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Al biases as asymmetries: a
review to guide practice

Gabriella Waters' and Phillip Honenberger*!

Center for Equitable Al and Machine Learning Systems (CEAMLS), Morgan State University, Baltimore,
MD, United States

The understanding of bias in Al is currently undergoing a revolution. Often
assumed to be errors or flaws, biases are increasingly recognized as integral to
Al systems and sometimes preferable to less biased alternatives. In this paper we
review the reasons for this changed understanding and provide new guidance
on three questions: First, how should we think about and measure biases in Al
systems, consistent with the new understanding? Second, what kinds of bias in
an Al system should we accept or even amplify, and why? And, third, what kinds
should we attempt to minimize or eliminate, and why? In answer to the first
question, we argue that biases are "violations of a symmetry standard” (following
Kelly). Per this definition, many biases in Al systems are benign. This raises the
question of how to identify biases that are problematic or undesirable when they
occur. To address this question, we distinguish three main ways that asymmetries
in Al systems can be problematic or undesirable—erroneous representation,
unfair treatment, and violation of process ideals—and highlight places in the
pipeline of Al development and application where bias of these types can occur.

KEYWORDS

bias, artificial intelligence, machine learning, symmetry, statistical bias, cognitive bias,
inductive bias, bias-variance trade-off

1 Introduction

The understanding of bias in Al is currently undergoing a revolution. Often perceived
as errors or flaws, biases are increasingly recognized as integral to Al systems and
sometimes preferable to less biased alternatives (Mitchell, 1980; Geman et al., 1992; Yarkoni
and Westfall, 2017; Danks and London, 2017; Taniguchi et al., 2018; Montanez et al., 2019).
Cognitive psychology and statistics have informed this shift, highlighting not only the
costs, but also the circumstantial benefits of biases in decision-making processes. Cognitive
psychology, for instance, presents biases as often helpful in making decisions under
conditions of uncertainty (Tversky and Kahneman, 1974; Gigerenzer and Brighton, 2009;
Hafenbraedl et al., 2016; Taniguchi et al., 2018). Similarly, statistical methods acknowledge
biases as often useful and sometimes necessary for making inferences from data (Mitchell,
1980; Geman et al., 1992; Yarkoni and Westfall, 2017; Montanez et al., 2019). These insights
have been instrumental in redefining biases as not inherently negative, but as sometimes
essential components that can and should be harnessed to improve Al systems.

This new perspective on Al biases raises several important questions, including: (1)
How should we think about and measure biases in Al systems, consistent with the new
understanding? (2) What kinds of bias in an AI system should we accept or even amplify,
and why? and (3) which biases should we criticize, avoid, or eliminate, and why?
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This paper makes four major contributions on this topic
(summarized in Table 1). First, we review prior efforts to define
Al biases, highlighting their weaknesses, and present a thorough
articulation and defense of a new comprehensive definition of
bias in AI systems: the “bias as asymmetry” definition (Section
3). Second, we provide further evidence and argument for the
emerging view that biases in Al systems are not all bad (Sections
2 and 7). Thirdly and perhaps most importantly, we provide a
principled and widely applicable answer to an important question
raised by the “Al biases are not all bad” perspective: “When are
Al biases bad or not bad, and why?” (Sections 4-8 and Table 2).
Fourth and finally, we rely on our answers to this question to
make recommendations for response to Al biases of various types
(Sections 8-9, Table 2).

In addition to these four major contributions, we draw on
the new biases-as-asymmetries perspective to make two additional,
incidental contributions: (a) new interpretations of commonly
known cases of Al bias (Section 10) and (b) new interpretations
of the increasingly relevant topic of LLM biases (Section 11).

Table 1 provides an overview of the paper’s contents, organized
by research contribution.

2 Are biases always bad?

One might think that whatever biases are, they must be some
type of error. One commentator, for instance, defines “[c]ognitive
bias” as “errors or flaws in judgment or decision-making, often
to the point of denying reality,” and “a root cause of medical
errors and sentinel events within the healthcare environment”

10.3389/fdata.2025.1532397

(Stephens, 2019). Another notes that “to researchers trained
in the psychometric tradition, the ... term bias is practically
synonymous with error, tending to connote general wrongness.”
(1105) (Taniguchi et al., 2018).

It's also common to assume that all AI biases are unfair. A
recent web source, for instance, writes that “Artificial intelligence
(AI) bias occurs when a machine learning algorithm makes an
error that leads to an unfair result” (WebFX, 2024). A recent
systematic review defines “bias” as “systematic error in decision-
making processes that results in unfair outcomes” (Ferraro, 2024).

Given these assumed links between “bias,” “error,; and
“unfairness;” one might conclude that Al biases are always bad and
should, as much as possible, be minimized or eliminated: “[bJoth
popular and academic articles invariably present algorithmic bias as
something bad that should be avoided” (Danks and London, 2017).

However, as many have recently argued, not all bias is a bad
thing, and in fact is often necessary or desirable (Hagendorft
and Fabi, 2023; Geman et al.,, 1992; Mitchell, 1980; Montanez
et al.,, 2019; Taniguchi et al., 2018; Yarkoni and Westfall, 2017).
A 2022 NIST special report on Al bias notes that “bias is not
always a negative phenomenon” (Schwartz et al., 2022). A recent
team of authors write that “bias can be a positive and desirable
aspect of a well-engineered model when used to improve other
model characteristics” (Landers and Behrend, 2023). Another argue
that biases are essential to building AI systems that serve their
intended purposes (Hagendorff and Fabi, 2023). How can these
violations of the usual association between “bias” and “wrongness”
be understood?

In our view, the key insight that explains why biases aren’t
always bad is that the term “bias” is more or less synonymous

TABLE 1 Contents of article, organized by four primary contributions and two incidental contributions.

Section of
paper

Primary contributions

Defining
“bias”

Establishing
that not all Al
biases are
unacceptable

Clarifying which
Al biases are
acceptable and
which are

Incidental contributions

Recommending
responses to Al
biases of various

types

Reinterpreting Reinterpreting
well-known bias in LLMs
cases of Al
bias

unacceptable,

and why

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

R
I

Section 10

Section 11

Section 12

Table 2

Shading indicates which parts of the paper (vertical axis) are devoted to which contributions (horizontal axis).
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with “violation of a symmetry standard™ wherever anything,
including an Al system, exhibits an asymmetry, that asymmetry
can be described as a bias of a certain kind (Kelly, 2022).
Since our world is not composed solely or even primarily of
perfectly symmetrical objects and relationships, systems that
were completely unbiased would be condemned to inaccurately
represent important features of our world, making them less
preferable to more biased alternatives that describe the world more
accurately. Further, preferences themselves—including ethical
valuations—are asymmetries. By failing to encode “asymmetrical”
preferences for some things or outcomes over others, unbiased
systems are less likely to be effective at guiding agents’ actions and
less likely to align with users’ values, ambitions, and projects.
However, while a system’s exhibiting some asymmetries rather
than no asymmetries is almost always essential to its capacity
for success, the precise asymmetries exhibited must be of a sort
that improves rather than diminishes the system’s accuracy and
desirability over alternatives. Otherwise, the system is biased in
a bad way—that is, its biases carry it off-course from accurately
representing the world or effectively guiding our actions within it.
These three insights—(1) biases are by definition just asymmetries,
thus not inherently good or bad; (2) in almost all cases,
some asymmetries in the system are essential to its functioning
effectively; and (3) which asymmetries a system manifests make
all the difference to whether that system performs as desired—are
developed further in their application to Al systems below.

3 Defining “bias”

Recent discussions point the way to a definition of bias that
applies to all or nearly all cases of bias, whether “good” or “bad.”
This definition is focused on the notion of “asymmetry” (Kelly,
2022).

Hagendorft and Fabi propose that “a common denominator for
all types of biases is that they can be paraphrased as some kind
of distortion, as a tendency toward a particular value, as a specific
presetting, or simply as deviation from a standard or a reduction
of variety” (Hagendorff and Fabi, 2023). However, this definition is
a compilation of heterogenous features that need not coincide. For
instance, a process could involve distortion without tending to a
particular value (as in high-noise or “high variance” samples); could
tend to a particular value without that value being preset; or could
deviate from a standard without reducing variety.

Danks and London give a clearer common formula: “bias’
simply refers to deviation from a standard” (Danks and London,
2017). This definition’s inclusivity is both a strength and a
weakness: it can be used to describe cases of all types given in
Hagendorft and Fabi’s definition, but also includes things that don’t
fit any common or disciplinary-specific meaning of the word “bias.”
For instance, any crime would count as a “bias” by this definition
since it deviates from the standard of “legal behavior.” An athlete
who fails to meet a performance standard in their tryout for a team
could be described as giving a “biased” performance (even if, say,
only 2% of those trying out make the team).

A more adequate definition is suggested by Kelly, who begins by
claiming (like Danks and London) that “bias involves a systematic
departure from a genuine norm or standard of correctness.” (4)
(Kelly, 2022). Attributions of bias according to this meaning are
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always pejorative: that is, they always imply that bias is bad.
However, Kelly then recognizes that our language also includes
non-pejorative ascriptions of bias—for instance, the expression “a
biased coin” (Kelly, 2022). These count as cases of bias, on his
view, if they involve the breaking of some contextually relevant
symmetry standard.

After recognizing the role of symmetry in non-pejorative bias
ascriptions, Kelly comes to recognize the role of symmetry in the
pejorative cases as well, suggesting that the extent to which violation
of a norm is classifiable as bias correlates to the extent to which the
violated norm in question is a symmetry standard: “paradigmatic
instances of bias typically involve departures from standards that
amount to symmetry violations, while being unbiased involves
respecting or preserving certain symmetries and invariances.” (153)
(Kelly, 2022).

For our purposes, we adopt Kelly’s symmetry-based definition
of bias, understanding this as equally applicable to pejorative and
non-pejorative uses of the term. Thus, we define bias as “violation
of a contextually relevant symmetry standard.”

This definition allows us to recognize several important, and
too infrequently distinguished, biases (e.g. violations of symmetry
standards) in play in artificial intelligence and machine learning
contexts. These include (a) asymmetries in how data is collected;
(b) asymmetries in how much data of various types is collected;
(c) asymmetries in the content of that data; (d) asymmetries in
how data points are handled by an interpreter (for instance, by
an algorithm or theory); (e) asymmetries in how various parts of
the world are represented by the resultant model (i.e. differential
accuracy across different parts of the model’s representational
space); and (f) asymmetries in outputted decisions or classifications
(judged by demographic parity or an accuracy-sensitive metric such
as false positive rate or false negative rate across groups) (Carey and
Wu, 2023; Dwork et al., 2012; Barocas et al., 2023; see Figure 1 for a
visual map of asymmetries throughout the AI-ML lifecycle).

Two features of this list are especially noteworthy. First, not
all of these asymmetries are always or even usually undesirable:
asymmetries in how conclusions are drawn from data, for instance,
is unavoidable in conditions of uncertainty (Mitchell, 1980;
Montanez et al., 2019); and asymmetries in dataset contents is
desirable where data are supposed to represent an asymmetrical
reality. Second, a system can be biased in one of these ways
without necessarily being biased in others. These two observations
suggest that attributions of bias to a system should generally be
accompanied by a specification of (1) what kind of symmetry
standard is being violated in this case, and (2) whether the system’s
violation of that symmetry standard in that context is desirable or
undesirable, and why.

Understanding biases as asymmetries newly illuminates
common definitions in Al literature while connecting statistical,
cognitive, and ethical perspectives. The asymmetry concept unifies
these by highlighting a feature common to all forms of bias:
breaking of some possible or expected symmetry.

4 Why are biases bad (When they are)?

If biases are just asymmetries, then some of the biases in Al
systems are necessary or desirable. How then do we distinguish
biases that are problematic and should be avoided or eliminated,
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from those that are innocuous or beneficial? (For ease of discussion,
we will hereafter refer to the former category as “unacceptable
biases,” and the latter as “acceptable biases”).

We propose that there are three main reasons that a bias can
be unacceptable:

(1) The bias leads a system component to be less accurate as a
representation of something it is supposed to represent;

(2) The bias leads to unfair allocation of resources between
individuals or groups (these can include attentional and
representational “resources”: thus, they include both of
what (Suresh and Guttag, 2021) call “allocational” and
“representational” biases);

(3) The bias involves a deviation from processing ideals that
are themselves valid and applicable (for instance: canons of
deductive logic or probability theory).

» o«

We will sometimes refer to these as “error biases,” “unfair
inequality biases” and “process biases,” respectively (explained
further in Section 5 below).

Note that none of the just-listed three things is sufficient by
itself to define bias, on our account. What defines bias is just
asymmetry. But we propose that asymmetries are only unacceptable
(when they are) for one of these three reasons. These three types
of failure—failure of accuracy, failure of fairness, and failure of a
process ideal (e.g. “rationality”)—define and delineate reasons for
finding a bias unacceptable when we do. Thus, faced with evidence
of bias in an AI system, and wanting to determine whether the
bias is one that calls for correction or mitigation, we should ask
three questions:

1. Is the bias inaccurate in any way that is unacceptable?

2. Is the bias unfair in any way that is unacceptable?

3. Does the bias involve a deviation from process ideals in any way
that is unacceptable?

Frontiersin Big Data
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The traditional association of bias with “a regular pattern of
error, and the use of the term “bias” within the field of statistics,
are especially concerned with the first of these three problems.
Sometimes a bias involves outputs or internal components that do
not represent reality accurately; they deviate from reality in some
systematic way. Optical illusions, for instance, constitute biases of
these kinds, as do biased samples in statistics.

Phrases such as “racial bias” and “gender bias” are almost always
focused on the second of the problems, “unfair treatment.” These
phrases signal that individuals from some groups (e.g. “African

» «

Americans,” “women”) are treated differently (asymmetrically) by
comparison with individuals from other groups (e.g. “Caucasians,”
“men”). Concerns about “algorithmic fairness” and “implicit bias”
are likewise usually concerns about asymmetries of this type.

Finally, the literature on “cognitive biases” primarily focuses
on problems of the third type: biases that lead the system to
operationally deviate from a procedural ideal. However, it is worth
noting that deviations from one processing ideal may sometimes
involve greater adherence to a different processing ideal. In these
cases, the system may indeed be “unacceptable” by the first
processing standard, but “acceptable” by the second processing
standard. These observations echo the somewhat paradoxical
result of decades of research into cognitive “heuristics and biases”
(Iversky and Kahneman, 1974): namely, that such biases bring
a variety of benefits and costs to cognitive processes, which
depend heavily on the circumstances in which they’re employed
(Gigerenzer and Brighton, 2009; Hafenbraedl et al., 2016; Taniguchi
etal., 2018).

Bias in “inductive bias” and “bias-variance tradeoffs,” discussed
further below, often do not generate problems of the three types
noted; thus, these likewise concerns ways that data processing
deviates from some processing ideals. But, like cognitive biases,
these deviations sometimes bring the system closer to other
processing ideals that are ultimately more contributory to accuracy
than those that are violated (and the “bias” in such systems is often
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itself a source of error—just not, in cases where more “bias” is
recommendable over more “variance”—as much a source of error
as the variance that is thereby reduced).

5 Error biases, inequality biases, and
process biases

As a shorthand expression for biases that are potentially
unacceptable for one of the three reasons given above, we will

» o«

sometimes refer to these as “error biases,” “unfair inequality
biases,” and “process biases.” These terms refer to cases where an
asymmetry involves systematic deviations from representational
accuracy, differential treatment that counts as unfairness, or
performance that counts as violation of a processing ideal,
respectively.

Note that biases of these three types—inaccuracy biases, unfair
inequality biases, and process biases—cannot simply be classified
as unacceptable in every case that they appear, but rather must
be considered in context. For instance: in some cases, a certain
degree of inaccuracy is inevitable and the badness of this is offset by
other benefits of the system. The question of whether a particular
unfair inequality, inaccuracy, or process bias is acceptable or
unacceptable is often an ethically complex one where specific
features of the case should be considered in making a decision.
Our purpose in delineating these three types of bias as the main
sources of unacceptability in AI biases is not to offer a one-step
operational criterion that allows all cases of unacceptable bias to
be identified and classified by reference to that criterion alone. It
is rather to give guidance on what kind of evidence to look for,
and what kinds of arguments to make, when deciding about what
AT biases to accept or reject. We argue that when an AI bias is
legitimately found unacceptable, it is almost always for at least one
of these three reasons (we thank a reviewer for pointing out the
possible confusion).

Error biases and process biases are prima facie unacceptable
insofar as they involve violation of ideals that normally apply in
all cases (accuracy and processing ideals, respectively). But there
are cases where increases of error bias or process bias can reduce
overall error (“bias-variance tradeoffs” and “cognitive biases and
heuristics,” respectively, discussed further below).

The category of “inequality bias” technically applies to every
case of bias (including error and process biases) insofar as
inequality is a synonym of “asymmetry.” However, some cases of
inequality count as “unfair;” thus triggering the second main reason
why biases can be unacceptable when they are. Hence it is useful to
distinguish “inequality biases without unfairness” from “inequality
biases with unfairness” (i.e. “unfair inequality biases”). And even
unfair inequality biases may sometimes be acceptable (for instance:
when the benefits of employing the system apply even to the “worst
oft” in an unfair distribution, and no less unfair system is feasible:
see Rawls, 1974 for elaboration).

6 Can biases be unacceptable for
more than one reason?

Biases sometimes fit into two or more of the main

problem types simultaneously. For instance, suppose a non-profit
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organization providing food assistance has explicitly adopted, as a
processing standard, that all incoming applications for emergency
assistance should be ranked first by severity of need, then by
proximity to the non-profit’s storage facilities, in determining order
of response. A review of the organization’s practices reveals that
applications from some locations were immediately placed at the
bottom of the list, regardless of severity of need. This asymmetry of
treatment based on geographical location is a violation of both the
stated processing ideal and a possible principle of equal response
for all applications.

To take another example: suppose a model of consumer
preferences is trained on a very imbalanced dataset, such
that consumers in some demographic groups (e.g. women)
are represented in a way that deviates significantly from the
actual distribution of behavior in the larger population of that
demographic group. The deviation itself is a case of sampling error,
and thus a case of representational error. But the difference in
accuracy between men and women that results constitutes a case
of unfairness as well.

If cases of bias can fall into more than one of these three
problem categories, does the distinction between them still hold
value? We believe that it does. Distinguishing and identifying the
precise reasons that a case of bias is problematic is essential to
determining what should be done in response. To take an analogous
case: there are different kinds of “rights” that humans can have
(for instance: legal rights and human rights). Many cases that
involve a violation of one of these rights also involve violations of
others. Nonetheless, it is analytically valuable—and in some cases
essential—to distinguish different kinds of rights that have been
violated in a particular case, as a step toward identifying the actions
that should be taken to protect and restore those rights.

Indeed, once we acknowledge that biases are not inherently
unacceptable but only unacceptable under certain conditions, it
becomes extremely important to develop a clearly articulated
and applicable terminology for distinguishing unacceptable biases
from others. A more fitting analogy, then, is with a category
such as “transfer of property, which sometimes occurs by
legitimate processes (e.g. gifts, purchase, taxation) and sometimes
by illegitimate ones (e.g. larceny, embezzlement, extortion). There
may be cases where property was transferred in ways that include
multiple of these illegitimate categories at once (e.g. larceny and
extortion); it is still important to have clear standards for what
counts as a case of each type of illegitimate form of transfer,
wherever it occurs.

7 Four sometimes good and
sometimes bad biases

In this section we look more closely at a few commonly
discussed types of Al bias. We interpret these in terms of the
type of asymmetry they exhibit, and show that their “acceptability”
or “unacceptability” varies based on context and can be better
understood from this perspective.

(a) Unequal treatment biases

It is important to recognize that while all cases of unequal
treatment are cases of bias, not all of these cases are problematic or
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undesirable. For instance: “Biased” allocation of medical resources
based on differences in risk factors among patients involves unequal
treatment, but this “biased” allocation is exactly what we want
the system to do, since we want it to allocate resources to those
who need them and not waste resources on those who don’t. In
these cases, minimizing “error bias” and achieving our goals for the
system can only be accomplished through unequal treatment.

When an unequal treatment bias is deemed unacceptable, the
reason is usually that the bias seems to be unfair. Discussions of
“racial bias” and “gender bias” in AI are usually about fairness in
this sense, as are most discussions of algorithmic fairness and fair
AI-ML (e.g. Buolamwini and Gebru, 2018; Singh et al., 2024). Well-
known statistical tests for fairness such as demographic parity, false
positive rate parity, and predictive accuracy parity (Carey and Wu,
2023; Dwork et al.,, 2012; Barocas et al., 2023), are often used to
estimate the extent to which unequal treatment biases of various
kinds characterize a system’s decision-making. These metrics differ
from one another in what kind of equality or inequality of treatment
they measure (for instance: equal distribution of a trait between
groups [“independence”]; equal rates of false positives or false
negatives between groups [ “separation”]; or equal predictive power
of assigned scores to individuals in both groups [“sufficiency”])
(Carey and Wu, 2023; Dwork et al., 2012; Barocas et al., 2023).

A remarkable feature of these fairness metrics is that in
many cases they cannot be simultaneously satisfied (Kleinberg
et al., 2016; Chouldechova, 2017). Thus it is sometimes necessary
for a decision-making system to be “unfair” by at least one
standard of fairness that legitimately applies to some cases. Since
no-one should be asked or expected to do the impossible, the
“fairness impossibility” result highlights the need to be careful
and deliberate about choosing the fairness standards by which
one evaluates a system (Honenberger, 2025). Al developers should
carefully consider which fairness criteria are most appropriate
for their specific use case and be transparent about the tradeofts
involved. For instance: proportional parity (“independence”) is
likely preferable in circumstances where resources should be
allocated completely independently of subject features, such as
distribution of stimulus payments to individual citizens in a
stressed national economy (Kearns and Roth, 2019). Reduction of
false positive or false negative rate imbalance (“separation”) may
be preferable when false positives or false negatives are particularly
damaging or ethically unacceptable, such as deciding on anti-
suicide interventions or eligibility for pre-trial release or a loan.
Maximation of predictive accuracy parity (“sufficiency”) may be
the best fit when overall accuracy is the primary target and errors
are not especially harmful, such as advertising or recommender
systems (Honenberger, 2025).

(b) Inductive biases

Mitchell (1980) provides an early example of an argument that
biases are necessary for informative inductive inferences [though
his reasoning parallels Goodman (Goodman, 1955) and Hume
(Hume, 1739). This idea is subsequently discussed as “inductive
bias.” Mitchell (1980) writes that “we use the term bias to refer
to any basis for choosing one generalization over another, other
than strict consistency with the observed training instances.” He

Frontiersin Big Data

10.3389/fdata.2025.1532397

then argues that consistency with the observed training instances
will never be enough to select among alternative generalizations
within what he calls the “version space” of possible generalizations.
The generalization that is identical to the training instances, on
the other hand, provides no means to predict any data points
beyond what’s already given in those instances. Thus, biases are
necessary as means to break the tie between otherwise equivalently
possible generalizations within the version space; without such
a bias, induction itself would be impossible. Mitchell points to
some specific kinds of biases that can be useful for selecting
the generalization, such as “[f]actual knowledge of the domain,”
“[ilntended use of the learned generalizations,” “[k]nowledge

» «

about the source of training data,” “[bJias toward simplicity and
generality,” and “[a]nalogy with previously learned generalizations”
(Mitchell, 1980). Mitchell’s discussion focuses on systems that
“learn” to generalize on the basis of training data, but a parallel
argument can be made for any inductive system.

Subsequent arguments for the necessity of bias in inductive
inferences follow a similar trajectory as Mitchell’s, often with
citations to his 1980 paper (Wilson and Martinez, 1997; Montanez
etal., 2019).

Notice the very limited sense of “bias” according to which such
systems are shown to be biased in these arguments: namely, they are
biased in their selection of an inductive procedure or conclusion
from among all possible procedures or conclusions consistent with
the data alone (the “possible architectures and training algorithms”
step, and the link between model and data set, in Figure 1). If,
on the other hand, we examine the choice of inductive procedure
from a standpoint that includes the supplementary information
(for instance, domain knowledge), then the choice may be very
unbiased by relevant processing standards, insofar as it tracks
relevant differences between the available hypotheses.

Likewise, if we consider these “biased” inductions by the
standard of accuracy to their representational targets—that
is, their “error bias” (in Figure I, this is the error biases
associated with “outputs”’)—then we see that “theory-choice-
biased” inductions are more capable than “unbiased” alternatives
of being representationally unbiased inductions—a fact implied
by the authors’ description of theory-choice-biased inductions as
potentially more accurate (that is, more accurate as descriptors or
predictors of their representational targets).

Furthermore, while these arguments show that biased
inductions can be more accurate than completely unbiased ones
(insofar as completely unbiased inductions fail to classify or predict
future instances that differ from the training instances in any
way), they don’t show that more biased inductions are in general
more accurate than less biased ones; nor even that all biased
inductions are an improvement over completely unbiased ones.
Consider that an induction that misclassifies or falsely predicts
future datapoints is hardly better, and possibly worse, than one
that refuses to classify or predict at all. At least one possible
generalization in what Mitchell calls the “version space” will have
this “gets every new datapoint wrong” feature; thus, at least one
available “biased” induction is arguably as bad or worse than a
completely unbiased induction.

(¢) Cognitive biases
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The literature on “cognitive biases” describes processes of
reasoning or inference that have suboptimal results in many cases,
or deviate from canons of rationality—for instance: principles of
first-order logic or Bayesian probability theory.

However, since Tversky and Kahneman, the terms “cognitive
bias” and “heuristics” have often been used interchangeably
(Tversky and Kahneman, 1974); and while “cognitive bias” carries
some implication of error or at least deviation from optimal
rationality, “heuristics,” in its use by Simon and others, implies a
shortcut that is nonetheless effective at problem solving (Simon
and Newell, 1958). Research has shown that certain cognitive
biases can enhance performance in specific contexts (Taniguchi
et al., 2018). For example, the “availability heuristic” bias, which
prioritizes easily recalled information, can be beneficial for rapid
decision-making in emergency situations (Tversky and Kahneman,
1973).

One might suppose heuristics can contribute efficiency but
only at the expense of accuracy. However, some have argued
that cognitive biases and heuristics are actually optimal for
accuracy in some circumstances, particularly those in which the
application context is very different from the training context
(Gigerenzer, 1991; Gigerenzer and Brighton, 2009; Hafenbraedl
et al, 2016; Hjeij and Vilks, 2023). The relative benefits and
costs of a more biased system, in these circumstances, are similar
to those between higher-bias-lower-variance systems and higher-
variance-lower-bias systems in bias-variance tradeoffs (discussed
further below).

It is important to note that, in cases where higher bias is found
to be beneficial, not just any bias will achieve the benefit. The bias
must be in a direction and of a type and quantity that improves
overall accuracy (even if the system is still inaccurate in many of
its particular decisions or predictions, and even if it is this way
because of the bias). This means that some cognitive biases, in
some circumstances, reduce “error bias,” and are therefore “good”
or “preferable” in those circumstances. But not every cognitive
bias is good or preferable in every circumstance. The particular
cognitive bias and the particular context are of essential importance
in determining whether a particular cognitive bias is an overall
beneficial feature of a system.

(d) Bias in bias-variance tradeoffs

The “bias-variance” tradeoff has long been known to machine
learning practitioners (Geman et al., 1992). Here “bias” means
“systematic deviation of predicted values from actual values” and
is contrasted with “variance,” which signifies a random deviation
of predicted values from actual values. The discovered “trade-oft”
is that sometimes increasing the bias can decrease the variance,
and sometimes this can result in lower overall inaccuracy than
if the bias were lower but variance were higher. In other words:
sometimes higher-bias models exhibit lower variance than lower-
bias alternatives, and this reduction in variance can lead to higher
overall accuracy for the model (Geman et al., 1992; Gigerenzer and
Brighton, 2009; Yarkoni and Westfall, 2017).

Geman et al. (1992) introduced this idea of a bias-variance
trade-off. Beginning with a contrast between non-parametric
(“model free”) and parametric (“model dependent”) approaches to
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statistical inference tasks, they argued that the estimation error
of a statistical inference procedure could be decomposed into
two main components: bias and variance. Roughly put, variance
is random and non-directional error, whereas bias is systematic
error (typically directional, though perhaps in different directions
for different parts of a dataset or learning task). Model-free
architectures tend to have low bias but high variance, while
model-dependent architectures exhibit lower variance but higher
bias. Since all statistical inference procedures are somewhere on
a spectrum between model-free and model-dependent, all such
procedures can be located in a space of tradeoffs between bias
and variance.

In some circumstances, the risk and extent of estimation
errors arising from variance is greater than that arising from
bias. Introducing bias into such systems can reduce variance
and, in many cases, reduce overall error as a result. Simple
examples of such variance-reducing but bias-increasing procedures
include eliminating outliers; using drop-out (Srivastava et al., 2014);
reducing the parameter size of the resulting model (e.g. requiring
the model function to be no greater than an n-term polynomial);
and stopping the training procedure before overfitting occurs. In
circumstances where more error derives from variance than bias,
such procedures can improve predictive accuracy overall.

Features of learning environments wherein variance is a major
challenge to accuracy include: low quantity of training data; noisy
data; and prediction or application contexts that are relatively
unlikely to be like the training context (Gigerenzer and Brighton,
2009; Hafenbraedl et al., 2016). In these environments, a system
that overfits will be drastically out of step with its representational
target for any new applications (interpolations, extrapolations, or
otherwise). A more biased system, however, can keep this variance
problem in check by holding predictive values within a range less
likely to be wildly inaccurate.

This line of thinking supports the conclusion that more biased
inductions are sormetimes more accurate than less biased ones.
However, several qualifications of this conclusion should be noted.

First, the precise bias that is selected makes an enormous
difference. In a case where variance is a problem and introduction
of biases can help, some biases that could be selected will reduce
variance more than they generate new sources of error. But, in
almost all such cases, some others of the biases that could be
selected will reduce variance but also generate greater sources of
error than they eliminated (now due to bias). Without any reason
to choose one bias over another, we risk making things worse
rather than better with any bias we choose (for the same reasons
noted earlier in connection with “cognitive biases” and “inductive
biases”). Further, when we have a reason to choose one bias rather
than another, this choice of bias is itself evidentially motivated,
and hence shows elision of at least some kinds of potential
process bias.

Second, the benefit of the bias in bias-variance tradeoffs is
merely relative and instrumental: if a model that were equivalently
lower variance but also lower bias became available, that lower-
bias-and-lower-variance model would generally be preferable to
the high-bias model. This shows that the epistemic goodness of
increases in such biases is merely an instrumental goodness (tied
to reduction in variance).
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8 What should be done about Al biases
(and why)?

Previous discussions of Al bias often classify biases by the stage
of the AI lifecycle at which they appear: for instance, biases in
datasets, in model selection, in output, and in applications (Danks
and London, 2017). Combining this common approach with the
asymmetry-based classification of AI biases developed in previous
sections provides a novel systematic framework for understanding
and evaluating AI biases. This framework enables us to more
clearly distinguish biases that are acceptable from those that are
unacceptable, as well as to think about trade-offs between biases of
different types (Table 2).

Table 2 gives a classification of AI biases by (a) the type of
asymmetry that defines them and (b) the stage of the development
cycle at which they appear. This allows us to note (c) which types of
biases are acceptable or unacceptable, and make recommendations
for “mitigation” accordingly.

We can separate the biases described in this table into three
categories: Necessary (in some regard); Usually good; and Usually
bad. When biases are necessary or good, they are usually acceptable;
when biases are bad, they are usually unacceptable (we say “usually”
because of complications such as biases that are bad in one way but
good in another. In these cases, deciding on their acceptability or
unacceptability requires attention to specifics of the case).

(A) Necessary biases

For the reasons discussed above, inductive biases in the stages
of model selection, in-processing, outputs, and applications are
almost always a necessary condition of carrying out an induction
(a prediction or classification) at all. However, the precise biases
selected or exhibited make an enormous difference to whether the
results will be good or bad. In this sense, some specific inductive
biases are better than others, and some are quite bad. Which specific
biases are better or worse depends heavily on features of the context.

Likewise, unequal treatment in datasets, in-processing, outputs,
and applications is often necessary as well, for two basic reasons.
First, datasets often contain evidence of bias in the systems they
provide information about. Indeed, a completely symmetrical
dataset is likely to be relatively uninformative. Second, when
it comes to in-processing, outputs, and applications, the fact
that “fairness” can be measured by competing and incompatible
metrics (“fairness impossibility”) means that at least one of the
incompatible metrics will be violated in almost all cases.

What should be done about unavoidable biases of these
two types?

For inductive biases, we recommend (a) accepting that
some inductive bias is unavoidable, but (b) trying to select the
inductive bias that maximizes accuracy, fairness, and other goals
of the induction.

For biased datasets, we recommend evaluation of the biases in
light of the functions the datasets will be used for. For instance:
a model designed to accurately measure an asymmetrical reality
generally ought to be biased in the same way and to the same
extent that the represented reality is “biased.” However, when
models are used to inform decision-making at the “application”
step, such biases can provide grounds for differential treatment
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that is ultimately unfair. Bias in datasets must therefore be handled
delicately, in context of the full use cycle of data selection, training,
and deployment.

In general, unequal treatment biases at the in-processing,
outputs, or applications stages that are at risk of being unfair
should be vetted via the fairness metrics that appropriately apply
to them. This requires carefully selecting the metrics that should
apply in each case, and, in cases where these are mutually
incompatible, carefully deciding which to prioritize and to what
extent (Honenberger, 2025).

(B) Usually good biases

In general, biases of an AT are “good” (when they are) for one of

three reasons:

(1) the bias in the AI system represents a bias in the system
modeled (i.e. the system’s bias effectively tracks asymmetries
in the world that the AI system is being used with the
intention of tracking). Examples include inductive biases,
cognitive biases, and some inequality biases.

In these cases, the bias in that part of the model should
generally be preserved; however, the added value of the bias
for representation purposes should be quarantined from any
unfair effects on actions (recommended or selected).

(2) the bias in the Al system reduces noise in the modeling of the
system modeled (i.e. reduces variance), thereby improving
accuracy, as recognized in the bias-variance trade-off. In
these cases, the selection of a higher bias model may be
justified; but the researcher should also (i) continue to
explore the possibility of simultaneously lower-bias and
lower-variance models; and (ii) seek an explanation for the
success of the higher-bias model in this case that can help
guide the search for simultaneously lower-bias and lower-
variance models.

(3) the bias in the AI system tracks preference asymmetries—for
instance, by ranking items of some kinds higher than others,
or by differentially responding to individuals in a manner
than corrects for or repairs previous unfairness biases. These
can be described as process biases and (often) as inequality
biases, but ones that track adopted preferences, and may be
overall desirable.

In all of these cases, we encourage preservation or amplification
of the useful bias, so long as attention to other possible biases
resulting from the current model and their total costs (as well as the
costs of other possible undesirable effects of the model) are borne
in mind. The useful bias should not create more serious problems
than it solves.

(C) Usually bad biases

In general, biases of an Al are “bad” (when they are) for one of
three basic reasons:

(1) the bias in the Al system distorts or deviates from an accurate

representation of the systems it is used with the intention to
represent (“error biases”);
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TABLE 2 An overview of major Al biases and associated examples, type of asymmetry exhibited, and recommended mitigations (horizontal axis), ordered by the stage of Al development cycle in which they appear

(vertical axis).

Lifecycle

component

Relevant bias
types (partial
list)

Example

Axis of asymmetry

Possible
mitigations/recommended
responses

training a facial recognition algorithm
are of Caucasian faces, despite
Caucasians making up only 10%—25%
of the world population (cf. Buolamwini
and Gebru, 2018)

objects; and how much data is collected for other groups or types of
objects;

(b) between the representativeness of the quantity of data when
compared across groups

(a) How model is Human Inductive bias A human selects a particular k for Between one inductive procedure or model architecture consistent Possibly acceptable bias. Researchers should reflect
chosen application of a k-means unsupervised with the data, and all possible inductive procedures or model on the effects of any inductive biases and
classifier architectures consistent with the data experiment with and explore the results from
different sets of inductive assumptions
Availability A human gives an image recognition Favored selection of familiar tools or procedures, among possible tools Generally unacceptable bias, except when (a)
heuristic problem to a LLM they often use for or procedures tradeoffs between the accuracy costs of the bias
translation tasks, even though a and benefits to other features of importance to the
supervised classifier would be more decision-making situation (e.g. speed, energetic
accurate cost) justify the lower accuracy, or (b) the
particular familiar tool happens to be among the
most accurate for the task. In the second case, the
bias is still a process bias that is concerning, given
its likely overall cost in the long run of
scenario-diverse applications
(b) How data are Human or Al Historical bias A loan approval algorithm is trained on (a) Between groups within historical data; and (b) between reliance on Identify the purpose for which the data will be
collected or human-AI U.S. loan repayment data from 1931 to historical data and reliance on data better indicative of possible or used. If the purpose is to accurately represent the
hybrid 2023, without consideration of how future reality past, the bias is acceptable. If the purpose is to
repayment may be affected by a financial predict the future, the bias may be unfair and
regime discriminatory against unacceptable; possible mitigations include
non-white and non-male borrowers post-hoc corrections to bring dataset into better
alignment with current and projected near-future
conditions and/or fairness constraints
Label bias The sentiment labels chosen for images Process bias. Labeling practice deviates in a regular way (due to factors Reduce extent of bias by providing operational
are influenced by an annotator’s mood such as emotion or cultural background) from a labeling ideal of criteria for labeling practices to labelers.
or culture non-partiality and objectivity Document, analyze, and report on statistical
(b) Inequality bias. Axis of asymmetry is between labels in different features of labeling practices.
parts of the dataset, due to different labelers and their backgrounds Supply maximum metadata about data labeling
practices (so that any biases in labeling are more
likely to be identified and can be corrected for)
Post-hoc relabeling.
Post-hoc error correction
Sampling bias Over 50% of the images collected for (a) Between how much data is collected for certain groups or types of Generally unacceptable. Restart from a more

representative dataset through (a) finding a more
balanced dataset already in existence, (b) acquiring
more real data of the types needed to balance the
current dataset (without generating new
problematic biases in the data acquisition
procedure!), (c) generating synthetic data of the
types needed to balance the current dataset.
Alternatively: Restrict conclusions of analysis
(including decision support) to whatever
populations the dataset is actually representative
of (e.g. English-language text outputs for an
overwhelmingly English-language-trained LLM)

(Continued)
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TABLE 2 (Continued)

Lifecycle

component

Agent

Relevant bias
types (partial
list)

Example

Axis of asymmetry

Possible
mitigations/recommended
responses

patients than female ones

Feedback bias An LLM is trained to answer geography (al) Process bias because geography data is not drawn from (a) Train with a more carefully curated dataset
questions partly via data produced by human-produced sources (as assumed) but also from prior Al wherein systematic errors and biases in the dataset
prior LLM outputs, thus magnifying the summaries and hence amplification of some aspects of the have been systematically removed
effects of hallucinations and human-produced sources asymmetrically by comparison to other
Anglocentric biases in these prior aspects. In addition:
outputs (a2) Error biases may be introduced by amplification of hallucinations.

Asymmetry is between an ideally faithful report on human geography
and the actual (erroneous) report from the model.
(a3) Potentially unfair inequality bias produced by amplification of
Anglophone bias. Asymmetry is between Anglophone labels and
demarcations, on the one hand, and those recognized elsewhere, on
the other
(b) A recommender system that is (b1) Error bias because the ultimate set of recommendations is (b) In circumstances where misaligned feedback
informed by user behavior offers narrower than the user would probably prefer (assuming “actual user loops can occur, flag of possible feedback-affected
recommendations, which lead to preference” as the ground truth)(b2) Inequality bias because prior user pathways and make associated adjustments to
narrowed user behavior, which leads to behavior shaped by the system is given a disproportionate influence, by | weights at the in-processing stage.
narrower recommendations from the comparison with other aspects of user behavior. (b3) The inequality
recommender system, which leads to bias in (b2) constitutes a process bias insofar as this process of selecting
even more narrowed user behavior recommendations deviates from a more balanced and diverse ideal.
(c) How much Human or Al Sampling bias (see above) Between how much data is collected for certain groups or types of (see above)
representative data or human-AI objects, and how much data is collected for other groups or types of
is collected hybrid objects.
(d) How accurately Data Error bias Ecological data were collected by four (a) Process bias. Some data were collected in a manner that violates Generally unacceptable. Erroneous or unreliable
the data represent field workers, one of whom was reliable data collection standards. data can be thrown out (so long as this omission
unreliable and produced systematically (b) Error bias. Roughly % of the data exhibits artificially inflated values, | doesn’t introduce new biases that are not
inflated values for some parameters which changes the top-level statistical features of the dataset so that it satisfactorily manageable)
becomes a less accurate measure of these features than it would Data collection procedures can be refined and data
otherwise be. The axis of asymmetry is between the dataset and its recollected
recorded values, on the one hand, and the ecological reality this dataset | Other, more accurate data sources can be pursued
and its values supposedly represents, on the other

Sampling bias (see above) (see above) (see above)

Label bias (see above) (see above) (see above)

(e) Data features Data Inequality bias A dataset on health conditions in Asymmetry is between features of male population and female Acceptable bias. No action needed
(internal) (without admitted patients exhibits higher rates population within the dataset
unfairness) of prostate cancer among male admitted

(Continued)
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TABLE 2 (Continued)

Lifecycle

component

Agent

Relevant bias
types (partial
list)

Inequality bias
(with unfairness)

Example

A dataset on criminal recidivism in the
U.S. (committing a second crime after a
first, within a specified period of time)
exhibits higher recidivism rates for
African Americans than Caucasians

Axis of asymmetry

Asymmetry is between features of Caucasian population and African
American population within the dataset

Mitigations recommended

(i) Determine whether the data has been acquired
in a way that constitutes sampling bias. If it has,
then acquire a more representative sample; or
supplement the existing sample with additional
instances (real or synthetic) that correct the
inequality. (ii) Determine whether the data has
been acquired in a way that constitutes an error
bias. If it has, then attempt to correct for the error.
(iii) If the data hasn’t been acquired in a way that
introduces sampling or other error biases,
conclude that the inequality in the dataset is an
accurate representation of an inequality in the
environment, and ask whether this inequality is
fair or unfair. Be careful not to use any model
trained on this data to guide decision-making or
action such that unfairness in the environment is
perpetuated by model-supported decisions or
actions

“prostate”

(f) How data are Al Inductive bias A neural network classifier trained on a Between one possible way of extrapolating from data and other Possibly acceptable bias. Researchers should reflect
processed by model particular dataset exhibits different possible ways of extrapolating from data. on the effects of any inductive biases (e.g. the
output behavior depending on selected effects of hyperparameter selection on classifier
activation function, learning rate, behavior) and, if time and resources permit,
update function (e.g. backpropagation), experiment with and explore the results from
number of hidden layers, and other different sets of inductive assumptions
hyperparameters
Bias-variance Lasso regression is used to shrink Between how datapoints with different features are treated by the Possibly acceptable bias. If time and resources
trade-offs coefficients and reduce influence of model (e.g. outliers play less role in determining the shape of the permit, researchers should experiment with and
outliers on predictions regression line than they otherwise would) explore the effects, on overall accuracy as well as
(perhaps) accuracy within particular regions or for
particular subtasks, of raising or lowering the level
of bias of the type under consideration
(g) Model Al “Worldview bias” An LLM trained primarily on Analogous to inductive bias for model selection. Asymmetry is Likely unavoidable, yet consequential. Model
positionality (NL English-language sources may between the model’s performance and the performance of other positionality or “worldview bias” should be
positionality) inadvertently exhibit individualist and models (or, the average performance of all possible models) explored and documented, and the specific
(Santy et al., 2023; pro-Western biases positionality or worldview bias of a model should
Liu, 2024) be born in mind when deploying the model and
interpreting its results
(h) Model features Al Inequality bias An LLM’s language embeddings show Asymmetry is between two sets of (otherwise similar) model features Acceptable bias. No action needed
(internal) (without stronger correlation between “male” and (in this example, the tokens “male” and “female”)
unfairness) “prostate” than between “female” and
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TABLE 2 (Continued)

Lifecycle
component

Agent

Relevant bias
types (partial
list)

Inequality bias
(with unfairness)

Example

An LLM’s language embeddings show
stronger correlation between “male” and
“doctor” than between “female” and
“doctor”

Axis of asymmetry

Asymmetry is between two sets of (otherwise similar) model features
(in this example, the tokens “male” and “female”).

Mitigations recommended

Unacceptable bias. Seek to identify source of bias
(data? in-processing?) and select appropriate
mitigation responses, which may include:(a)
Retraining the model on a debiased dataset, (b)
Reinforcement learning with human feedback
(RLHF) to counteract the bias

Process biases

Because of the procedures by which it
was trained, an LLM is highly biased
toward those answers that match the
most frequently given answers in its
training data, despite these being less
relevant and accurate than other
answers in the training data that are less
frequently given

Analogous to cognitive biases in humans. The primary asymmetry is
between an imagined or conceivable ideal process of operation, and the
actual operation of the AI system

Sometimes acceptable, sometimes unacceptable.
Whether process biases in a model’s operation are
acceptable usually depends on whether the outputs
of the model are nonetheless accurate and reliable.
However, identified process biases in a model’s
operation can be clues to conditions under which
the model would fail, and models should be tested
for their robustness under conditions that come to
light in this way. Known process biases in a
model’s operation should be born in mind in all
deployments of the model, including in
deployments to guide decision-making or action.
Process biases of a model that are known to affect
performance should be explicitly stated by model
producers (e.g. on model cards)

(i) How accurately
the model
represents

Al

Error biases

(a) An LLM’s performance on questions
about syntax of natural language (e.g.
“How many ‘R’s are in strawberry?”)
exhibits lower accuracy than its
performance on other questions due to
its architecture

(al) Asymmetry between the model’s answers to some questions, and
the reality that those answers are presented as describing

(a2) Asymmetry between the model’s performance on some types of
questions (mostly accurate) and other types of questions (often
inaccurate). [This type of bias reduces the reliability of the model, in
addition to the costs of its erroneousness for the particular questions it
answers incorrectly]

Undesirable but often inevitable for at least some
conceivable use-cases of a model. Should be
explicitly noted (e.g. on model cards) and (if
possible) systematically tested and documented,
with the range of expected failure precisely
specified

For each deployment context, consequences of
failure should be studied and assessed for the
severity of their risk

Systems should not be used for tasks on which
they show high risk of failure, nor used by
themselves or primarily on any mission-critical
tasks for which they show any significant risk of
failure

(b) A voice-recognition-powered
transcription program sometimes
erroneously translates spoken words.
The erroneously transcribed words are
often legal terminology, due to the
transcription program’s original
use-cases and training for court
transcription assistance

(b1) Asymmetry between the model’s transcriptions and the actual
spoken words these transcriptions are supposed to represent

(b2) Asymmetry between the sub-vocabularies into which the system
erroneously translates words (legal vs. non-legal)

(Continued)
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TABLE 2 (Continued)

Lifecycle

component

(j) Model’s
recommended
decisions or actions
(model outputs)

Agent

Relevant bias
types (partial
list)

Example

Axis of asymmetry

Mitigations recommended

Al Inequality A model designed to predict risk of Asymmetry is between model accuracy for male patients and model Acceptable bias. No action needed
biases(without prostate cancer exhibits a higher false accuracy for female patients
unfairness) positive rate for male patients than for
female patients
Inequality A model designed to predict risk of Asymmetry is between model accuracy for Caucasians and model Unacceptable bias. Reduce or eliminate use of the
biases(with recidivism in the U.S. (committing a accuracy for African-Americans model until the unfair inequality in model outputs
unfairness) second crime after a first, within a are corrected. Correction procedures may include:

specified period of time) exhibits a
higher false positive rates for African
Americans than for Caucasians

(a) If the unfair inequality is an inequality in
model performance (e.g. accuracy), pursue
technical solutions to increase accuracy for the less
accurately scored subpopulation. (b) If the unfair
inequality is an inequality in distribution of social
goods, pursue post-processing correction
procedures to make the distribution more
equitable (unless such post-processing correction
procedures would introduce more serious ethical
problems)

(k) Decisions
and/or beliefs based
on the model
and/or its output

Al or human
or human-AI

hybrid

Automation biases

Nursing staff at a hospital that has
invested in Al-powered diagnostic
equipment begins to favor equipments’
diagnoses over that of human
physicians, even in cases where the error
rates of diagnostic equipment are
significant and human oversight is
recommended.

(a) Process bias. The nurses trust the Al answers relative to human

answers more than they should, given the evidence. (b) Inequality bias.

The nurses give more trust per unit of supporting evidence to the Al
answers than they give to the human answers. (c) The inequality and
process biases can easily lead, in this case, to error biases

Decision-makers should be taught and regularly
reminded about limits of AI tools, seeking to bring
their level of trust and investment into calibration
with the trustworthiness of models

Dismissal biases

Nursing staff at a hospital with
Al-powered diagnostic equipment
becomes tired of the upkeep involved in
using it and begins to ignore its
recommendations to avoid having to do
this maintenance.

(a) Process bias. The nurses trust the human answers relative to AI

answers more than they should, given the evidence. (b) Inequality bias.

The nurses give more trust per unit of supporting evidence to the
human answers than they give to the Al answers. (c) The inequality
and process biases can easily lead, in this case, to error biases

Decision-makers should be taught and regularly
reminded about relative benefits of AT tools,
seeking to bring their level of trust and investment
into calibration with the trustworthiness of these
tools

Availability bias

(see above)

(see above)

(see above)
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(2) the bias in the Al system distorts or deviates from a fair
representation of the systems it is used to make decisions
about (“unfair inequality biases”);

(3) the bias in the AI system comes at a cost to other desirable
features of the Al system (e.g. its rationality; efficiency; the
trust assigned to it by the public; etc.)

In cases of “bad” biases by any three of these standards, the
developer has a number of options, including:

(i) eliminate the bias (for instance, via supplemented datasets
or in-processing procedures)

(ii) mitigate the bias (for instance, via post-processing at the
end of in-processing or the outputs stage; or an adjusted
application procedure)

(iii) accept the bias as a “best case scenario” or “necessary evil”

(for instance: if an analysis in terms of “bias-variance”
tradeoft or fairness impossibility reveals it to be so).

9 Detecting and mitigating
problematic asymmetries in Al systems

The discussion of bias mitigation is necessarily changed once
we acknowledge that the badness of Al biases cannot be assumed. In
many cases, the appropriate response to bias is not to do anything
at all (e.g. inequality biases without unfairness). In others, it is to
be aware of the bias and report it but not necessarily to eliminate
it (e.g. inductive biases). In yet others, it is to undertake mitigation
of the traditional kinds, in an effort to bring the system to a less
unfair, erroneous, or otherwise problematic state (Feldman and
Peake, 2021; Siddique et al., 2024; Cary et al., 2023).

Understanding AI biases as asymmetries brings clarity
and flexibility to the practice of AI bias mitigation within
this new theoretical context. Empirically grounded approaches
to identifying and responding to biases throughout the AI
development cycle include the following:

(1) Bias detection

Effective detection of asymmetries often requires multifaceted
approaches that vary according to the stage of development and the
type of bias being examined:

Dataset analysis and visualization (Chawla et al., 2002; Denis
et al., 2024; DiCiccio et al.,, 2023; Wang et al., 2022): statistical
techniques for detecting representational and demographic
disparities in training data may include diversity indices,
demographic parity metrics, and correlation analyses between
protected attributes and target variables. Visualization tools can
reveal hidden patterns of demographic imbalance or feature
correlations that might otherwise remain obscure.

Fairness metrics (Singh et al., 2024; DiCiccio et al., 2023;
Wang et al., 2022): formal statistical metrics provide quantitative
measures of inequality biases. These include demographic parity
(comparing prediction rates across groups), equalized odds
(comparing false positive and true positive rates across groups),
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and predictive parity (comparing precision across groups). The
selection of appropriate metrics depends heavily on the specific
context and purpose of the Al system as these metrics cannot be
satisfied simultaneously in most cases.

Adversarial testing: probing potential biases through targeted
queries or scenarios designed to elicit problematic responses
can reveal asymmetries not detectable through standard testing
procedures. For instance, replacing demographically associated
names, locations, or other attributes in input data can reveal
whether the system responds differently based on these attributes
(Idemudia, 2023).

Explainability tools: techniques like SHAP (Shapley Additive
exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) can indicate features contributing most significantly
to model decisions to help detect when protected attributes or
their proxies are unduly influencing outputs (Salih et al., 2024).
Recent work has explored using constructed knowledge graphs to
infer the presence, and even the multi-step pathways, of biases
throughout ML pipelines, starting from datasets but including
biases introduced during in-processing (Russo et al., 2024).

Bias detection in complex systems: for large complex Al
systems such as LLMs, specialized approaches include bias
benchmarks (standardized test datasets designed to elicit biased
responses), representation testing (examining the distributional
characteristics of embeddings), and counterfactual fairness
assessments (measuring how outputs change when protected
attributes are altered) (Coppolillo et al., 2025).

(2) Bias mitigation
Effective mitigation of problematic asymmetries typically
employes techniques targeted to specific stages of the AI

development cycle:

(i) Preprocessing techniques (Chawla et al., 2002; Romano et al.,

2020):
(a) Balanced dataset creation: addressing inequality
or error biases through sampling techniques

(oversampling underrepresented groups or undersampling
overrepresented ones), synthetic data generation, or data
augmentation.

(b) Feature
problematic features and their proxies, applying techniques

transformation: removing or transforming
like fair representation learning that preserves predictive
power while minimizing correlations with protected
attributes.

(c) Counterfactual data augmentation: creating balanced
datasets by generating counterfactual examples that
alter protected attributes while preserving other relevant
features.

(ii) In-processing techniques:

(a) Fairness constraints: incorporating fairness objectives
directly into the learning algorithm’s optimization process,
constrained

either through regularization terms or
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optimization approaches (Raza et al., 2024; Denis et al.,
2024).

(b) Adversarial debiasing: training the model to maximize
predictive performance while simultaneously minimizing
the ability to predict protected attributes from its
representations (Reimers et al., 2021).

(c) Self-supervised pre-training: for deep learning systems,
using self-supervised learning on diverse datasets before
task-specific fine tuning can improve representation quality
for underrepresented groups (Marks et al., 2025).

(iii) Post processing techniques:

(a) Output calibration: adjusting model predictions to achieve
fairness metrics such as equalizing error rates across groups
or ensuring demographic parity (DiCiccio et al., 2023;
Romano et al., 2020).

(b) Ensemble methods: combining multiple models trained
with different objectives or on different subsets of data to
balance competing fairness and accuracy constraints (Feffer
etal., 2022).

(c) Selective neuron modification: in neural network-based
systems, identifying and modifying activations of specific
neurons that encode problematic biases (Liu et al., 2022).

It is important to note that these techniques involve tradeofs.
Mitigation strategies that address one type of bias might exacerbate
others or might reduce predictive accuracy. The selection
and implementation of appropriate detection and mitigation
techniques should be guided by careful consideration of the specific
context, stakeholder needs, and ethical implications of the system
being developed.

10 Examples of asymmetries in
deployed Al systems

The framework developed in this paper helps to illuminate real-
world cases of Al bias by identifying the specific asymmetries at
work, the stages at which they arise, and whether they represent
problematic or beneficial deviations from symmetry standards.
Below are several examples:

Recruitment algorithms: amazon’s experimental recruiting tool
exhibited gender bias by penalizing resumes containing terms
associated with women (e.g., “women’s chess club”) and favoring
language patterns more common in men’s resumes (Dastin, 2018).
This represents an error bias at the output stage (the model
inaccurately associated gender with qualification) and an inequality
bias in applications (differential treatment of candidates based on
gender). The bias originated from historical data reflecting past
hiring patterns that favored men, which illustrates how dataset
asymmetries can propagate through the Al pipeline.

Criminal justice risk assessment: the COMPAS recidivism
prediction algorithm demonstrated higher false positive rates for
Black defendants compared to white defendants (Angwin et al.,
2016). While the system achieved similar overall accuracy across
racial groups (satisfying the “sufficiency” fairness criterion), it
violated the “separation” criterion by imposing different error costs
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on different demographic groups. Unfair inequality biases at the
output stage can manifest even when overall predictive accuracy
appears balanced as in this example.

Computer vision systems: facial recognition technologies have
exhibited substantially higher error rates for women with
darker skin tones compared to men with lighter skin tones
(Buolamwini and Gebru, 2018). This represents an inequality
bias in outputs, with error rates varying dramatically across
demographic groups. The bias originated from imbalanced training
data overrepresenting certain demographics, combined with
algorithmic choices that failed to account for this imbalance.
This phenomenon demonstrates how biases can compound across
multiple stages of the Al pipeline.

Recommendation systems: content recommendation algorithms
on social media platforms have been shown to exhibit filter
bubble effects where users receive increasingly narrow content
aligned with their existing preferences (Parisi, 2011; Ludwig et al.,
2024). This represents a process bias at the application stage that
can create feedback loops that can potentially reinforce existing
biases. While the initial asymmetry in content selection might
be intended to enhance user experience (a “good bias”), the
cumulative effect can lead to problematic information asymmetries
and social polarization.

These
proposed framework:

examples illustrate several insights from the

(a) Biases often propagate and transform across stages of the AI
development cycle
(b) The

asymmetries simultaneously

same system can exhibit multiple types of

(c) Context is crucial in determining whether a particular
asymmetry is problematic

(d) Addressing one type of bias may require tradeoffs with other

types of bias or other desirable or undesirable properties.

11 Biases in large language models

Large Language Models (LLMs) represent a particularly
challenging domain for bias analysis due to their scale, complexity,
and generative capabilities (Bender et al., 2021; Gallegos et al.,
2024; Lee et al., 2024). Our framework of understanding biases as
asymmetries provides insights into the nature and management of
biases in these systems.

LLMs exhibit distinct patterns of asymmetry at each stage
of development. In the data collection stage, the vast web-
scraped corpora used to train LLMs contain numerous asymmetries
that reflect historical and contemporary societal biases. These
include overrepresentation of certain languages, cultures, and
perspectives; imbalanced representation of demographic groups;
and asymmetric associations between demographic identifiers and
attributes. Unlike traditional supervised learning datasets, these
asymmetries are more difficult to detect and quantify due to the
scale and heterogeneity of the data.

At the same time, the basic functionality and usability of
LLMs, like other machine learning models, relies on asymmetries
learned from its data: the word embeddings and attention
heads that support transformer models are themselves a
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record of asymmetries in word co-occurrence across various
linguistic contexts (Vaswani et al., 2017; Bender et al., 2021).

LLM architectures encode specific inductive biases through
their attention mechanisms, parameter sharing, and optimization
procedures. These architectural choices enable the generalization
capabilities of LLMs, but also shape how they extrapolate
from training data to novel inputs. Self-supervised training
objectives (e.g., next token prediction) create additional process
biases that prioritize statistical regularities over common
human communicative ideals such as factual accuracy and
ethical considerations. Common methods of fine-tuning pre-
trained transformers, such as reinforcement learning through
human feedback (RLHF) or constitutional fine-tuning, may
introduce additional biases associated with user preferences or the
programmers’ values.

LLMs also exhibit numerous asymmetries in their outputs,
including generation of text that perpetuates stereotypical
associations between demographic groups and attributes (e.g.,
occupations, traits, behaviors). Even after years of large-scale
bias mitigation efforts, these associations sometimes resurface,
manifesting themselves in unexpected ways (Hofmann et al., 2024).
LLMs have also been found to produce higher quality outputs
for dominant languages and dialects by comparison with less
represented ones (Bender et al., 2021); present information with
different levels of certainty, nuance, and accuracy depending on
the topic or entities involved; and exhibit preferences or aversions
that align more with some demographics than others (Santurkar
et al., 2023; Santy et al., 2023).

When LLMs additional
asymmetries emerge in how they serve different user groups

are deployed in applications,
and purposes. These include disparities in service quality across
languages, cultures, and domains of expertise; differential
capabilities to recognize and accommodate the needs of users from
various backgrounds; and varying access based on geography,
technological literacy, and income.

Our asymmetry-based framework newly illuminates several
aspects of bias in LLMs. First, some asymmetries in LLMs are
necessary for their functioning. For example, inductive bias toward
linguistic coherence is essential for generating readable text.
However, asymmetries that amplify social inequities or produce
factually incorrect representation call for intervention.

Second, traditional bias detection methods often fail with
LLMs due to their generative nature, entropy in user inputs,
and vast parameter space. Evaluating asymmetries across diverse
inputs and contexts requires specialized approaches like prompt-
based probing, counterfactual testing, and holistic evaluations
across multiple dimensions of fairness and accuracy. The universal
yet flexible framework of biases-as-asymmetries may provide
unique resources for conceptual and practical navigation of the
complex bias-space of LLMs across their many possible contexts
of use. Strategies for addressing problematic asymmetries in
LLMs include diverse data curation, balanced fine-tuning datasets,
adversarial training techniques, and post-processing methods
that align model outputs with ethical and equitable standards.
These approaches can involve tradeoffs between reducing certain
asymmetries and maintaining model performance, or introducing
new asymmetries.
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Third, LLMs introduce novel fairness concerns that are
not adequately captured by traditional metrics. Their ability to
generate content rather than classifying it requires expanding the
conceptualization of fairness to include considerations such as
stereotypical associations, representation quality, and differential
impacts across cultural contexts.

The field of LLM development illustrates the importance of
distinguishing between beneficial, necessary, and problematic
asymmetries. Future research could focus on developing more
nuanced frameworks for evaluating the complex interplay
of asymmetries in these systems and designing targeted
interventions that preserve beneficial asymmetries while mitigating
harmful ones.

12 Conclusions

We began with three questions: (1) How should we think
about and measure biases in AI systems, consistent with the
understanding that biases aren’t necessarily bad? (2) What kinds
of bias in an AI system should we accept, and why? and (3) what
kinds of bias in an AT system should we not accept, and why?

In answer to (1), we've argued that “biases” should be conceived
as asymmetries (Sections 2-3). The definition of bias as asymmetry,
drawn from Kelly (Kelly, 2022), applies both to acceptable and
unacceptable forms of bias.

In answer to (2) and (3), we distinguished three potential
sources of unacceptability in AI biases (Sections 4-7): erroneous
representation (where outputs deviate from real-world referents),
unfair treatment (where decision processes disadvantage some
individuals or groups more than others, with no legitimate reason
for the different treatment), and violation of process ideals (for
instance, where rationality is compromised). We further considered
major types of asymmetry throughout the AI development-to-
application lifecycle, and noted which types of bias, at which stages
in this process, are especially likely to be acceptable or unacceptable
(Sections 8,9, 11, and Table 2).

The approach to AI biases proposed here has several
implications for AI development and evaluation. By categorizing
biases based on both their lifecycle stage and asymmetry type,
developers can better identify and address biases at each stage of AI
development, as well as distinguish acceptable from unacceptable
biases. This approach not only aids in identifying and mitigating
unacceptable biases, but also in optimizing acceptable biases to
enhance Al performance and fairness. For instance, distinguishing
representative from anti-representative biases in datasets can guide
the development of more representative datasets. Distinguishing
ineliminable inductive biases and unfairness biases from optional
and variable ones reduces the risk of accepting harmful biases
that might otherwise have been avoided. Finally, acknowledging
tradeoffs between biases of different types clarifies that choices
about which symmetries to preserve or disrupt are almost never
selections between “biased” and “unbiased” processes, but rather
between processes that are biased in different ways, some of which
are acceptable and some of which are unacceptable, for a variety of
reasons and dependent on the context.
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Future research directions for a symmetry-based approach to
AT biases include (i) development of quantitative measures for
each type of bias identified in the typology; (ii) investigation of
relations of amplification or trade-off between different types of
biases; and (iii) exploration of how this typology can inform
regulatory frameworks for AI governance. We leave these tasks for
future efforts.

In the field of AI bias mitigation and elsewhere, the assumption
that “all bias is bad” seems to be giving way to a pragmatic
recognition that systems must be biased in some ways if they
are to fulfill the various functions that we require of them. This
recognition raises a new danger, however, that warnings about
problematic, harmful, or otherwise unacceptable biases will go
unheeded since “bias, after all, is inevitable and often good.”
The analysis given here, if understood, cuts such “universal”
defenses of AI biases off at the pass by showing that the
distinction between acceptable and unacceptable biases can be
made for clear and convincing reasons. It thus sets the stage
for a new and more effective bias mitigation regime in the
coming generation.
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