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Intrusion detection has been of prime concern in the Internet of Things (IoT)

environment due to the rapid increase in cyber threats. Majority of traditional

intrusion detection systems (IDSs) rely on centralized models, raising significant

privacy concerns. Federated learning (FL) o�ers a decentralized alternative;

however, many existing FL-based IDS frameworks su�er from poor performance

due to suboptimalmodel architectures and ine�ective hyperparameter selection.

To address these challenges, this paper introduces a novel trust-centric FL

framework based on the tab transformer (TTF) model for IDS. We enhance the

Tab model through an optimization process, utilizing a hyperparameter tuning

algorithm inspired by the nature-based electric eel foraging optimization (EEFO)

algorithm. The goal of the developed framework is to improve the detection of

IDS without using centralized data to preserve privacy. Whereas it enhances the

processing and detection capability of huge amounts of data generated from

IoT devices. Our framework is tested on three IoT datasets: N-BaIoT, UNSW-

NB15, and CICIoT2023 to ensure the model’s performance. Experimental results

show that the proposed framework significantly exceeds traditional methods

in terms of accuracy, precision, and recall. The results presented in this study

confirm the e�ectiveness and superior performance of the proposed FL-based

IDS framework.

KEYWORDS

federated learning, transformers, intrusion detection system (IDS), cybersecurity,

Internet of Things (IoT), optimization

1 Introduction

The Internet of Things (IoT) has evolved an essential component of our daily lives. It

enables a wide range of applications, spanning smart homes, healthcare, agriculture, and

industrial automation (Sarker et al., 2023). The expansion of IoT devices has also spread

new security threats. Intrusion detection systems (IDSs) are necessary for identifying and

preventing these threats (Saba et al., 2022). Traditionally, many IDS rely on centralized

models, which require data to be transferred to a central server for processing (Dong

and Wang, 2016). This approach raises significant privacy concerns, and the dynamic

nature of IoT devices further complicates intrusion detection (ID). For instance, these

challenges include processing diverse data types and adapting to evolving behavioral

patterns. Therefore, there is a need for more advanced IDSs that could effectively address

these challenges.
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Machine learning (ML) models are employed in various

solutions for dynamic and adaptive IDS in IoT (Alsahli et al., 2021;

Amiri-Zarandi et al., 2020). These ML-based solutions proved

their effectiveness in accurately detecting IoT intrusions. However,

concerns have grown regarding data privacy during the learning

or training phase. Many current IDS approaches that utilize ML

are centralized in nature. These IDS often require large volumes

of data, including sensitive and confidential information collected

from various IoT devices, to be transferred to central servers. Such

an approach exposes the transmitted data to significant privacy

risks. Consequently, this may result in data security issues and

privacy hazards, potentially discouraging data sharing in such

systems (Rahman et al., 2020). Another limitation of centralized

IDS is the high computational cost of processing large volumes of

data on central servers. Thus, federated learning (FL)-based IDS

frameworks could offer viable solutions to these challenges.

The FL is an ML technique that authorizes data to be processed

locally at the device level, preserving privacy and reducing

communication costs (Li L. et al., 2020). It eliminates the need

for data aggregation at a central server by distributing learning

operations across multiple participants (Konečny̌ et al., 2016). In

FL-based IDS framework setups, the data remains confidential

on local servers, and a replica of the model (learned model) is

trained on this local data, where the learned model’s weights are

transmitted to a central server model (Mabrouk et al., 2023).

Such methods reduce the workload on the central server while

ensuring data privacy and security (Bonawitz et al., 2019). FL-

based IDS frameworks are well aligned with the distributed nature

of IoT environments. The edge servers of IoT reserve sufficient

computational resources to process tasks at the edge (Li et al., 2018).

The FL-based IDS frameworks offer several benefits for IoT

applications. First, it improves data privacy since it treats each

IoT device as an individual client and trains models without

transmitting its data (Aledhari et al., 2020). Second, FL-based IDS

frameworks may increase the scalability of the detection process

and cost-efficiency since they authorize simultaneous training of

models on datasets kept in multiple locations or servers. Finally,

FL-based IDS frameworks enhance data accuracy and diversity,

which are critical in data science, as larger and more diverse

datasets typically lead to improved model performance. Therefore,

FL-based IDS frameworks are considered highly compatible with

the distributed nature of IoT devices, particularly when IoT

infrastructures leverage edge servers (Nguyen et al., 2021). Recent

studies and research have applied the FL-based IDS frameworks

approach for the ID in IoT devices (Gouissem et al., 2023).

However, these approaches often rely on classical ML models and

general hyperparameter optimization techniques, which may not

fully exploit the potential of FL-based IDS frameworks (Zhang

H. et al., 2023). Recently, integrating DL with FL-based IDS

frameworks has emerged as a comprehensive and robust approach

to intrusion detection. This integration enables the utilization of

diverse IDS types and advanced DL techniques while addressing

associated challenges (Agrawal et al., 2022).

Rey et al. (2022) proposed a security framework that utilizes

the FL procedure to detect and identify malware affecting IoT

infrastructure in a privacy-preserving manner. This framework

integrates anomaly detection and classification using multi-layer

perceptron (MLP) and autoencoder neural network methods.

The authors illustrate a Beyond 5G (B5G) scenario where

detecting cyberattacks targeting IoT devices, managing sensitive

data (including non-independent and identically distributed [non-

IID] data), and addressing untrusted stakeholders or clients are

critical. The authors also highlighted additional challenges when

implementing traditional ML pipelines in a federated setting,

such as normalization, hyperparameter selection, and threshold

determination. The limitations of this framework include the

following:

• The limited number of clients used in their experiments

may not accurately represent real-world scenarios involving

millions of devices.

• Communication overhead can be significant, particularly

when scaling to a large number of clients.

• The centralized aspects of the framework may raise concerns

in privacy-sensitive systems.

• Finally, optimizing hyperparameters in FL-based IDS

frameworks remains challenging, particularly when dealing

with non-IID data.

To address the aforementioned limitations, this study proposes

an improved FL-based IDS framework designed to enhance the

detection of intrusions in IoT environments. The core of this

enhanced framework lies in the integration of the tab transformer

(TTF) (Huang et al., 2020) into the existing framework (Rey

et al., 2022). The TTF model replaces classical neural network

and autoencoder models, offering superior capability in capturing

complex patterns within datasets. Additionally, this study employs

the electric eel foraging optimization (EEFO) algorithm for

hyperparameter tuning within the enhanced framework (Zhao

W. et al., 2023). The EEFO Algorithm, inspired by the foraging

behavior of electric eels, efficiently navigates the hyperparameter

space. This choice is motivated by the need to optimize the

model’s performance without incurring the computational expense

normally associated with normal methods such as the grid search

algorithm. The main contributions of this study are listed in the

subsequent points:

• An enhanced federated learning (FL)-based IDS framework

that leverages FL to detect intrusions on IoT devices while

ensuring data privacy. The proposed framework integrates

both anomaly detection and classification methodologies.

• Implementation of the tab transformer (TTF) model, which

excels in efficiently handling and processing large-scale IoT

data.

• Utilization of the electric eel foraging optimization (EEFO)

Algorithm for hyperparameter optimization, serving as amore

efficient alternative to the computationally expensive grid

search method.

• Comprehensive evaluation of the proposed FL framework by

testing it on three distinct datasets: N-BaIoT, UNSW-NB15,

and CICIoT2023.

The structure of this paper is systematically organized as

follows: Section 2 provides an overview of related studies.
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Section 3 explores the Preliminaries, offering a foundational

understanding of the TTF, EEFO algorithm, and the FL-based

IDS framework, all of which are essential for the subsequent

discussion. Section 4, introduces the proposed model based on the

EEFO algorithm, outlining its design and potential for enhancing

IoT cybersecurity. Section 5 describes the experimental setup,

elaborates on the dataset details and evaluation metrics, and

establishes the groundwork for thoroughly evaluating the proposed

framework. Additionally, it presents the experimental results,

which provide a critical assessment of the proposed model, along

with an analysis of its performance under various adversarial

scenarios. The paper concludes with Section 6, which discusses

the key findings, implications of the current study, and potential

directions for future research.

2 Related studies

This Section presents an overview of FL-based IDS frameworks

applied recently on IDS systems for IoT environments and

underlines their application in IDS. McMahan et al. (2017)

presented federated learning (FedAvg), which is an evolving

technique for training statistical models on end devices. It concerns

data privacy and the escalating computational capabilities of edge

devices. FL exemplifies the broader concept of “bringing code to

data rather than data to code”. Since its inception, the FL has

seen substantial advancements bymultiple methodologies designed

to address its challenges. Meanwhile, data heterogeneity remains

an influential issue within FL approaches. In response, Li T.

et al. (2020) presented a modified (FedProx) iteration of FedAvg

characterized by the addition of the regularization term to the

local objective functions. FedProx aims to relieve inconsistencies

arising from training global models on heterogeneous data.

Empirical findings indicate that FedProx displays enhanced

stability and accuracy within heterogeneous networks compared

to FedAvg.

The FL-based IDS frameworks have evolved significantly, as

demonstrated by Yang et al. (2019) and Kairouz et al. (2021),

which comprehensively explore recent advancements in this field.

Because of its decentralized structure, FL distributes risks among

diverse entities, especially clients and servers. In Lyu et al. (2022),

considerable challenges are highlighted within an adversarial setup

along with established defense mechanisms to safeguard the

system against these threats. The authors of Biggio et al. (2012)

proposed using support vector machines (SVM) to counter various

data poisoning attacks.These attacks include label flipping, where

the binary labels of specific data points in the training dataset

are altered to disrupt the model training process. In Blanchard

et al. (2017), the authors investigated the strength of a dispersed

accomplishment of Stochastic Gradient Descent when faced with

randomly acting (Byzantine) competitors. The study introduced a

model strategy for a poisoning attack executed from the perspective

of a hostile client adept at estimating gradients. First, it illustrates

that the standard model aggregation stage performed by a server

in general of FL-based IDS frameworks fails to manage a single

hostile client within the FL approach. Furthermore, it establishes a

broader demand that nomodel aggregation function be used, which

may rely on linear combinations of client-sent models and could

effectively withstand attacks from Byzantine adversaries.

Vaswani et al. (2017) introduced transformers as a

model architecture for sequence-to-sequence learning. These

transformers use an attention mechanism to evaluate the

significance of each part of an input sequence by looking at

the whole input. Unlike recurrent neural networks (RNNs),

transformers consist of both an encoder and a decoder but do

not rely on recurrent connections. The encoder and decoder in

transformers are assembled of stacked layers, such as multi-head

attention, expansion, normalization, and feed-forward layers.

Furthermore, transformers utilize a positional encoding layer

to preserve positional details throughout the input and output

sequences, compensating for the lack of recurrent networks that

traditionally store such information. The efficiency of this attention

mechanism is explained in a study by Raza et al. (2023). Linear

representations are generated through matrix multiplications of

Q,K, and V with weight matrices W that are calculated through

training. The multi-head attention method links the encoder

and decoder, ensuring that the input sequences from both are

taken into account up to a certain point in the sequence. The

encoder and the decoder use a feed-forward layer that succeeds the

multi-attention head mechanism.

Raza et al. (2023) proposed AnoFed, a new Autoencoder

(AE) framework based on the transformer in FL-based IDS

frameworks setting using variational autoencoder (VAE) structures.

Primarily built for Electrocardiogram (ECG) analysis, it solves

the real problem in the anomaly detection topic. In addition

to threshold selection issues in anomaly detection in healthcare

data, AnoFed not only provides privacy issues within healthcare

data but also shows explainability of results. The experimental

results showed highly effective performance in detection while

minimizing computational consumption. However, it may face

challenges related to data availability, potential computational and

communication overhead, and the interpretability of AI results in

domains such as IDS applications.

Applying the same hyperparameters across all clients may be

ineffective due to differences in dataset volumes and distributions.

To optimize metrics acquired during training on each client,

client-specific hyperparameter optimization can facilitate the use

of hyperparameters; hence, it can reduce the overall convergence

duration. Several studies, including FL (Reddi et al., 2020; Rey

et al., 2022), have used grid search (Bergstra et al., 2011) to fine-

tune the operation for the learning rate parameter on the central

server before beginning its training. Nevertheless, this method

fine-tunes the learning rate using placeholder datasets, which may

not accurately describe the real dataset and therefore become

impractical in FL scenarios. In Dai et al. (2020), a new approach

that incorporates Bayesian optimization with Thompson selection

for optimizing hyperparameters on numerous clients is introduced.

FedEx (Khodak et al., 2021), which borrows weight-sharing neural

architecture search techniques, presents an FL-HPO framework

utilizing the Successive Halving Algorithm (SHA) to expedite

generic hyperparameter tuning. However, FedEx also brings an

added hyperparameter tuning effect that needs prior tuning. Zhou

et al. (2021) implements a one-shot task with Bayesian optimization

pre-FL training at clients to derive optimal hyperparameters, later
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shared with the server for selection and training the final federated

model. HANF (Seng et al., 2022) treats the selection of ideal

hyperparameters as an n-armed bandit problem and uses weight

sharing to find optimal hyperparameters. However, the search

strategy for optimal hyperparameters demands large resources of

time and capital, especially as the hyperparameter space expands.

Although the majority of studies focused on improving the FL-

based IDS framework’s performance from the server side, none

addressed possible improvements at the client end. The majority

of the hyperparameter optimization methods demand extra aids to

acquire optimal parameters and optimize them individually before

implied training (Kundroo and Kim, 2023).

Javeed et al. (2024) presented a novel FL-based IDS for

IoT networks that combines FL with a zero-trust security

model. The proposed approach employs a hybrid CNN–BiLSTM

architecture to extract spatial and temporal features from network

traffic, enabling effective detection of diverse cyberattacks while

preserving data privacy through local model training and secure

weight aggregation. Experimental evaluations on the CICIDS2017

and Edge-IIoTset datasets demonstrate enhanced accuracy and

scalability compared to traditional centralized methods. Bukhari

et al. (2024) presented a privacy-preserving IDS for wireless sensor

networks that leverages FL to collaboratively train a DL model

using sensor nodes without exposing local data. They proposed

the FL-SCNN-Bi-LSTM model, which combines a Stacked CNN

for spatial feature extraction with a Bidirectional LSTM network

for capturing temporal dependencies, enabling robust detection of

intrusions such as DoS attacks.

Olanrewaju-George and Pranggono (2025) presented an FL-

based IDS for IoT that integrates unsupervised and supervised DL

models. An unsupervised AutoEncoder learns normal behavior to

flag anomalies, while a supervised Deep Neural Network classifies

these anomalies into specific attack types. The authors trained these

two models in a decentralized method to preserve data privacy.

Experiments on the N-BaIoT dataset across nine IoT devices

demonstrate high detection accuracy, although challenges remain

in scalability and handling heterogeneous device data. Danquah

et al. (2025) proposed a computationally efficient FL model for IoT

botnet attack detection that integrates optimized feature selection

using XGBoost. They also reduced dimensionality through PCA

with a differentially private multi-layer perceptron. The model

is trained in an FL setting across four clients on the N-BaIoT

dataset. The proposed approach reduces computational complexity

by 87.34%, making it well-suited for resource-constrained IoT

edge devices. The evaluation of the model is limited to four FL

clients. Their model indicates scalability challenges and reliance on

intensive hyperparameter tuning.

Wen et al. (2025) introduced the DWKAFL-IDS scheme which

is a Dynamic Weighted K-Asynchronous FL framework designed

for IDS in smart grids. The proposed method selects the client

gradients then and aggregates them based on quality and staleness–

using techniques such as an Adaptive Gradient Storage Bucket–to

moderate heterogeneity and communication delays. Experimental

results on datasets like CICIDS2017, UNSW-NB15, and NSL-

KDD display improved convergence and accepted performance.

The FedMSE (Beuran, 2025) is a new semi-supervised FL method

designed for IoT IDS. It combines a shrink autoencoder with a

centroid one-class classifier (SAE-CEN) to learn normal network

patterns and detect anomalies. At the same time, a mean squared

error–based aggregation algorithm (MSEAvg) assigns weights to

local model updates–allowing the system to work effectively even

when only half of the gateways participate. Tests on the N-BaIoT

dataset show that FedMSE boosts detection accuracy from about

94% to over 97% and performs robustly in diverse, large-scale IoT

networks.

Table 1 summarizes recent related studies published in 2023

and 2024, highlighting their advantages and disadvantages. To the

best of our knowledge, the proposed framework leverages the TTF

as a detection model and employs the EEFO algorithm for adaptive

hyperparameter optimization during the training process. This

approach harnesses the power of the attentionmechanism and fine-

tunes hyperparameters on each client to enhance local convergence,

thereby improving global convergence at the server.

3 Preliminaries

3.1 Tab transformer

The tab transformer Huang et al. (2020) is a novel transformer

model developed specially for handling tabular data. It resulted

from the success of transformer models in Natural Language

Processing (NLP), vision, and other domains. The researchers, who

developed the TTF, studied how transformer models can be used

to incorporate features of the dataset and then generalize much

better in more varied scenarios than usual models, by leveraging

the inherent capabilities of the transformer models to capture

dependencies among various features. Its design enables it to use

not only categorical but also continuous features of a tabular

dataset. TTF helps the users in automated feature engineering,

whereas it supersedes the traditional models in terms of accuracy

and performance. One of the main characteristics of TTF is its

capability to capture complex, long-range dependencies between

variables in the tabular data, which is often hard to handle for other

ML models.

The tab transformer enforces a mathematical model through

self-attention, whereby it maps the input features to a latent

space. It has an embedding layer for categorical variables and a

numerical continuous layer for continuous variables. From the

perspective of the self-attention mechanism of the TTF, this can be

mathematically expressed as:

Attention(Q,K,V) = softmax(
QKT

√

dk
)V , (1)

Here, Q, K, and V represent the query, key, and value vectors,

respectively, and dk is the dimensionality of the key vectors. The

softmax function ensures that the attention weights across the

input positions sum to one. This attention mechanism authorizes

the model to weigh the volume of diverse features when making

predictions.

The overall flowchart of TTF is shown in Figure 1. The

flowchart shows that the TTF first abstracts raw data inputs

into two categorical and numerical streams. The categorical
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TABLE 1 Related studies summary.

References Model used Advantages Disadvantages

Zhao R. et al. (2023) Semi-supervised FL via

knowledge distillation

Better detection performance, lower

communication overhead

Non-IID data affects training

Merzouk et al. (2023) Data poisoning attack

parameters

Guidelines for security evaluation Lack of transparency in federated learning

Sebastian (2023) SMOTE, outlier detection,

hyperparameter tuning

High ID performance, protects sensitive data Implementation complexity

Novikova and Golubev (2023) Federated learning-based IDS

architecture

Expands variety of data used, increasing detection

rate

Requires significant computational resources

Xu (2023) DPFL-F2IDS High F1-scores, preserves privacy Trade-off between utility and privacy metrics

Ruzafa-Alcázar et al. (2023) FL with differential privacy Similar results with noise in training Challenges with privacy concerns in data

sharing

Li et al. (2023) Dynamic weighted aggregation

federated learning (DAFL)

Excellent detection performance with low

communication overhead

Complex implementation

Lin et al. (2023) Federated transfer learning Addresses Non-IID data issues Varying class outputs challenge

Huang et al. (2023) Personalized FL Execution &

Evaluation Dual Network

Improved model stability, reduces negative

influence of FL

High complexity in model personalization

Zhang Q. et al. (2023) Personalized FL Algorithms High performance in attack detection under

various data distributions

Challenges in handling data heterogeneity

Hao et al. (2024) FL for hybrid attacks General architecture enhances client-side defenses Complexity of integrating multiple defenses

Al Essa and Bhaya (2024) Hybrid FS Improved feature selection and classifier

performance

Potential scalability issues

Seyed et al. (2024) Cybersecurity mechanism for

IDS

Effective cyber security mechanism for IoT Requires extensive data for optimal

performance

Wang et al. (2024) LDS-FL Privacy preservation with high accuracy Balancing trade-offs between privacy and

model utility

Chen et al. (2024) DFL Reduces bandwidth consumption with

intermediate results

Implementation complexity in real-world

scenarios

Javeed et al. (2024) CNN–BiLSTM-based FL High detection accuracy, robust performance High communication overhead and

scalability trade-offs with a growing number

of edge devices

Bukhari et al. (2024) FL-SCNN-Bi-LSTM Privacy preservation, high detection accuracy,

effective extraction of spatial and temporal

features

Increased communication overhead,

implementation complexity, challenges in

real-time.

Olanrewaju-George and

Pranggono (2025)

AutoEncoder- and DNN-based

FL

Data privacy, robust detection, high accuracy Scalability issues, managing heterogeneous

IoT devices, increased communication

overhead.

Danquah et al. (2025) FL-based MLP with XGBoost High detection performance, low computational

complexity, and incorporates differential privacy

limited to four FL clients, scalability

challenges, and intensive hyperparameter

tuning

Wen et al. (2025) DWKAFL-IDS Improves convergence speed, improved prediction

accuracy

Lower accuracy on some datasets (e.g., 85%

on NSL-KDD), increased complexity,

communication overhead in large-scale

deployments.

Beuran (2025) FedMSE Achieves high detection accuracy (up to 97.30%),

reduces learning costs by requiring only 50%

gateway participation, and handles heterogeneous

IoT data effectively

Requires careful hyperparameter tuning and

efficient gateway selection, extra server-side

computations can add complexity

variables are then encoded into numerical embeddings, and the

numerical data is standardized. Next, they proceed to multi-

head attention to capture complex inter-feature relations, followed

by residual connection and normalization for stability. The two

processed data streams are then concatenated and fed into the

MLP to further learn and abstract the data’s features. After

the output, it is compared with the true label, and the loss is

then calculated to guide the optimizer through backpropagation

for the training process. The architecture is designed to handle

the complexity in tabular data in ML and evenly balance the

unique characteristics of categorical and numerical data in a

unified framework.

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2025.1526480
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Abd Elaziz et al. 10.3389/fdata.2025.1526480

FIGURE 1

Flowchart of the tab transformer.

3.2 EEFO algorithm

Electric eels’ group foraging behaviors, observed in nature

(Zhao W. et al., 2023), inspire the EEFO (smart energy

foraging optimization) algorithm. Mathematically, the electric eel

foraging behaviors–interaction, resting, hunting, migration–are

optimized for exploration and exploitation during the optimization

procedure. An energy element is introduced to handle the shift

from global search to local search and the harmony between

exploration and exploitation in the search area.

• Interaction: The position update equation in the interaction

behavior is given by:

Xt+1
i = Xt

i + αt
i (X

t
j − Xt

i ) (2)

where Xt
i and Xt

j are the positions of the i-th and j-th eels

at time t, respectively, and αt
i is a number randomly selected

in range [−1, 1].

• Resting: The energy update equation in the resting behavior is

given by:

Et+1
i = Eti + βt

i (3)

where Eti is the energy of the i-th eel at time t, and β t
i is a

number randomly selected in range [0, 1].

• Hunting: The position update equation in the hunting

behavior is given by:

Xt+1
i = Xt

i + γ t
i (X

t
best − Xt

i ) (4)

where Xt
best

is the position of the best eel at time t, and γ t
i

is a number randomly selected in range [0, 1].

• Migration: The position update equation in the migration

behavior is given by:

Xt+1
i = Xt

i + δtiL
t
i (5)

where Lti is a Levy flight, and δti is a number randomly

selected in range [−1, 1].

An algorithm should ensure that the positions and energies

of the eels are within their respective bounds. If a position or

energy value goes beyond bounds, it should be reset to a reasonable

value. It also needs to assess the fitness of each eel after updating

its situation and update the best eel if necessary. The algorithm

continues with these steps until a stopping condition is satisfied,

for example, reaching a predetermined number of iterations or

achieving a certain fitness level. The flowchart depicting EEFO is

shown in Figure 2.

3.3 FL-based IDS frameworks utilizing
deep learning models

The following subsection briefly introduces the general

framework for malware detection in IoT environments, as

proposed by Rey et al. (2022), emphasizing scenarios where

data privacy and integrity are critical. The framework assumes

a server and multiple clients owning data from different IoT

devices. The server coordinates the FL process and aggregates

the models sent by local clients. Local clients train their models

using their respective datasets and transmit the updated model

parameters to the server. The framework is evaluated using the

N-BaIoT dataset, which contains data from nine IoT devices

infected with either Mirai or BASHLITE malware. The study

explores supervised and unsupervised approaches for malware

detection, employingMLPs and autoencoders as the primarymodel

architectures. The study also examines the impact of adversarial

attacks on the FL process, where malicious clients may submit

manipulated model updates to the server. It evaluates various

aggregation functions as countermeasures to mitigate the effects of

such attacks. The paper discusses the difficulties and limitations of

the framework, for example, the communication and computation

costs, the heterogeneity in the data, the model robustness, and the

deployment in B5G scenarios.

The framework, illustrated in Figure 3, compares the FL-based

IDS framework with conventional methodologies, such as a naive

decentralized model where clients perform local training and

testing, a centralized model lacking privacy preservation, and two

FL-based IDS framework variants utilizing Mini-batch and Multi-

epoch aggregation algorithms. The objective is to determine the
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FIGURE 2

Flowchart of the EEFO optimizer.

feasibility of using the federated approach in IoTmalware detection

scenarios by comparing the average performance of these models.

A key limitation of this framework is the small number of

clients used for training, currently limited to eight, which is

sufficient for the dataset employed but inadequate for larger-scale

applications. In the real-world scenario of a 5G (Beyond 5G, or

B5G) network, device deployments are expected to reach up to 10

million devices per square kilometer, as per the ITU (International

Telecommunication Union) requirements (Series, 2021). Another

challenge is hyperparameter selection in FL-based IDS frameworks

as there are difficulties with non-IID data. Section 4 proposes

solutions to address these challenges.

4 Proposed Method

The innovation of the proposed Framework can be outlined as

using the TTF model for classification and the EEFO algorithm for

hyperparameter optimization, integrated within the architectural

framework (Rey et al., 2022). We replace the model used in the

original framework, i.e., the neural networkmodel and autoencoder

(discussed in Section 3.3), with the TTF model. This integration of

the TTF transformer with FL-based IDS frameworks is motivated

by its ability to process data efficiently. Unlike the neural network

and autoencoder models, the TTF effectively captures feature

dependencies through self-attention mechanisms and enhances

detection accuracy by reducing computational overhead in FL-

based IDS environments. Additionally, we replace traditional grid

search techniques with the EEFO algorithm. Unlike Grid Search,

which exhaustively evaluates all hyperparameter combinations,

EEFO uses an adaptive search strategy inspired by electric eels’

foraging behavior, allowing it to explore the hyperparameter space

efficiently. This replacement reduces computational overhead while

optimal performance is increased in FL-based IDS frameworks, due

to training resources being distributed across multiple clients.

The Subsection 3.3 has also identified some shortcomings

within the FL-based IDS framework (Rey et al., 2022), particularly

the constraint of a limited number of clients interacting with the

model. The TTF model can improve performance when handling

sparse data distributed across clients. Unlike the neural network

model used in the framework, which is constrained by the number

of clients, the TTF model is designed to process and learn more

effectively from the heterogeneous data generated by IoT devices.

Unlike the neural network model used in this framework, with the

limitation in the number of clients, TTF is capable of handling

large-scale, high-dimensional tabular data, which can enhance

the generalization of the system across diverse environments in

IoT.
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FIGURE 3

Framework of the FL-based IDS frameworks.

Furthermore, we developed an approach combining grid

search and EEFO to address certain limitations of hyperparameter

tuning. This optimization technique is designed to streamline

hyperparameter selection, significantly reducing the computational

load and ensuring optimal performance in a shorter period. The

use of EEFO would further help to enhance the precision of FL-

based IDS frameworks so that robust IDSs are realized even with a

higher number of deployments that shall cater to the ITU standards

for B5G networks. Since architectural hyperparameters must be

consistent across clients, they require consensus through shared

validation results. The EEFO optimization algorithm facilitates this

process. Federated clients transmit the verification findings for each

possible combination of hyperparameters, and the EEFO algorithm

identifies the optimal solution based on the average performance

across all clients. This ensures that hyperparameter selection is

driven by achieving the highest validation accuracy.

Our tuning process for each client includes the learning

rate, number of epochs, and the batch size. The values of these

parameters were generated randomly by the following Equation 6:

X = L+ rand× (U − L), L = [0.0001, 5, 8], U = [0.1, 50, 128]

(6)

where L and U are the lower and upper bounds for the

hyperparameters, respectively. rand is a random number between

0 and 1. This equation linearly interpolates between the lower and

upper bounds based on the random number. It effectively samples

from a uniform distribution within these bounds. For instance,

learning rates were explored between 0.0001 and 0.1, the number

of epochs ranged from 5 to 50, and batch sizes varied from 8 to 128.

All participants must agree upon architectural hyperparameters

based on shared validation results. The validation is carried out

using benign data to minimize loss. Hyperparameter selection

is based on achieving the highest validation accuracy. Figure 4

presents the proposed FL-based IDS framework based on TTF

and EEFO algorithms as hyperparameter optimization. Where all

clients collaboratively contribute to the development of a shared

global model (Weights) under the coordination of a central server.

The process begins at the client level, where each client preprocesses

and prepares its local data, optimizes the hyperparameters, and

trains the model locally using this data. These locally trained

models’ weights are then shared with the central server. At

the server side, the model weights received from all clients are

aggregated to update the global model. This aggregation aims to

synthesize the learning from diverse data sources and improve

the overall model by incorporating a broad spectrum of data
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FIGURE 4

Flowchart of the proposed framework.

characteristics and patterns. Once the global model is updated, it

is returned to all clients.

This cyclical process of training, sharing, aggregating, and

redistributing enhances the model iteratively while maintaining

data privacy, as the data remains local to each client, preventing

privacy breaches and data leakage. The proposed framework could

be summarized as follows stages:

• Stage 1: Dataset Loading and Preparation The loaded dataset

is preprocessed and divided into training and testing sets at

this stage. The training part was utilized to train and tune the

model parameters. Then, after t iterations, the testing part is

used to evaluate the model at the client.

• Stage 2: Hyperparameter Optimization and Training This

stage performs hyperparameter tuning and training for the

local model process for t iterations. At each iteration, the

following two sub-stages were implemented:

– Tuning Process By EEFO algorithm: In conventional FL

frameworks, hyperparameters remain unchanged across

all clients, disregarding that individual clients may have

varying amounts of data and computational resources.

By using the EEFO algorithm, each client optimizes its

model’s hyperparameters such as learning rate, number of

epochs, and batch size, based on Equation 6, on the local

data. This optimization ensures that the model is tuned

to the particular characteristics of the data it trains on.

Each client’s model is specifically tailored to the unique

characteristics of its own data and scenario, for instance,

in IoT environments where data properties can vary
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significantly from one device to another due to differences

in device types, configurations, or operational scenarios.

This tuning process ensures that the model is accurate and

efficient in learning from the specific data it encounters.

The stage enhances the overall FL framework process by

ensuring that when local models are aggregated, each has

been optimized under the best possible conditions for its

dataset and according to its resources.

– Local Model Training: Each client trains its pre-optimized

model using its local training data. The client then

revisits the hyperparameter optimization process. This

iterative process benefits from the initial hyperparameter

optimization, enabling a more accurate and effective

learning phase.

• Stage 3: Local Model Evaluation At this stage, the model is

evaluated using the testing part of the dataset resulting from

stage 1. This stage is important for assessing the local model

performance. The utilized evaluation metrics are discussed

later in Section 5.2.

• Stage 4: Sharing Model Weights After the fulfillment of

training and evaluation, the model at each client shares

its parameter weights to the central server. The server

combines these weights to assemble an updated global model

representing the summed learning across all the clients.

• Stage 5: Model Redistribution and Iteration The

enhanced global model is redistributed to all local clients

for repeat training at this stage. This cycle of training,

optimizing, sharing, and updating continues until reaching

a predetermined termination criterion. This ensures that the

model is continuously improving and adaptable to new data

or threats.

5 Experiments and results

In our experiments, each client processes its dataset

independently, adhering to FL principles, thereby ensuring

decentralized data handling within the framework. The strategy

emphasizes data privacy and scalability over the distributed

networks. Finally, our approach focuses exclusively on supervised

learning, utilizing labeled data for both binary and multi-class

classification tasks. This strategy was implemented to train the TTF

model, enabling successful intrusion detection in IoT devices.

In the proposed framework, the initial TTF model with

randomly initialized parameters serves as the foundational model,

which is then fine-tuned using the EEFO algorithm. Afterward,

this optimized model is dispatched by the server to the clients

for multiple iterations of local training. The primary evaluation

focuses on the implementation improvements of the proposed

framework, particularly in comparison to the FedAvg algorithm

(McMahan et al., 2017), using metrics such as client workload, time

to convergence, and accuracy. To quantify the impact of network

latency, the proposed framework was implemented in a single

computational environment. In this approach, a unified Python

process handles both server and client roles on the same hardware,

utilizing PyTorch 23.05 to facilitate communication between local

TABLE 2 N-BaIoT dataset descriptions.

Property Value

Number of features 89

Number of samples 7,062,606

Number of classes 11 (10 attack classes + 1 benign class)

TABLE 3 UNSW-NB15 dataset descriptions.

Property Value

Number of features 48

Number of samples 2,500,000

Number of classes 9 (Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,

Reconnaissance, Shellcode, Worms)

processes. It should be clarified that this methodological decision

does not alter the overall applicability or relevance of our findings.

This subsection summarizes the datasets used and presents the

results of various experiments conducted to validate the proposed

framework. All experiments took place using a DELL laptop

equipped with a corei7 processor, 32GB of RAM, and powered by

an Nvidia GTX 1650TI graphics card.

5.1 Datasets details

To ensure the performance of the proposed model, we conduct

the experiments on three different datasets, which are summarized

in the following subsections.

• N-BaIoT dataset: The N-BaIoT dataset offers real data from

Mirai and BASHLITE botnet-infected IoT devices (Meidan

et al., 2018). The dataset contains data from nine retail

IoT devices that were certified contaminated by Mirai and

BASHLITE. This dataset discloses the deficiency of shared

botnet datasets primarily for the IoT, and provides real data

for research purposes. This makes it valuable for research

and development in the specialization of IoT botnet attack

detection. N-BaIoT is valuable for IDS and multi-class

classification applications, despite its relatively limited size and

potential class imbalance. Table 2 summarizes the description

of this dataset.

• UNSW-NB15 dataset: We evaluate the model using the

UNSW-NB15 dataset (Moustafa and Slay, 2015), which

simulates various contemporary attack types in a current

network setting. We used this dataset in a binary layout, where

each data sampling is assigned either a Benign or an Attack

label. The actual dataset has approximately 2.5million records,

encompassing a total of 48 features, as documented in Table 3.

To use this dataset in a federated setting, we assumed that

every unique IP address denotes a distinct participant. In

this way, the data instances are dispersed and established on

the goal IP address present within the network packets. We

identified those participants whose local datasets contained

at least one attack sample during the selection process. We
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TABLE 4 Selected distributed UNSW-NB15 dataset for local training.

Local dataset Benign samples Attack samples Total

1 38,082 2,911 40,993

2 8,231 5,008 13,239

3 25,812 2,497 28,309

4 11,719 4,826 16,545

5 39,007 3,429 42,436

6 43,754 3,741 47,495

7 6,931 4,609 11,540

8 21,080 3,991 25,071

9 92,991 2,671 95,662

10 11,195 3,839 15,034

TABLE 5 CICIoT2023 dataset descriptions.

Property Value

Number of features 46

Number of samples 46,686,579

Number of classes 34 (33 attack classes + 1 benign class)

identified 10 distinct nodes that met these criteria. Table 4

summarizes the samples associated with these 10 participants.

• CICIoT2023 Dataset: The CICIoT2023 dataset is a real-time

dataset for extensive-scale incursions in an IoT (Neto et al.,

2023). It is a comprehensive IoT invasion dataset proposed to

enhance the expansion of security analysis applications in real

IoT procedures. The dataset consists of 33 incursions executed

in an IoT network of 105 instruments with 46 features.

These incursions are categorized into 7 classes: DoS, DDoS,

Web-based, Recon, Spoofing, Mirai, and Brute Force. Each

attack is performed by malicious IoT devices on different IoT

instruments. Table 5 provides a general dataset description.

In our research, we considered the composition of the datasets

in this respect, ensuring they are balanced across classes. For

the datasets used in this study–N-BaloT, UNSW-NB15, and

CICIoT2023–measures were taken to ensure equal distribution of

samples between classes. This helps mitigate biases and helps a

model to showcase its generalizing capabilities fairly across various

scenarios within IoT security frameworks. By ensuring dataset

balance, the research findings are reinforced, providing a reliable

basis for assessing the performance of the proposed FL framework.

5.2 Evaluation metrics

Accuracy is a measure that indicates the ratio of valid forecasts

assembled by a model in association with all predictions. It is

derived from the summation of true positive (TP) and true negative

(TN) predictions divided by all predictions that are false positive

(FP) and false negative (FN). Mathematically, accuracy is calculated

as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

Precision is one performance gauge, quantifying the ratio

of correctly identified positive predictions against all positive

predictions assembled by the model. It is obtained by the division

of true positive (TP) predictions by the full of true positive and false

positive (FP) predictions. Mathematically, precision is represented

as:

Precision =
TP

TP+ FP
(8)

Recall, also directed to as sensitiveness or true positive rate,

signifies the ratio of correctly identified actual positive cases by

the model relative to the total number of actual positive cases. It’s

computed as TP divided by (TP + FN). Mathematically, recall is

expressed as:

Recall =
TP

TP+ FN
(9)

The F1 score is a balanced metric that integrates both precision

and recall in an overall performance rating of a model. It is

calculated as the harmonic mean of the Precision and Recall terms,

hence it considers both the model’s true positive rate (Recall) and

positive predictive value (Precision). Mathematically, the F1 score

can be defined as:

F1-Score = 2 ·
Precision · Recall

Precision+ Recall
(10)

One of the most important assessments essential in measuring

the performance of the IDS model in the IoT is the stated metrics.

For example, the accuracy of the model generally provides an

overall view of how well the model performs. Precision and recall,

on the other hand, disclose howwell the model can identify positive

cases (intrusions) and prevent false alarms. Moreover, minimizing

the false positive rate is significant since it reduces the number of

false alarms while preserving the credibility of the model.

5.3 Comparative results

The evaluation of our proposed framework is based on the

N-BaIoT, UNSW-NB15, and CIC-IoT2023 datasets (explained in

Section 5.1). Table 6 presents performance results accuracy, loss,

and processing time (in s) of the training process for the Proposed

& Original framework over the three datasets in both Binary &

Multi classification tasks. The table also presents a comparison

according to computational cost (time in s) between the proposed

and the original framework. It is noted that the usage of the

EEFO algorithm as hyperparameter optimization reduced the time

needed during the training phase. From this table, the proposed

model achieved the highest accuracy, lowest loss, and less time over

the original.

The accuracy curves presented in Figures 5a, b, 6a, b, 7a, b

are evident that the proposed framework achieved higher accuracy

across the epochs for both classification tasks. These curves

show improved accuracy levels and faster convergence. In terms
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TABLE 6 Training performance results of binary and multiclass classification for original and proposed frameworks.

Dataset Framework Binary Multi-class

Accuracy (%) Loss Time(s) Accuracy (%) Loss Time(s)

N-BaIoT Original 97.1 0.28 520 96.00 0.32 680

Proposed 99.95 0.02 400 99.05 0.08 550

UNSW-NB15 Original 96.50 0.25 610 94.92 0.34 820

Proposed 99.01 0.05 480 98.30 0.12 650

CICIoT2023 Original 95.00 0.32 920 93.54 0.37 1250

Proposed 99.94 0.03 750 98.65 0.12 1020

The bold values indicate that these are best values compared to others.

FIGURE 5

(a–d) Accuracy and loss curves for proposed vs. original framework in both binary and multi-class for N-BaIoT datasets.

of efficiency and model generalization, the proposed framework

outperforms the original framework since it reaches peak accuracy

earlier and has a steeper improvement trajectory. The advantages

of the proposed framework are further shown by the Loss curves

(Figures 5c, d, 6c, d, 7c, d). When compared to the original

framework, the proposed framework exhibits a much quicker

decrease in loss during training and maintains a lower loss value

across all epochs. This reduced loss, which is seen in both the binary

and multi-class cases, shows improved optimization capabilities

and more efficient learning with fewer training mistakes. The

accuracy & loss curves presented in Figures 5–7 illustrate the

superior performance of the proposed framework compared to the

Original for both Binary and Multi Classification tasks over the

N-BaloT, UNSW-NB15, and CICIoT2023 datasets, respectively.
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FIGURE 6

(a–d) Accuracy and loss curves for proposed vs. original framework in both binary and multi-class for UNSW-NB15 datasets.

The performance results of our model in the testing phase

are presented in Table 7 in the binary classification case over the

three datasets. For the N-BaloT dataset, the proposed framework

achieves the highest values in accuracy of 99.92%, precision of

99.80%, recall of 99.82%, and an F1-score of 99.81%, exceeding

the original’s metrics of 97.83%, 97.70%, 97.60%, and 97.65%,

respectively. Similarly, on the UNSW-NB15 dataset, the proposed

framework achieved an accuracy of 98.50%, precision of 98.30%,

recall of 98.20%, and an F1-score of 98.25%, compared to the

original framework’s 96.48%, 96.30%, 96.10%, and 96.20%. The

majority of the improvements are observed in the CICIoT2023

dataset, where our Proposed framework achieves 99.86% accuracy,

99.75% precision, 99.55% recall, and 99.65% F1-score, significantly

higher than the original framework’s 95.38%, 95.25%, 95.05%, and

95.10%. Additionally, the proposed framework requires less time

during the testing phase than the original. These results indicate

that our proposed framework consistently outperforms the original

framework across all three datasets in binary classification tasks.

In addition, the performance results of our model in the

testing phase are shown in Table 8 in the Multi classification case

over the three datasets. For the N-BaloT dataset, the proposed

framework achieves an accuracy of 99.20%, precision of 99.00%,

recall of 98.90%, and an F1-score of 98.95%, outperforming the

original framework’s metrics of 96.50%, 96.00%, 95.80%, and

95.90%, respectively. Similarly, on the UNSW-NB15 dataset, the

proposed framework records an accuracy of 98.04%, precision

of 97.95%, recall of 97.83%, and an F1-score of 97.89%, when

compared to the original’s 94.50%, 94.20%, 94.00%, and 94.10%.

Finally, for the CICIoT2023 dataset, the proposed framework

achieves 98.80% accuracy, 98.60% precision, 98.50% recall, and

98.55% F1-score, surpassing the original framework’s 93.00%,

92.80%, 92.50%, and 92.65%. Also, the proposed processing time

is consistently less than the original. These results prove that our

proposed framework always outperforms the original framework

over the utilized datasets in the Binary & the mutli-classification

tasks.
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FIGURE 7

(a–d) Accuracy and loss curves for proposed vs. original framework in both binary and multi-class for CICIoT2023 datasets.

5.4 Comparative with state-of-the-art
methods

The comparative analysis in this section characterizes recent

FL-based solutions in the domain of IDS, which is given in

Table 9. Models used FL frameworks under comparison span

Deep Neural Networks (DNN), LSTM, Random Forest (RF), as

well as specialized frameworks like FLUIDS (Aouedi et al., 2022)

and Energy Flow Classifier (EFC) (Carvalho Bertoli et al., 2023)

along with SIDS (Amiri-Zarandi, 2023) and FL-IIDS (Jin et al.,

2024). Research studies cite a spectrum of datasets, including

variations of UNSW-NB15, KDD99, NSL-KDD, CIC-IDS-2017,

Bot-IoT, TON-IoT, and CSE-CIC-IDS-2018, which present unique

challenges representative of real-world IoT security scenarios.

Recently, Olanrewaju-George and Pranggono (2025) introduced

the unsupervised AutoEncoder and supervised DNN applied

on N-BaIoT dataset, they achieved 90.93% of accuracy. They

achieved 93.12% of F-score values, which are low compared to

the proposed. The DWKAFL-IDS model (Wen et al., 2025) is

tested on CICIDS2017, UNSW-NB15, and NSL-KDD datasets,

and it achieved 91.38% of accuracy on the UNSW-NB15 dataset.

Furthermore, the FedMSE model (Beuran, 2025) evaluated on

the N-BaIoT dataset and achieved 94.74% of accuracy. It is

noted from the literature summarized in the Table 9 that the

proposed model shows outstanding performance with high

accuracy and F-score values across the tested datasets. On the N-

BaIoT dataset, the model averages accuracy and F-score values

of 99.02% and 98.87%, respectively, clearly indicating superior

detection capabilities compared to other models on the same

dataset.

Additionally, the model’s implementation on the

UNSW-NB15 and CICIoT2023 datasets validates its

position, outperforming the results of other contemporary

FL-based solutions. In summary, Table 9 highlights the

proposed model as a strong contender among FL-based IDS

frameworks for IoT security, demonstrating its potential

to emerge as a leading methodology based on the results

presented.
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TABLE 7 Testing performance results of the proposed and original frameworks in binary classification.

Dataset Framework Accuracy (%) Precision (%) Recall (%) F1 (%) Time (s)

N-BaIoT Original 97.83 97.70 97.60 97.65 210

Proposed 99.92 99.80 99.82 99.81 160

UNSW-NB15 Original 96.48 96.30 96.10 96.20 275

Proposed 98.50 98.30 98.20 98.25 210

CICIoT2023 Original 95.38 95.25 95.05 95.10 430

Proposed 99.86 99.75 99.55 99.65 350

The bold values indicate that these are best values compared to others.

TABLE 8 Testing performance results of the proposed and original frameworks in multiclass classification.

Dataset Framework Accuracy (%) Precision (%) Recall (%) F1 (%) Time (s)

N-BaIoT Original 96.50 96.00 95.80 95.90 320

Proposed 99.20 99.00 98.90 98.95 250

UNSW-NB15 Original 94.50 94.20 94.00 94.10 430

Proposed 98.04 97.95 97.83 97.89 350

CICIoT2023 Original 93.00 92.80 92.50 92.65 620

Proposed 98.80 98.60 98.50 98.55 500

The bold values indicate that these are best values compared to others.

TABLE 9 Comparison with recent FL-based frameworks.

References Model-based Dataset Accuracy (%) F-Score (%)

Sarhan et al. (2023) DNN NF-UNSW-NB15-v2 (Sarhan et al., 2022) 91.16 90.51

LSTM 88.92 88.38

DNN NF-BoT-IoT-v2 (Sarhan et al., 2022) 93.08 93.01

LSTM 92.57 92.52

Markovic et al. (2022) RF KDD99 84.77 -

NSL-KDD 93.51 -

UNSW-NB15 79.13 -

CIC-IDS-2017 (Sharafaldin et al., 2018) 73.26 -

Aouedi et al. (2022) FLUIDS UNSW-NB15 - 86

Carvalho Bertoli et al. (2023) EFC Bot-IoT 93 96

TON-IoT (Moustafa, 2021) 74 77

UNSW-NB15 97 73

CSE-CIC-IDS-2018 (Gopalan, 2021) 98 90

Amiri-Zarandi (2023) SIDS UNSW-NB15 84 90

Jin et al. (2024) FL-IIDS UNSW-NB15 68.764 -

CSE-CIC-IDS-2018 99.62 -

Olanrewaju-George and Pranggono (2025) AutoEncoder and DNN N-BaIoT 90.93 93.12

Wen et al. (2025) DWKAFL-IDS UNSW-NB15 91.38 -

Beuran (2025) FedMSE N-BaIoT 94.74 -

Proposed N-BaIoT 99.02 98.87

UNSW-NB15 UNSW-NB15 98.02

CICIoT2023 95.47 95.65
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5.5 Key findings and limitations

The presented results significantly improve ID in IoT

environments compared to traditional FL-based IDS approaches.

The results showed that our model achieved higher accuracy,

precision, recall, and F1-score across multiple datasets (N-

BaIoT, UNSW-NB15, and CICIoT2023). The EEFO algorithm

enabled adaptive hyperparameter tuning and optimizing model

performance based on dataset variations across different clients.

Also, the TTF enhances feature representation, which leads to

improved classification performance for both binary and mutli-

classification ID tasks. The experimental results confirm that

our approach outperforms existing FL-based IDS frameworks by

achieving higher detection rates whilemaintaining data privacy and

reducing central processing overhead.

Despite these advantages, the proposed framework has certain

limitations. First, the computational costs of training the TTF on

edge devices are significantly high, especially on the constrained

resources of IoT environments. While FL-based IDS frameworks

reduce the need for centralized data computation, local training

on devices with constrained computational resources can introduce

latency. In addition, the optimization process using EEFO

requires iterative hyperparameter tuning, possibly increasing

convergence time under situations of a huge number of clients.

The second challenge is managing extremely unbalanced datasets,

especially where specific attack types are underrepresented,

possibly compromising the overall generalization of the model in

real-world deployment.

6 Conclusion and future studies

Based on the in-depth analysis conducted in this study, we

conclude that the proposed framework is highly significant for

intrusion detection (ID) in IoT environments. The framework

was evaluated on three diverse datasets–N-BaIoT, UNSW-NB15,

and CIC-IoT2023–and demonstrated superior performance to

traditional FL-based IDS frameworks. The tab transformer (TTF)

model has proven highly effective in managing high-dimensional

data and leveraging the intrinsic patterns inherent in IoT

devices. By employing the electric eel foraging optimization

(EEFO) algorithm for hyperparameter optimization, our model

achieves high accuracy while maintaining resilience against various

types of intrusions. The proposed framework exemplifies the

potential of integrating advanced TTF architectures with nature-

inspired optimization algorithms within a Federated Learning (FL)

approach for intrusion detection systems (IDS). This approach can

drive significant advancements in securing IoT devices.

As a future study, it would be valuable to explore the

effects of unsupervised learning contexts to assess their impact

in comparison to the supervised framework. Additionally,

evaluating the robustness of the model in detecting attacks–

particularly by testing it against manipulated adversarial samples

designed to evade detection–presents a promising avenue for

future research.
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