that these

features contribute minimally to the model’s predictive power or
have contextually dependent effects. This understanding directs the
focus toward the most relevant features, thereby enhancing the
interpretability and reliability of the model.

Accordingly, the best-performing stacked ensemble model
predicted that children born at home have a substantial positive
impact, with a SHAP value of 0.0348, indicating that home births
are associated with a higher probability of Penta 3 vaccination
dropout. Similarly, children of women who earns more money
than the husband/father and who earns about the same amount of
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money exhibited notable negative impacts (SHAP value: −0.0222
and −0.0218, respectively) on Penta 3 vaccination dropout. In
contrast, children of mothers with health insurance showed a
negative impact, with a SHAP value of −0.0223, suggesting a
lower likelihood of dropout. The SHAP values for decision on the
healthcare need of the family indicate that when the child’s mother
decides, the likelihood of Penta 3 vaccination dropout slightly
decreases (SHAP value: 0.0321). Post-natal check-ups conducted
by midwifery professionals had a negative impact on dropout,
suggesting that mothers who received post-natal care from
these professionals have a reduced likelihood of dropout (SHAP
value: −0.0327). Middle wealth index families also contributed
negatively to the prediction, indicating a lower probability of
Penta 3 vaccination dropout (SHAP value: −0.0223). Overall,
this detailed analysis of SHAP values not only clarifies which
features are driving the model’s predictions but also underscores
the complex interplay between socioeconomic factors, healthcare
access, and demographic characteristics in determining health-
related outcomes (Figures 7, 8).

Discussion

This study aimed to develop and evaluate a stacked ensemble
machine learning models that can accurately predict pentavalent
3 vaccination dropout in East Africa using the Demographic
and Health Surveys (DHS) dataset. The DHS provides rich,
nationally representative data on health, population, and nutrition,
making it an ideal source for analyzing health outcomes across
diverse populations.

We evaluated various machine learning models and stacked
ensemble methods using Boruta and LASSO feature selection
techniques combined with Random Search and Grid Search
hyperparameter optimization. The results demonstrated that
Stacked Ensemble Models (SEMs) consistently outperformed
individual base learners across key metrics. In Boruta feature
selection experiments, the Random Forest-based SEM achieved
strong performance, showcasing the significant improvement that
stacked ensembles bring by combining the strengths of multiple
base models.

In the LASSO feature selection experiments, the XGBoost
Meta-Learner Stacked Ensemble optimized with Grid Search
emerged as the top performer, consistently demonstrating high
AUC, Accuracy, and F1-score. This model outperformed other
base learners and SEMs, underscoring the effectiveness of XGBoost
as a meta-learner in stacking. The Random Forest-based SEM
and GLM-based SEM also delivered strong results, further
confirming the power of stacking diverse models for improved
predictive performance.

The final XGBoost Meta-Learner Stacked Ensemble, built with
LASSO-selected features and optimized through Grid Search, was
selected for further analysis using advanced interpretability tools
like SHAP bar and beeswarm plots. These tools provided deeper
insights into feature contributions and model behavior. Overall,
the experiments highlight the superiority of stacked ensembles,
particularly when using Grid Search for optimization and LASSO
for feature selection, making the XGBoost-based SEM the optimal
choice for complex machine learning tasks.

By interpreting the SHAP values of the best stacked ensemble
model, we were able to assess the contribution of individual
features to the model’s predictions, offering transparent and
interpretable insights into the drivers of vaccination dropout.
Seven key features were identified as critical in explaining dropout
rates: place of delivery, health insurance, healthcare access, type
of health professional who performed the post-natal check-
up, wealth index, and who decides on the healthcare need of
the family. These findings provide valuable insights into the
complex interplay of socioeconomic and healthcare-related factors
influencing vaccination outcomes in East Africa, where access to
healthcare remains a significant challenge.

The place of delivery emerged as a key determinant, with the
model revealing a substantial positive SHAP value of 0.0348 for
home births, indicating a strong association with higher Penta
3 vaccination dropout in East Africa. This finding reflects the
significant challenges that arise when children are born at home,
particularly in rural or underserved areas where access to healthcare
services is limited. In many East African countries, home births are
common due to cultural practices, geographic isolation, and lack of
healthcare facilities, leading to missed opportunities for postnatal
care and immunization follow-up. The absence of skilled birth
attendants in home settings likely contributes to the higher dropout
rates observed, as mothers may not receive timely reminders or
guidance on vaccination schedules (Ntenda et al., 2022; Odiit and
Amuge, 2003).

Alternative explanations for this finding could include the
broader socioeconomic conditions of households opting for
home births. These families may face other barriers, such as
limited transportation, financial constraints, or inadequate
health literacy, which further exacerbate the risk of vaccination
dropout. While the SHAP value indicates a strong association
between home births and dropout, it is essential to recognize
that causality cannot be directly inferred. Furthermore, cultural
preferences for home births, especially in rural and remote
communities, may limit the effectiveness of interventions
focused solely on healthcare access. Future policies should
consider integrating traditional birth attendants with formal
healthcare systems to ensure that newborns receive timely
vaccinations, even in home birth scenarios (Mmanga et al.,
2022).

The study found that the presence of health insurance was
associated with a negative SHAP value of −0.0223, suggesting
that children of mothers with health insurance were less likely
to experience Penta 3 vaccination dropout. In East Africa, health
insurance coverage remains low, but where available, it often
facilitates better access to healthcare services, reducing the financial
burden of medical visits and vaccinations. Mothers with insurance
are more likely to visit healthcare facilities regularly, leading to
better adherence to vaccination schedules. This protective effect
of health insurance aligns with findings from other low- and
middle-income countries, where health insurance has been shown
to improve healthcare utilization and child health outcomes (Fenta
et al., 2023; Smith et al., 2006).

However, the effect of health insurance might differ across
countries in the region, given the varying structures and coverage
of health insurance schemes. In some cases, public health insurance
programs may be limited in scope, covering only certain services
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FIGURE 7

SHAP Beeswarm plot of the best XGB-meta stacked ensemble model for Penta 3 vaccination dropout prediction.

or medications, which could reduce their overall impact on
vaccination adherence. Additionally, the availability of health
insurance may be correlated with other favorable factors, such
as higher income, urban residence, or education, which may
also contribute to lower dropout rates. While the SHAP value
underscores the importance of insurance, future studies should
explore the specific mechanisms through which insurance coverage
enhances vaccination rates in East Africa and identify strategies to
expand coverage to underserved populations (Escobar et al., 2011;
Kalies et al., 2008).

Mother’s/woman’s earning was another important features,
indicating that mothers who earn more money or the same amount
of money as their husband were less likely to have children who
dropped out of the Penta 3 vaccination schedule. This finding is

consistent with extensive research showing that maternal earning
is a critical determinant of child health outcomes in sub-Saharan
Africa. Financially secured mothers are generally more empowered
to make healthcare decisions, have greater access to healthcare
services, and are more likely to prioritize preventive measures like
vaccinations for their children. Hence, their financial autonomy not
only enhances their ability to cover direct and indirect healthcare
costs but also strengthens their role in advocating for their
children’s wellbeing, reducing the likelihood of missed or delayed
vaccinations (Yeboah et al., 2025; Bain et al., 2022).

Maternal financial independence often shifts household
dynamics, allowing women greater influence over resource
allocation, including healthcare spending. This leverage improves
household nutrition, access to health information, and consistent
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FIGURE 8

SHAP bar plot of the best XGB-meta stacked ensemble model for Penta 3 vaccination dropout prediction.

healthcare-seeking behaviors. Women with independent earnings
are also more knowledgeable about healthcare options and
confident in engaging with providers, ensuring vaccination
adherence. Beyond financial power, maternal earning reflects
broader societal shifts in gender roles and equity. Policies
supporting maternal employment and income generation are
essential for enhancing empowerment and improving child health
outcomes, particularly in vaccination programs (Zahidi et al., 2024;
Fawole and Adeoye, 2015).

The SHAP value for decision-making on the healthcare
needs of the family was 0.0321, indicating that when the
mother is the primary decision-maker, the likelihood of Penta
3 vaccination dropout decreases. In many sub-Saharan African
contexts, maternal involvement in healthcare decisions is a
crucial factor influencing child health outcomes. Mothers who

have the autonomy to make decisions regarding their children’s
health are more likely to prioritize preventive measures such as
vaccinations. This aligns with existing research suggesting that
maternal empowerment is key to improving child health indicators
(Ozawa et al., 2016; Danchin et al., 2018).

However, decision-making power within the household is often
complex. While maternal autonomy is important, other factors
such as family dynamics, cultural norms, and paternal involvement
can also influence vaccination adherence. In some cases, mothers
may still face constraints despite being the primary decision-
makers, including limited access to financial resources or healthcare
services. Therefore, efforts to reduce vaccination dropout should
not only empowermothers but also address broader socioeconomic
and cultural barriers that may impact their ability to act on
healthcare decisions. Policies that promote gender equity in
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healthcare decision-making, coupled with initiatives to increase
maternal financial independence, can contribute to improving
vaccination coverage in low-resource settings (Damnjanović et al.,
2018).

Post-natal care provided by midwifery professionals had a
SHAP value of −0.008, indicating a protective effect against Penta
3 vaccination dropout. In many East African countries, midwives
play a critical role in maternal and child health, particularly in
rural areas where doctors may be scarce. Midwives often provide
essential care during and after childbirth, including counseling
mothers on the importance of vaccinations. This finding aligns
with evidence from other low-income regions, wheremidwifery-led
care has been associated with improved maternal and child health
outcomes (Charbit and Omrane, 2023; Schoeps et al., 2013).

However, the relatively modest SHAP value suggests that
while midwifery care contributes to reducing dropout rates,
it may need to be complemented by broader health system
interventions. In some areas, midwives may lack sufficient training,
resources, or support to deliver comprehensive postnatal care,
which could limit their effectiveness in promoting vaccination
adherence. Additionally, the integration of midwifery services
with formal healthcare systems may vary across countries,
affecting the consistency of care provided. Expanding midwifery
training programs, enhancing community health outreach,
and integrating vaccination services into postnatal care visits
could further strengthen the role of midwives in reducing
vaccination dropout (Frawley et al., 2020; Kaufman et al.,
2019).

The wealth index, particularly for middle-income families, was
associated with a negative SHAP value of −0.006, indicating that
children from middle-income households had a lower likelihood
of vaccination dropout. Wealthier families typically have better
access to healthcare services, transportation, and information, all
of which contribute to higher vaccination adherence. In East Africa,
where wealth disparities are significant, middle- and upper-income
families may have more consistent access to healthcare, enabling
them to adhere to vaccination schedules more effectively (Shiferie
et al., 2023; Khan and Saggurti, 2020).

However, it is important to note that wealth alone may not fully
explain vaccination behavior. Cultural practices, health literacy,
and social norms may also influence whether families follow
through with vaccination appointments. In addition, wealthier
families in rural areas may still face access challenges despite their
financial resources, particularly if healthcare facilities are far away
or poorly staffed. While the SHAP value highlights the protective
role of wealth, it also suggests the need for targeted interventions
aimed at lower-income families who are most at risk of vaccination
dropout. Strengthening healthcare systems to provide equitable
access regardless of socioeconomic status is essential to achieving
higher vaccination coverage across all income groups (Adebowale
et al., 2019; Hajizadeh, 2018).

In conclusion, the SHAP-based analysis of the stacked ensemble
model revealed critical insights into the factors driving Penta
3 vaccination dropout in East Africa. These findings highlight
the importance of addressing both socioeconomic and healthcare
access barriers in improving vaccination adherence in the region.
While the machine learning model provided valuable predictive
insights, further research and targeted interventions are necessary

to address the multifaceted challenges faced by vulnerable
populations in East Africa.

Limitations and strengths

Despite the valuable insights gained from this study, a few
limitations must be acknowledged. First, the reliance on secondary
data from the Demographic andHealth Surveys (DHS)may restrict
the depth of analysis regarding the causal relationships between
the identified features and Penta 3 vaccination dropout. While
DHS datasets are comprehensive and nationally representative,
they are inherently cross-sectional, capturing a snapshot of health
behaviors at a single point in time. This limitation constrains
the ability to assess temporal dynamics or changes in vaccination
behavior, which could vary significantly due to interventions, policy
changes, or evolving socioeconomic conditions. Additionally, self-
reported measures within the dataset may introduce biases related
to recall or social desirability, particularly in sensitive areas such
as healthcare access and maternal education. Such biases could
obscure the true extent of the relationships between variables,
potentially impacting the reliability of the findings.

On the other hand, this study benefits from several notable
strengths that enhance its contribution to understanding
vaccination dropout in East Africa. The use of a stacked ensemble
machine learning model, particularly with the XGBoost meta-
learner, allowed for improved predictive performance and
interpretability compared to traditional modeling approaches.
By integrating multiple base learners, the study effectively
leveraged the strengths of different algorithms, mitigating
the limitations inherent to individual models. Moreover, the
application of SHAP values provided a robust framework for
understanding feature importance, offering nuanced insights
into how various socioeconomic and healthcare factors influence
vaccination outcomes. The focus on a relevant and rich dataset,
coupled with the application of advanced analytical techniques
and comparisons, make this study as a significant addition to
the literature on child health and immunization, informing
policymakers and practitioners about critical intervention points
to reduce vaccination dropout rates in the region.

Conclusion and recommendation

The stacked ensemble model has elucidated key attributes
contributing to Penta 3 vaccination dropout among children in East
Africa. Notably, features such as place of delivery, health insurance,
maternal earning, healthcare need decision maker, post-natal care
bymidwifery professionals, andwealth index emerged as significant
predictors of vaccination adherence. These findings underscore
the complex interplay between socioeconomic determinants and
healthcare accessibility, revealing that children born at home and
those from families with limited education and media exposure are
at a higher risk of vaccination dropout. While the results provide
valuable insights into the challenges of maintaining vaccination
coverage, they also emphasize the necessity for targeted strategies
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that address these multifaceted issues to improve health outcomes
in vulnerable populations.

Based on the findings of this study, it is essential to
develop and implement comprehensive public health strategies
aimed at increasing Penta 3 vaccination coverage in East Africa.
Interventions should focus on enhancing healthcare access,
particularly for families residing in rural areas where home
births are prevalent. Additionally, public health campaigns should
prioritize improving maternal education and media exposure,
which have been shown to significantly influence vaccination rates.
Strengthening the role of midwifery professionals in post-natal care
could further mitigate dropout risks by providing mothers with
essential information and support regarding vaccination. Finally,
policymakers should consider integrating socioeconomic factors
into health planning, ensuring that programs are tailored to address
the specific needs of lower-income families to promote equity in
healthcare access and utilization.
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