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E�ective record linkage in big data, particularly in imbalanced datasets, is a critical

yet highly challenging task due to the inherent complexity involved. This article

utilizes an oversampling-undersampling strategy to address linkage imbalances,

enablingmore accurate and e�cient record linkagewithin large-scale datasets. It

tries to increase the instances of the minority class and decrease the dominance

of the majority classes to try to reach a more balanced dataset that can be

used for training and testing. Sensitivity testing was carried out by varying the

training-test ratio and degree of imbalance.
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1 Introduction

Efficient record linkage is more than ever critical in big data analytics due to the

large volume of information that mandates sound methodologies to ensure accurate

identification and merging of records (Han et al., 2024a,b,c). Many applications operate

on imbalanced datasets; this can compromise the efficiency and accuracy of various record

linkage techniques (Hu et al., 2022; Cockburn et al., 2022). Imbalanced datasets represent

the situation in which class distributions are not equal; thus, they produce unoptimized

predictive performance, particularly for the minority class (Leevy et al., 2018; Chiang et

al., 2024; Ayoub et al., 2023; Kraiem et al., 2021; Zou and Wang, 2024; Zhang et al.,

2024; Gurcan and Soylu, 2024). This issue has been noted as a critical problem in many

real-world applications such as fraud detection, medical diagnosis, marketing, finance,

and anomaly detection as the target class is most often typically a minuscule fraction of

all individuals (Bakator and Radosav, 2018; Mazurowski et al., 2008; Mahmudah et al.,

2021; Amin et al., 2016; Sanz et al., 2015; Pang et al., 2021; de Zarzá et al., 2023). Also,

most record linkage and data integration applications operate on imbalanced datasets

(Du et al., 2021). While this is not a new problem, evidence from various applications

shows that this continues to be a major challenge in various application areas (Johnson

and Khoshgoftaar, 2019). Recently, a new R package, PreProcessRecordLinkage, was

introduced, providing a robust framework for preprocessing data in record linkage tasks,

highlighting its importance in ensuring seamless data integration and consistency across

diverse datasets (Hassani and Mashhad, 2023). In this article, we present a methodology

that combines both oversampling and undersampling techniques to tackle the imbalanced

data issue in record linkage. The framework proposed in this study integrates both

oversampling and undersampling strategies to enhance the efficiency and accuracy of

record linkage. The synthetic over-representation of the minority classes and reduction
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of dominance in majority classes create a more balanced dataset for

training and testing. Our proposed methodology is evaluated for

sensitivity systematically, considering different sizes of training and

test datasets under various degrees of data imbalance. The proposed

methodology is experimented with a large volume dataset having

varied attributes to prove applicability and usefulness in improving

the accuracy and efficiency of record linkage in the context of

big data analytics. Experiments indicate that our oversampling

and undersampling approach can be used to address imbalanced

data-related challenges, consequently leading to more sturdy and

trustworthy results of record linkage.

The remainder of this article is structured as follows: in

Section 2, we introduce the collection of classification models

used in this study by revealing their mathematical grounding and

applicability in the record linkage process. Section 2 also includes

the performance evaluation measures and certain core metrics

directly molding imbalanced datasets such as recall, precision, and

F1-score.

Section 3 presents the proposed approach and methodology

employed in this study. Section 4 denotes the experimental setup

from which we draw our sources, attribute information, and

preprocessing methods, along with a discussion on how blocking

variables facilitate the simplification of pairwise comparisons.

Section 5 offers a detailed discussion of our results, the effect

of different sampling strategies, and insights into model-specific

performance. Section 6 provides a concise overview of our primary

findings, explores potential real-world applications, and suggests

avenues for further refining record linkage approaches in big

data contexts.

2 Methods and criteria

2.1 Methods

This section details our approach employed in this study. We

applied multiple classification models to the dataset, aiming to

identify the most effective strategy under imbalanced conditions.

Here, the following models were selected:

Notation:

• Y : Binary outcome taking the value 1 for a match and 0 for a

nonmatch.

• X = (X1,X2, . . . ,Xp): Vector of record pair characteristics.

• β0,β1, . . . ,βp: Parameters estimated from the model.

• P(Y = 1|X): Probability that the pair of records is a match

given features X.

• k: Number of nearest neighbors.

• Tb(X): Prediction from the b-th tree in the ensemble.

• hm(X): Prediction from them-th weak learner in AdaBoost.1

• αm: The weight of them-th weak learner.

• fm(X): Prediction from the m-th tree in ensemble-based

boosting models.

1 AdaBoost (Adaptive Boosting) was originally introduced by Yoav Freund

and Robert E. Schapire in 1995. In this study, we utilized the implementation

available in the Python-based scikit-learn library (version 1.2.2), which

provides a robust and widely adopted framework for machine learning

applications.

1. Logistic regression (LR): Logistic Regression models the

probability P(Y = 1|X) that a record pair is a match given

feature vector X. This is defined as:

P(Y = 1|X) =
1

1+ e−(β0+β1X1+···+βpXp)

where β0,β1, . . . ,βp are the parameters learned from the data.

This method is particularly useful for binary classification tasks

like record linkage.

2. Naïve Bayes (NB): Naïve Bayes leverages Bayes’ theorem to

calculate the posterior probability of each class given the

features. Assuming feature independence, the probability of a

record pair being a match is:

P(Y = 1|X) =
P(Y = 1)

∏p
i=1 P(Xi|Y = 1)

∑

y∈{0,1} P(Y = y)
∏p

i=1 P(Xi|Y = y)

where P(Y = 1) is the prior probability of a match, and P(Xi|Y)

are the conditional probabilities of each feature given the class.

3. K-nearest neighbors (KNN): KNN classifies a record pair by

examining the classes of its k-nearest neighbors in feature space.

The predicted class Ŷ for a record pair x is determined by

majority vote:

Ŷ = mode
{

Y(1),Y(2), . . . ,Y(k)

}

where Y(i) is the class label of the i-th nearest neighbor to x.

4. Random forest (RF): Random Forest constructs an ensemble

of decision trees {T1(X),T2(X), . . . ,TB(X)} and averages their

predictions to classify a record pair. For classification, the final

prediction is:

Ŷ = mode
(

T1(X),T2(X), . . . ,TB(X)
)

where each Tb(X) is a tree trained on a bootstrapped sample of

the data.

5. Decision tree (DT): A Decision Tree splits the feature

space recursively to maximize information gain at each split,

ultimately assigning a class to each leaf node. The prediction

for a new record pair X is given by traversing the tree based on

feature values until reaching a leaf with the assigned class Ŷ .

6. AdaBoost: AdaBoost sequentially builds an ensemble by

adjusting weights to focus on previously misclassified instances.

The final model prediction is:

Ŷ = sign

(

M
∑

m=1

αmhm(X)

)

where hm(X) is the prediction of the m-th weak learner, and αm

is the weight given to each learner based on its accuracy.

7. XGBoost (extreme gradient boosting)2: XGBoost builds an

ensemble of trees by optimizing a regularized objective. The

prediction for record pair X is:

Ŷ =

M
∑

m=1

fm(X)

2 XGBoost (Extreme Gradient Boosting) was developed by Tianqi Chen and

Carlos Guestrin and is publicly available as an open-source library on GitHub.

The implementation used in this study is the Python package xgboost (version

1.7.4), known for its high performance, scalability, and accuracy in supervised

learning tasks.
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where fm(X) represents them-th tree, and each tree is optimized

to minimize the loss function with regularization to reduce

overfitting.

8. Gradient boosting:Gradient Boosting builds a model iteratively

by adding weak learners to minimize the residual error. The

prediction for X is:

Ŷ =

M
∑

m=1

fm(X)

where fm(X) represents the m-th weak learner, typically a

decision tree, added to correct errors made by the previous

learners.

Central to the modeling approach was the dataset’s imbalanced

nature. Given the all-encompassing combinations of the two sets,

there’s a significant skew toward non-links. To ameliorate this, two

renowned strategies were adopted:

1. Oversampling: Augmenting theminority class representation by

duplicating or synthesizing data.

2. Undersampling: Curtailing the majority class instances to

achieve class balance.

2.2 Criteria

For binary classification problems, understanding and utilizing

a confusion matrix as well as critical metrics is key to a thorough

assessment. It provides an explicit outline of how classification

outcomes can be measured to thoroughly evaluate the model’s

performance based on metrics like true-positives, true-negatives,

false-positives, and false-negatives (see Table 1). A more detailed

and informative analysis of the model’s strengths and weaknesses

allows for a better understanding of model performance in binary

classification scenarios. While data imbalances can potentially

make accuracy a dubious metric, we were mostly interested in the

financial fallout of false negatives where real links would have been

misclassified as non-links. Hence, Recall was chosen as our prime

evaluation metric to assess how well the model would identify such

relevant cases.

Recall =
TP

TP + FN

Though, the use of measures such as Accuracy, Precision,

and the F1 Score greatly improves the trustworthiness and

comprehensiveness of the evaluation techniques. It focuses on

Accuracy; therefore, it gives the correct picture of the general

effectiveness of a model by focusing on the correct classification

of instances. Focusing on Precision helps cut down false positives,

giving an acute understanding of how well the model can make

TABLE 1 Confusion matrix.

Predicted unpair Predicted pair

Actual unpair True negative (TN) False positive (FP)

Actual pair False negative (FN) True positive (TP)

positive predictions without being incorrect. The F1 Score gives a

measure that combines both Precision and Recall into one single

measure and, in such a way, helps balance this tradeoff between the

two. It is especially designed to be more dataset balanced, unlike

the Accuracy. All these metrics being introduced in academic work

readings and reviews do more than just improving the review

or assessment of machine learning models –it strengthens and

deepens the whole analytical structure.

Precision =
True Positives

True Positives+ False Positives

F1 = 2×
Precision× Recall

Precision+ Recall

3 Proposed approach

The core motivation behind our proposed approach is to tackle

the highly imbalanced nature of record linkage datasets through a

strategy that considers both oversampling and undersampling. By

striking a more equitable class distribution, we aim to improve each

classifier’s ability to detect matches (the minority class) without

sacrificing performance on the non-match majority class.

3.1 Oversampling and undersampling
strategy

Two complementary sampling techniques–oversampling and

undersampling–form the basis of our proposed method:

1. Oversampling: This increases the representation of the minority

(match) class. We specifically employ variants of Synthetic

Minority Oversampling TEchnique (SMOTE) and ROSE to

generate synthetic data points that reflect the underlying

distribution of real matches. Unlike naive duplication, synthetic

oversampling helps the model generalize better by introducing

slightly varied examples rather than simple repeats.

2. Undersampling: This reduces the abundance of the majority

(non-match) class, thus forcing the classifier to learn nuanced

decision boundaries. A smaller set of carefully retained majority

examples helps models avoid bias toward the dominant class.

This is particularly useful where the total number of non-match

records significantly outweighs the matches.

In our pipeline, we explore three main variations for each

dataset:

• Oversampled: Synthetic generation of additional match

instances (e.g., via SMOTE or ROSE) while leaving the

majority class intact.

• Undersampled: Random removal (or more sophisticated

selection) of non-match instances to reduce the non-match

pool to a level comparable to the match class.

Depending on the degree of imbalance and dataset size, any of

these two approaches can be employed.
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3.2 Evaluation protocol

To rigorously assess the effectiveness of the proposed approach,

we rely on a set of standard metrics–Accuracy, Precision, Recall,

and F1 Score–and pay special attention to Recall in light of the high

cost of false negatives in record linkage. We apply multiple train-

test splits (e.g., 70/30, 60/40) and artificially remove fixed quantities

of matches (e.g., 500, 1000) to simulate worst-case imbalances. Each

experiment is repeated for:

• Original data: No rebalancing performed.

• Oversampled/undersampled data: Rebalanced via one of the

methods above.

For each split and each sampling method, all eight classification

models are trained and evaluated. By comparing performance

metrics under these different conditions, we gain insight into the

generalizability of our approach.

3.3 Advantages of the proposed approach

1. Improved minority detection: the sampling strategy proposed

here aids in capturing subtle boundary distinctions that might

otherwise be lost due to extreme imbalance.

2. Flexibility: depending on the severity of imbalance, a purely

oversampled or purely undersampled option can be used, or

both methods can be combined for maximum effect.

3. Algorithm-Agnostic: our sampling enhancements are pre-

processing steps, meaning they can be applied seamlessly to a

wide array of classification algorithms without needing custom

changes.

4. Robustness to reduced matches: even when matches are

removed (simulating missing or hard-to-collect labels), the

synthetic minority examples help preserve recall and stabilize F1

scores.

The sampling framework presented here, coupled with our

evaluation scheme, constitutes the crux of our proposed method.

We show in subsequent sections that this approach consistently

boosts recall and F1, making it a suitable choice for challenging

record linkage tasks with highly imbalanced data.

4 Data and pre-processing

4.1 General information

The data set utilized here called the Matching German

Epidemiological Cancer Study and compiled by extracting relevant

records from a research database.3 More precisely, the database

formation falls under a wider Cancer Epidemiology Study

database carried out conjointly by the Institute of Medical

Biometrics, Epidemiology and Computer Science (IMBEI) and

University Medical Center of Johannes Gutenberg University,

3 Available online at: https://archive.ics.uci.edu/dataset/210/record+

linkage+comparison+patterns

Mainz, Germany. It includes individualized details with first

and last names, sex, date of birth, and postal code; these have

been collected continually over the past few years. The file used

for matching is specifically derived from a subset of 100,000

records collected between 2005 and 2008. Each pair of data was

subsequently processed through a rather extensive manual review

process that involved several documentalists, who finally arrived at

a classification of it being a “match” or “non-match.” This manual

classification therefore serves as the gold standard against which to

measure the performance and accuracy of the registry’s in-house

record linkage methodology.

4.2 Blocking variables

To simplify the pattern analysis and decrease the volume, a

blocking procedure is used, which selectively isolates those record

pairs that meet certain predefined agreement conditions. The

results of six different blocking iterations were then combined:

1. Phonetic congruence of both the first and family names, coupled

with an exact match of the date of birth.

2. Phonetic congruence of the first name, with an exact match of

the birthday.

3. Phonetic congruence of the first name, with an exact match of

the birth month.

4. Phonetic congruence of the first name, with an exact match of

the birth year.

5. An exact match of the entire date of birth.

6. Phonetic congruence of the family name, along with an exact

match of sex.

Upon execution of this procedure, a total of 5,749,132 record

pairs were generated. Of these, 20,931 were identified as matches.

It does so by dividing the dataset into 10 blocks of approximately

equal size; within each block, the number of non-matches for every

match is the same as in any other block.

4.3 Attribute information

Attributes are the characteristics of data records. In other

words, for each individual in your dataset, it has several features

that help in differentiating or understanding specific aspects of the

record. The set of attributes you provided seems to belong to a

dataset whose use is for the sake of comparing or matching. For

some of these attributes, when specified to be in the range [0, 1], it

qualifies agreement to mean that 0 indicates fully dissimilar for that

attribute, and 1 requires identical.

1. id_1: internal identifier of first record.

2. id_2: internal identifier of second record.

3. cmp_fname_c1: agreement of first name, first component.

4. cmp_fname_c2: agreement of first name, second component.

5. cmp_lname_c1: agreement of family name, first component.

6. cmp_lname_c2: agreement of family name, second component.

7. cmp_sex: agreement of sex.

8. cmp_bd: agreement of date of birth, day component.

9. cmp_bm: agreement of date of birth, month component.
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10. cmp_by: agreement of date of birth, year component.

11. cmp_plz: agreement of postal code.

12. is_match: matching status (TRUE for matches, FALSE for non-

matches).

Let us now briefly describe the attribute mentioned above.

id_1 & id_2: These are likely unique identifiers assigned to each

record in the dataset. These IDs help in recognizing and referencing

each individual record without confusion.

cmp_fname_c1 & cmp_fname_c2: These attributes are used to

measure the agreement or similarity between the first components

and second components of first names, respectively, in the

compared records.

cmp_lname_c1& cmp_lname_c2: Similarly, these measure the

agreement or similarity between the first and second components of

family names in the compared records.

cmp_sex: This attribute gauges the agreement on sex between

the compared records.

cmp_bd, cmp_bm, & cmp_by: These denote the level of

agreement between the day, month, and year components of the

date of birth of compared records.

cmp_plz: Represents the agreement between postal codes of the

compared records.

is_match: A Boolean attribute that indicates whether the two

records being compared are a match or not.

4.4 Missing values

The table provided below illustrates the tally of missing data

for each attribute. The subsequent table details the completeness

of the data across attributes in a dataset. Noteworthy among these

are the unique identifiers, id1 and id2, cmplsex and Linkage, all of

which have no missing entries. In the meantime, cmpf irstname2

and cmplastname2 have by far the most missing data, where

5,645,434 and 5,746,668 records are not available, respectively.

Also, the observed variations regarding agreement on date of birth

components for cmpbirthday, cmpbirthmonth, and cmpbirthyear

find 795 values missing in each case, whereas cmpzipcode has 12,843

missing entries. Table 2 is important for understanding dataset

quality throughout data preprocessing and analysis to make sound

decisions.

Given that more than 98% of entries in the cmp_firstname2

and cmp_lastname2 columns are missing, including these variables

in the analysis would contribute little to the overall information

content. Moreover, retaining them would require extensive

imputation or data-cleaning steps, potentially skewing the results.

Consequently, these two columns have been entirely omitted,

allowing the analysis to focus on attributes with sufficient data

coverage and minimizing sources of bias.

5 Results

5.1 General overview

To gain a deeper insight into how varying levels of imbalance

affect recall, we comprehensively evaluated the models under three

distinct scenarios:

TABLE 2 Summary of missing values for each attribute.

Attribute Missing values

id1 0

id2 0

cmp_firstname1 1,007

cmp_firstname2 5,645,434

cmp_lastname1 0

cmp_lastname2 5,746,668

cmp_sex 0

cmp_birthday 795

cmp_birthmonth 795

cmp_birthyear 795

cmp_zipcode 12,843

Linkage 0

1. Original data: an untouched reflection of the dataset.

2. After excluding 5,000 linked rows: a dataset variant post the

strategic removal of 5,000 linked records.

3. After excluding 10,000 linked rows: another iteration post the

omission of 10,000 linked records.

These will give conclusive information about generalization

capabilities, flexibility, and efficiency for each model in different

data setups. Reporting the variation in recall performance across

datasets, for the different algorithms, is shown in Table 3.

The datasets were drawn from different sampling strategies as

indicated by Original Data, Oversampled Data, and Undersampled

Data. For each such dataset, recall performance was calculated

with different test set proportions. It considered 10%, 20%,

30%, and 40%.

The gauge plots (Figure 1) highlight the effectiveness

of the SMOTE technique in maintaining consistent F1-

scores across various scenarios in an imbalanced record

linkage task. Even after changing the number of matches,

the F1-scores remain stable for all models, demonstrating

SMOTE’s ability to mitigate the effects of imbalance

and preserve classification performance. This consistency

underscores SMOTE’s robustness in addressing data imbalance,

ensuring reliable results even when the number of matches

is reduced.

The bar chart (Figure 2) illustrates the effectiveness of

different sampling methods–SMOTE, ROSE, and undersampling–

in improving recall scores under a worst-case scenario

of 1000 matches removed within a 70/30 train-test split.

Across all eight machine learning models, these sampling

techniques consistently increase recall compared to the

original dataset, demonstrating their ability to address

class imbalance. While the extent of improvement varies

between models, the overall results underscore the value

of both oversampling and undersampling approaches

in mitigating imbalance and boosting performance in

difficult conditions.
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TABLE 3 Performance metrics of classification models on imbalanced datasets using various sampling techniques.

Test: 10%

LR NB KNN RF DT AdaB XGB GRB

Original Recal 99.71% 95.26% 99.90% 99.85% 99.85% 99.85% 99.85% 99.61%

Oversample(SMOTE) 100% 95.26% 100% 99.85% 99.90% 99.90% 99.90% 99.90%

Oversampled(Rose) 100% 99.90% 99.95% 99.83% 99.80% 100.00% 99.95% 100.00%

Undersample 100% 99.90% 100% 100.00% 99.95% 100.00% 100.00% 100.00%

Original Accuracy 99.99% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversample(SMOTE) 99.97% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversampled(Rose) 99.97% 98.56% 99.99% 99.65% 99.99% 99.99% 99.99% 99.98%

Undersample 99.98% 98.56% 99.96% 100.00% 99.94% 99.98% 99.97% 99.98%

Original Precision 99.71% 98.60% 99.61% 99.87% 99.75% 99.85% 99.90% 99.46%

Oversample(SMOTE) 94.69% 98.60% 97.50% 99.85% 99.66% 99.47% 99.75% 99.27%

Oversampled(Rose) 94.69% 19.98% 98.61% 99.78% 99.85% 98.10% 99.75% 96.90%

Undersample 95.21% 19.98% 91.10% 100.00% 86.45% 94.82% 93.45% 95.03%

Original F1 99.71% 96.90% 99.76% 99.86% 99.81% 99.85% 99.87% 99.54%

Oversample(SMOTE) 97.27% 96.90% 98.73% 99.85% 99.78% 99.68% 99.83% 99.59%

Oversampled(Rose) 97.27% 33.30% 99.27% 99.78% 99.83% 99.04% 99.85% 96.90%

Undersample 97.55% 33.30% 95.34% 100.00% 92.71% 97.34% 96.61% 97.45%

Test: 20%

LR NB KNN RF DT AdaB XGB GRB

Original Recall 99.65% 95.22% 99.51% 99.85% 99.87% 99.90% 99.87% 99.60%

Oversample(SMOTE) 100% 95.22% 99.95% 99.85% 99.90% 99.90% 99.92% 99.85%

Oversampled(Rose) 100% 99.78% 99.95% 99.92% 99.82% 99.97% 99.92% 100.00%

Undersample 100% 99.77% 99.97% 100.00% 100.00% 100.00% 100.00% 100.00%

Original Accuracy 99.99% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversample(SMOTE) 99.98% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversampled(Rose) 99.98% 98.54% 99.99% 99.92% 99.99% 99.99% 99.99% 99.98%

Undersample 99.98% 98.54% 99.96% 100.00% 99.92% 99.97% 99.96% 99.97%

Original Precision 99.77% 98.65% 99.80% 99.87% 99.75% 99.87% 99.87% 99.43%

Oversample(SMOTE) 96.77% 98.65% 97.63% 99.85% 99.65% 99.31% 99.73% 99.17%

Oversampled(Rose) 94.71% 19.61% 97.79% 99.92% 99.75% 97.96% 99.75% 96.73%

Undersample 94.91% 19.61% 91.01% 100.00% 83.07% 92.58% 91.81% 92.60%

Original F1 99.71% 96.91% 99.65% 99.86% 99.82% 99.88% 99.87% 99.52%

Oversample(SMOTE) 98.36% 96.91% 98.77% 99.85% 99.77% 99.60% 99.82% 99.51%

Oversampled(Rose) 97.28% 32.78% 98.86% 99.92% 99.79% 98.95% 99.84% 98.33%

Undersample 97.38% 32.78% 95.28% 100.00% 90.75% 96.15% 95.73% 96.16%

Test: 30%

LR NB KNN RF DT AdaB XGB GRB

Original Recall 99.61% 95.04% 99.25% 99.75% 99.82% 99.80% 99.74% 99.54%

Oversample(SMOTE) 99.98% 95.04% 99.96% 99.88% 99.86% 99.90% 99.90% 99.78%

Oversampled(Rose) 100% 99.74% 99.96% 99.92% 99.82% 99.98% 99.93% 99.98%

Undersample 99.96% 99.74% 99.93% 100.00% 100.00% 99.98% 100.00% 99.98%

Original Accuracy 99.99% 99.97% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

(Continued)
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TABLE 3 (Continued)

Test: 30%

LR NB KNN RF DT AdaB XGB GRB

Oversample(SMOTE) 99.98% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversampled(Rose) 99.97% 98.53% 99.99% 99.99% 99.99% 99.99% 99.99% 99.98%

Undersample 99.98% 98.54% 99.98% 99.98% 99.94% 99.98% 99.97% 99.98%

Original Precision 99.82% 98.85% 99.90% 99.93% 99.77% 99.90% 99.88% 99.51%

Oversample(SMOTE) 96.89% 99.97% 98.10% 99.98% 99.90% 99.50% 99.96% 99.45%

Oversampled(Rose) 94.13% 19.70% 98.26% 99.51% 99.96% 98.31% 99.91% 97.10%

Undersample 96.07% 19.71% 95.30% 96.08% 87.16% 94.79% 94.29% 95.47%

Original F1 99.71% 96.91% 99.57% 99.84% 99.80% 99.85% 99.81% 99.53%

Oversample(SMOTE) 98.41% 96.91% 99.02% 99.93% 99.89% 99.70% 99.93% 99.62%

Oversampled(Rose) 96.97% 32.91% 99.10% 99.93% 99.89% 99.14% 99.92% 98.52%

Undersample 97.85% 32.91% 97.56% 98.00% 93.14% 97.32% 97.06% 97.67%

Test: 40%

LR NB KNN RF DT AdaB XGB GRB

Original Recall 94.95% 95.04% 99.44% 99.72% 99.80% 99.77% 99.73% 99.58%

Oversample(SMOTE) 99.97% 95.04% 99.87% 99.78% 99.80% 99.85% 99.85% 99.77%

Oversampled(Rose) 99.98% 99.70% 99.86% 99.75% 99.75% 99.93% 99.89% 99.97%

Undersample 99.98% 99.69% 99.92% 99.98% 99.97% 99.98% 99.97% 99.97%

Original Accuracy 99.96% 99.97% 99.99% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversample(SMOTE) 99.98% 99.97% 99.98% 99.99% 99.99% 99.99% 99.99% 99.99%

Oversampled(Rose) 99.97% 98.54% 99.98% 99.99% 99.99% 99.99% 99.99% 99.98%

Undersample 99.98% 98.54% 99.97% 99.98% 99.93% 99.97% 99.99% 99.98%

Original Precision 96.42% 98.82% 99.67% 99.91% 99.83% 99.91% 99.90% 98.29%

Oversample(SMOTE) 96.88% 98.82% 96.64% 99.90% 99.74% 99.43% 99.79% 99.24%

Oversampled(Rose) 94.73% 19.76% 96.64% 99.93% 99.88% 98.34% 99.84% 97.28%

Undersample 95.72% 19.76% 94.25% 99.74% 85.12% 93.95% 93.20% 95.17%

Original F1 95.68% 96.89% 99.55% 99.82% 99.82% 99.84% 99.81% 98.93%

Oversample(SMOTE) 98.40% 96.89% 98.23% 99.84% 99.77% 99.64% 99.82% 99.50%

Oversampled(Rose) 97.28% 32.98% 98.23% 99.84% 99.81% 99.13% 99.86% 98.61%

Undersample 97.81% 32.98% 97.00% 97.82% 91.95% 96.87% 96.47% 97.51%

5.2 Detailed breakdown of results

Below is a metric-by-metric discussion of the table’s

outcomes, highlighting observations for each sampling method

(Original, SMOTE, ROSE, Undersample), classifier (LR, NB,

KNN, RF, DT, AdaB, XGB, GRB), and test split (10%, 20%,

30%, 40%).

5.2.1 Recall
• Original data: Most ensemble models (RF, DT, AdaB, XGB,

GRB) achieve very high recall (close to or above 99%). Naïve

Bayes (NB) hovers around 95%, while Logistic Regression (LR)

ranges between roughly 95%–99.7% depending on the test

split.

• Oversample (SMOTE): Raises recall values to near 100% for

almost all models, illustrating SMOTE’s ability to bolster the

minority class. KNN sees slight improvements, whereas other

models hit or approach 100% at smaller test splits.

• Oversampled (ROSE):Often comparable to SMOTE, pushing

many models (especially ensembles) to near 99-100%.

However, a few models (e.g., NB, KNN) can vary more with

the test split.

• Undersample: Produces near-100% recall across nearly all

models and test sizes, indicating very effective minority-class

detection.
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FIGURE 1

E�ect of SMOTE on F1-scores under di�erent levels of data imbalance.
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FIGURE 2

Comparison of sampling methods for recall improvement under worst-case imbalance.

TABLE 4 The recall improvement of di�erent resampling techniques.

Model Original Smote (%) Rose (%) Under-sample (%)

LR 85.25 98.80 (15.89%) 99.00 (16.13%) 88.80 (4.16%)

NB 98.80 99.95 (1.16%) 99.95 (1.16%) 100.00 (1.21%)

KNN 84.10 97.04 (15.39%) 89.40 (6.30%) 99.10 (17.84%)

RF 87.15 99.75 (14.46%) 99.37 (14.02%) 99.37 (14.02%)

DT 89.90 97.25 (8.18%) 96.70 (7.56%) 98.10 (9.12%)

AdaB 95.75 96.60 (0.89%) 96.60 (0.89%) 97.50 (1.83%)

XGB 89.90 97.45 (8.40%) 97.45 (8.40%) 89.90 (0.00%)

GRB 87.60 99.10 (13.13%) 98.10 (11.99%) 99.90 (14.04%)

5.2.2 Accuracy
• Minimal variations: Overall accuracy remains consistently

around 99.9% for nearly every model-sampling combination.

This indicates that the large majority class is rarely

misclassified in substantial numbers.

5.2.3 Precision
• Original data: Typically high across the board (98–99%),

especially for ensemble methods and LR. NB also remains in

the high-90% range.

• Oversample (SMOTE): In some cases, SMOTE slightly

reduces precision for LR or KNN (a small increase in

false positives). Most models, however, remain at 95%–98%

precision or higher.

• Oversampled (ROSE): Similar to SMOTE but can cause more

variability. Some models see improved recall at the expense

of precision (especially LR or NB), whereas robust ensemble

methods often keep precision above 99%.

• Undersample: Precision dips for some algorithms (e.g., NB)

due to fewer majority samples. Yet, ensemble models typically

maintain around 99%.

5.2.4 F1 score
• Original data: Already very strong (often 95–99%), especially

for ensemble methods, which exceed 99% in many splits.

NB and LR are slightly lower but still in the mid-

to high-90s.

• Oversample (SMOTE): Boosts F1 for models needing help

on the minority class (e.g., LR, KNN), pushing them closer to

98–99%. Ensemble classifiers remain near or above 99%.

• Oversampled (ROSE): Some scenarios match SMOTE’s

effectiveness, though results occasionally fluctuate more.

Gains in recall might come at a small cost to precision, leading

to variable F1 across test splits.

• Undersample: Often leads to high F1, given the near-perfect

recall. A moderate dip in precision for some models can

slightly lower F1, but most scores remain well above 90%.

5.2.5 E�ect of test split (10%, 20%, 30%, 40%)
Across all sampling methods, varying the test split has minimal

impact on the overall ranking of model performance. Ensemble

classifiers (RF, DT, AdaB, XGB, GRB) consistently top both recall

and F1 scores. NB and LR, which start with lower recall or

precision, see bigger gains from oversampling or undersampling.

5.3 More pronounced e�ect of over- and
under-sampling

To assess the impact of different resampling techniques on

model performance, we evaluate over-sampling (SMOTE and
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ROSE) and under-sampling approaches using a subset of the

original dataset. This subset is selected to illustrate the extent

to which sampling strategies influence model recall. Table 4

summarizes the recall improvement across various machine

learning models when different resampling techniques are applied.

The results highlight a notable improvement in recall for

most models when over-sampling techniques such as SMOTE and

ROSE are applied. For example, Logistic Regression sees a 16.13%

improvement with ROSE and 15.89% with SMOTE compared to

the original dataset.

Interestingly, under-sampling also yields performance gains,

particularly in models like KNN (17.84%) and GRB (14.04%),

indicating that reducing the majority class can sometimes enhance

model generalization.

These findings emphasize the importance of selecting

appropriate sampling techniques based on the model type and

dataset characteristics. Over-sampling methods generally provide

consistent recall improvements, while under-sampling can

be beneficial in some cases but may lead to information loss,

potentially reducing generalization for certain models.

6 Conclusion

This study confirms the critical role of accurate record linkage,

especially when dealing with complex cancer-related datasets.

While manual review has traditionally been the mainstay of

linkage procedures, our findings show that modern machine

learning classifiers offer consistently high recall and F1 scores,

underscoring their potential for improving linkage accuracy

and efficiency.

Furthermore, the results highlight that the choice of sampling

strategy–oversampling (e.g., SMOTE or ROSE) or undersampling–

significantly influences a model’s ability to identify minority

(match) cases. In many scenarios, these strategies boosted recall

to near-perfect levels, thereby reducing the risk of missing

critical matches in large, imbalanced datasets. Moving forward,

leveraging advanced machine learning algorithms in conjunction

with carefully selected sampling methods stands to greatly enhance

record linkage outcomes, ultimately paving the way formore robust

and insightful epidemiological investigations.

Creating a dedicated R package, similar to the approach taken

inHassani andMashhad (2023) for preprocessing in record linkage,

would be a valuable addition for this task. Such a package could

simplify the implementation process and deliver actionable results

to researchers and practitioners who may not be familiar with all

the methods used, thereby increasing accessibility and efficiency in

record linkage practices.
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