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The planet is experiencing global warming, with an increasing number of heat

waves worldwide. Cities are particularly a�ected by the high temperatures

because of the urban heat island (UHI) e�ect. This phenomenon is mostly

explained by the land cover changes, reduced green spaces, and the

concentration of infrastructure in urban settings. However, the reasons for the

UHI are complex and involve multiple factors still understudied. Air pollution is

one of them. This work investigates the link between particulate matter ≤2.5µm

(PM2.5) and air temperature by convergent cross-mapping (CCM), a statistical

method to infer causation in dynamic non-linear systems. A positive correlation

between the concentration of fine particulate matter and urban temperature is

observed. The causal relationship between PM2.5 and temperature is confirmed

in the most urbanized areas of the study site (Quito, Ecuador). The results show

that (i) the UHI is present even in the most elevated capital city of the world,

and (ii) air quality is an important contributor to the higher temperatures in urban

than outlying areas. This study supports the hypothesis of a non-linear threshold

e�ect of pollution concentration on urban temperature.
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1 Introduction

1.1 Global warming and urban impacts

As the World Meteorological Organization (WMO) reports that 2023 has broken the

record for the hottest year since preindustrial levels, media have shifted the focus from

“global warming” to “global boiling” to emphasize the increasing global temperatures

(United Nations News, 2023; World Meteorological Organization., 2024). Additionally,

the past 9 years have been the warmest in the 174-year history of recorded observations,

with each consecutive decade warmer than the previous one since the 1980s (United

Nations, 2024). This marks a significant acceleration in warming trends, coinciding with

unprecedented levels of greenhouse gas concentrations, leading to more severe heat waves,

storms, and rising sea levels, which are expected to disproportionately impact cities (United

Nations Climate Change, 2023). These developments underscore the urgent need for

adaptive strategies to mitigate the heightened risks that urban centers face.

As cities grow and the world becomes more urbanized, the Urban Heat Island (UHI)

effect is becoming a more pressing issue (Oke, 1973; Zhou et al., 2017). This phenomenon

refers to the tendency of cities to experience warmer air temperatures compared to the

surrounding countryside (Howard, 1818). While the sun’s heat and light reach the earth

uniformly, the temperature differences between urban and rural areas are attributed to

land cover changes, reduced green spaces, and the concentration of infrastructure in urban
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settings (Santamouris, 2015). This effect can result in urban-rural

temperature differences of 1–2◦Cduring the day and 3–6◦C at night

(Cichowicz and Bochenek, 2024; Clarke et al., 2022; Santamouris,

2015; Santamouris and Kolokotsa, 2016; Ulpiani, 2021).

The primary health concern associated with the UHI effect is

the elevated risk of heat-related illnesses (Heaviside et al., 2017;

Thanvisitthpon, 2023). The increased temperatures in urban areas,

exacerbated by UHI, can lead to heat stress, heat exhaustion, and

heatstroke. Vulnerable populations, such as the elderly, children,

and individuals with pre-existing health conditions, are particularly

at risk (Anderson et al., 2013; Arsad et al., 2022). Prolonged

exposure to extreme heat can strain the cardiovascular system and

exacerbate respiratory conditions, posing a significant threat to

public health (Anderson et al., 2013; Khatana et al., 2023; Xu et al.,

2023).

Air quality in urban settings, often referred to as the Urban

Pollution Island (UPI), is frequently compromised by the UHI

effect, with higher temperatures contributing to the formation of

ground-level ozone and other air pollutants (Ulpiani, 2021). The

combination of elevated temperatures and increased air pollution

can worsen respiratory conditions such as asthma and chronic

obstructive pulmonary disease (Han et al., 2023; Tiotiu et al., 2020;

Tran et al., 2023). Poor air quality associated with UHI can also

have broader implications for cardiovascular health, potentially

increasing the risk of heart attacks and other cardiovascular

diseases (Freed, 2023). Additionally, there is a reverse relationship

between atmospheric pollution and urban temperature. Previous

studies have suggested that aerosol emissions may influence the

UHI effect (Piracha and Chaudhary, 2022; Wang et al., 2022a;

Ulpiani, 2021; Cao et al., 2016). However, despite the well-

documented correlation between UHI and UPI in climatology,

their interaction remains comparatively underexplored (Ulpiani,

2021) and no statistical methods have been applied to demonstrate

the causal effect of air quality on urban temperature. This work

proposes a novel approach grounded in data-driven modeling to

address this research gap.

1.2 Modeling non-linear dynamics

In general, natural systems are dynamic, multidimensional,

and non-linear. As such, typical linear models are not suitable

for analyzing the variable interactions in a complex ecological

environment (Gregory, 2016). A method that captures the

magnitude of correlated dynamic change is needed. For this

reason, our approach employs Empirical Dynamic Modeling

(EDM), a non-parametric framework for modeling non-

linear dynamic systems. Building on the EDM framework,

we integrate the Convergent Cross-Mapping (CCM). While

EDM offers a foundation for modeling system dynamics, CCM

enhances the analysis by providing a quantitative method

to define causal relationships among variables (Sugihara

et al., 2012). By systematically exploring cross-mapping, we

gain insights into the feedback loops and dependencies that

shape the system’s dynamics. This fusion of EDM and CCM

models allows us to explain the nuanced behaviors and causal

connections within non-linear systems, leading to a more

comprehensive analysis of the complexities inherent in air

temperature-aerosols system.

Dynamic causation highlights the intricate relationships

between time series variables, which are considered causally related

when they are coupled within the same dynamic system; perturbing

one variable will consequently affect the other. In this context, if

variable X influences variable Y, it follows that Y holds information

about X, enabling the prediction or recovery of X from the historical

data of Y. This means that the states of X can be effectively

reconstructed by analyzing the past behavior of Y, illustrating the

interconnectedness of these variables and the potential for utilizing

one to infer insights about the other. This relationship can be

rigorously tested through cross-mapping, a method that helps

validate the causal links between the variables.

The relationship between climate and atmospheric pollution

is intricate and mutually dependent. EDM and CCM is a novel

non-parametric approach for analyzing this non-linear dynamic

system. At present, several studies have explored the EDM-CCM

framework, which has found increasing application in various

fields, including ecology (Deyle et al., 2016b; Ushio et al., 2018),

climate science (Zhaoni et al., 2023), epidemiology (Deyle et al.,

2016a; Ma et al., 2017; Rybarczyk et al., 2024), and medicine

(Natsukawa and Koyamada, 2017). DeAngelis and Yurek (2015)

stated that EDM offers a promising quantitative method for

utilizing time series data to createmodels that can effectively project

future dynamics.

Due to its elevated location in the Andean mountains, Quito,

the capital city of Ecuador, is used as a unique case study to

analyze and understand the link between atmospheric pollution

and urban temperature.

2 Method

2.1 Study site

The study focuses on six neighborhoods of the metropolitan

district of Quito (DMQ). These districts are divided into two

groups: urban and suburban areas. The urban areas are: Belisario

(elevation: 2,835m above mean sea level (m.a.s.l.); coordinates:

78◦29′24′′W, 0◦10′48′′S), El Camal (elevation: 2,840m.a.s.l.;

coordinates: 78◦30′36′′W, 0◦15′00′′S), and Carapungo (elevation:

2,660m.a.s.l.; coordinates: 78◦26′50′′W, 0◦5′54′′S). And the

suburban areas are: Tumbaco (elevation: 2,331m.a.s.l.;

coordinates: 78◦24′12.4164′′W, 0◦12′53.334′′S), Los Chillos

(elevation: 2,453m.a.s.l.; coordinates: 78◦27′36′′W, 0◦18′00′′S),

and Cotocollao (elevation: 2,739m.a.s.l.; coordinates: 78◦29′50′′W,

0◦6′28′′S). These two clusters are objectively defined through the

calculation of the urbanization axis (UA) of the city, which exhibits

an elongated shape constrained by two parallel mountain ranges,

the Western and Eastern Cordilleras (Figure 1). The urban cluster

is composed of the three nearest districts to the UA, whereas the

suburban cluster is defined by the three furthest districts to this

axis. The computation of the UA is carried out by a weighted linear

regression of the population density of each parish of the DMQ.

One geographic point at the center of each parish is utilized to

calculate the regression. Then, the occurrence number (or weight)

for each point is determined by the population density of the

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2025.1546223
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Rybarczyk et al. 10.3389/fdata.2025.1546223

FIGURE 1

Population density of the Metropolitan District of Quito by parish (2020). The yellow line represents the urbanization axis of the city.

respective parish. Equation 1 shows the calculation of the weight

of each geographic point (wi), which is obtained by dividing the

mean parish density (di) by the mean lowest parish density (D).

wi =
di

D
(1)

The result is an axis stretching from the South-West to the

North-East (see yellow line in Figure 1). A perpendicular line to

the UA intercepting the location of the monitoring station of each

district gives the distance between these two points. The distance

between the six monitoring stations and the UA is used to represent

the shape of the urban heat island (UHI) for Quito. One suburban

(Cotocollao) and two urban (Belisario and Carapungo) stations are

located in the North-West of the UA. One urban (El Camal) and

two suburban (Tumbaco and Los Chillos) stations are situated in

the South-East of the UA.

Quito is characterized by its high-altitude complex terrain.

Each neighborhood is situated at varying elevations with a total

vertical span of 509 meters between the highest (El Camal-

−2,840m.a.s.l.) and the lowest (Tumbaco−2,331m.a.s.l.) district.

This difference of elevation has an impact on temperature, because

the average temperature decreases as altitude increases, making

regions at higher elevations colder (Peterson, 2003). The change in

temperature with elevation is known as the environmental lapse

rate. This variation is in a range of 0.6 to 7.0◦C for every 100

meters of elevation gain. Since the average temperature changes can

vary based on local conditions, we used 0.7◦C/100m from studies

estimating the temperature lapse rate in high-altitude basin (Zhao

et al., 2022) and complex terrains (Gao et al., 2012). This correction

is applied to the raw measurements, in order to normalize the

altitude effect and to allow a fair comparison of temperatures

between the six studied areas, for the correlation analysis. No

correction of temperature is necessary for the causation analysis, as

the EDM-CCM method is based on the time series variation, and

not the absolute values, of the studied variables. The characteristic

of each monitored site is summarized in Table 1.

Figure 2 illustrates the wind rose plots for all study sites. The

dominant wind direction may vary from one site to another,

which is typical of a montane city where the terrain is complex.

Additionally, we note that the wind speed distribution range is

relatively low (≤6 m/s) across all districts. This suggests that most
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TABLE 1 Study areas ranked by descending order of elevation.

District Type Elevation (m) Mean raw temperature
(◦C)

Mean corrected
temperature (◦C)

Distance from UA (km)

El Camal urban 2,840 13.98 14.02 2.37

Belisario urban 2,835 13.94 13.96 1.34

Cotocollao suburban 2,739 13.93 13.31 7.06

Carapungo urban 2,660 14.74 13.61 4.44

Los Chillos suburban 2,453 15.34 12.86 15.45

Tumbaco suburban 2,331 16.17 12.89 9.37

FIGURE 2

Wind rose plots for six study sites: A) Belisario, B) Carapungo, C) El Camal, D) Los Chillos, E) Cotocollao, and F) Tumbaco.

of the pollution is generated locally rather than being transported

from distant sources, and the wind direction would not matter

that much, unless it was coming from a nearby road. Furthermore,

Ecuador is not an industrialized country, and most urban air

pollution originates from traffic activity (Alvarez-Mendoza et al.,

2018).

2.2 Data collection

The data utilized in this research were collected by the

Municipal Office of Environmental Quality in Quito. This

involved real-time hourly monitoring over 19 years (from 2004

to 2023), using state-of-the-art Environmental Protection Agency

(EPA) standard equipment installed in multiple locations (i.e.,

six monitoring stations) across the city. Thermo Scientific

FH62C14-DHS was used to obtain concentrations of particulate

matter with aerodynamic diameter ≤2.5µm (EPA No. EQPM-

0609-183). Apart from the air pollution data, meteorological

parameters were also measured in the same monitoring stations.

For that, completely automatic weather stations were used.

Temperature was measured by Thies Clima equipment. The data

thus obtained are not only extensive but also characterized by their

high fidelity and representativeness of the actual environmental

conditions in the neighborhoods of Quito.

To ensure data quality procedures, recommended by

the U.S. Environmental Protection Agency (EPA) and the

World Meteorological Organization (WMO), internationally

calibrated standards from the National Institute of Standards and

Technology (NIST) to guarantee data traceability are applied (U.S.

Environmental Protection Agency, 2017). First, there is regular

staff training to ensure that operational personnel are skilled in
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handling equipment, performing maintenance, and executing

calibration procedures accurately. In addition, Secretariat of

Environment performs a preventive maintenance program,

to minimize equipment failures and ensures the reliability of

monitoring instruments. Furthermore, comprehensive calibration

program involves: (i) sampling to ensure that air samples are

consistently representative of the monitored environment; (ii)

measurements to verify that instruments are accurately capturing

air quality and meteorological parameters; and (iii) calibration to

regularly adjust instruments against known standards to maintain

measurement accuracy. Finally, rigorous acquisition procedure

ensures that all monitoring equipment and standards used meet

predefined quality criteria. Apart from the equipment checks, daily

data monitoring of pollutant trends and urban meteorological

parameters allows for the early identification of calibration

deviations or potential equipment malfunctions. And continuous

automated nightly checks validate that the sampling, measurement,

and calibration equipment perform consistently and accurately.

2.3 Convergent cross-mapping

The statistical method of convergent cross mapping (CCM)

is used to infer a possible causal effect of fine particulate matter

on urban temperature. This technique, developed for studying

complex dynamical systems, allows us to analyze the relationships

between the two time series of PM2.5 and temperature. The

principle consists of determining whether changes in temperature

can predict changes in the concentration of PM2.5, thereby

providing insights into the directionality and strength of the

interaction between the two variables. The method operates on

the premise that if the variable PM2.5 influences the variable

temperature, then the state of temperature can be used to predict

the state of PM2.5 over time. Conversely, if PM2.5 does not influence

temperature, knowing temperature would not help in predicting

PM2.5. CCM is particularly valuable in systems where relationships

are non-linear, and traditional correlation or linear regression

methods may fail to capture the complexity of the interactions

(Sugihara et al., 2012). This is the reason why CCM is most applied

in ecology and environmental sciences, particularly in climate

studies (Ye et al., 2015; Rybarczyk et al., 2024).

For applying this powerful tool and making causal inferences,

several criteria need to be fulfilled (Figure 3). First, the best number

of embedded dimensions must be calculated. The embedding is

based on the Takens’ theorem to reconstruct the phase space of

each time series (Takens, 1981). This involves transforming the time

series data into a higher-dimensional space where the dynamics

of the system can be described. Second, the non-linearity of the

relationship between PM2.5 and temperature needs to be tested. An

important condition for applying the CCM is to make sure that

the analyzed system is deterministic and non-linear (Chang et al.,

2017). Third, the cross-map skill (xmap) for predicting PM2.5 from

temperature must be greater than zero and must increase with the

library size (i.e., amount of training data). Finally, a surrogate data

test is carried out. The surrogate is generated by a shuffled version

of the original time series. If the xmap skill for the original data

is significantly better than for the surrogate, it can be concluded

that the apparent causality is likely not due to chance. All of these

conditions need to be met for inferring a causal effect of the fine

particulate matter on the urban heat island (Yuan and Shou, 2022).

The CCM analysis is implemented in R programming language

and uses the dedicated library rEDM (Park et al., 2023). The

developed script is composed of four main operations. First,

the data are loaded as a parameter of the EmbedDimension()

function in order to define the best number of dimensions to get

the highest predictive skill. Second, the linearity is tested using

the PredictNonLinear() function. The non-linearity is established

when the highest prediction skill is obtained for a dimensional

space higher than zero. Third, the convergent cross-mapping is

applied using the best dimension computed in the previous steps

and the variables to analyze as parameters. The CCM() method

provides the xmap skill as a function of library size. Finally, the

significance (p-value) of the causation is calculated by comparing

the original time series to a surrogate. The surrogate test is

conducted to reject the null hypothesis that confounding variables,

other than air pollution, may influence the causal relationship with

temperature. The “ebisuzaki method” is utilized to create surrogates

by randomizing the phases of a Fourier transform, preserving the

power spectra of the null surrogates.

3 Results and discussion

3.1 Correlation analysis

The shape of the UHI for the DMQ is represented in Figure 4

(panel A, continuous line). The plot shows clearly that the

temperature is affected by the distance from the UA, confirming

previous studies indicating warmer city cores (Gartland, 2008;

Howard, 1818; Kazakou et al., 2009; Oke, 1973; Tzavali et al., 2015;

Zhou et al., 2017). The highest temperatures are observed for the

urban districts close to the UA, whereas the lowest temperatures

are recorded for the suburban districts. The corrected temperature

is particularly low for the two furthest districts to the UA (Tumbaco

and Los Chillos). This visual analysis is confirmed by the high

correlation (R2 = 0.854) between the corrected temperatures and

the distance from the UA (Figure 4, panel B). A similar profile

is observed for the values of the fine particulate matter over

the metropolitan district (Figure 4, panel A, broken line). The

concentrations in PM2.5 are higher for the urban than the suburban

areas. As shown before, the urban form, population and density of

economic activity directly influence PM2.5 concentrations (Wang

et al., 2022b). These results are coherent with the expected values

of temperature (Orlando and Berazategui, 2024) and air pollution

(Zalakeviciute et al., 2018a) in a mid-size South American city.

Figure 4 (panel C) shows that the correlation between the

corrected temperature and the concentration of PM2.5 is also

high (R2 = 0.764). There is a fair overlapping between the

normalized values of temperature and PM2.5 (Figure 4, panel A).

Only one district (Belisario) has a concentration of fine particulate

matter that deviates from the trend of measured temperatures.

This difference can be explained by the fact that the monitoring

station for this district is located near two big urban parks

(i.e., Parque de Mujer and Parque La Carolina), that have been

identified as important air pollution filters for the city (Hernandez
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FIGURE 3

Diagram describing the main steps of the CCM method for inferring a causal relationship between PM2.5 and urban temperature.

et al., 2019; Zalakeviciute et al., 2024). This result supports the

hypothesis of an impact of the fine particulate matter on the urban

temperature. The finding is confirmed by an additional analysis

that involved calculating the correlation between temperature and

various spatial parameters related to land use and population

density (Table 2). The results show that temperature has a stronger

correlation with PM2.5 (r = 0.87) than with urbanization (r =

0.66), which rules out the assumption that factors other than air

pollution could more effectively explain the urban heat island effect

in Quito.

However, the correlation between PM2.5 and UHI could

be explained by confounding variables that have a causal effect

on both air pollution and temperature. Besides urbanization,

industrial activity leads to higher emissions of pollutants (Liu

et al., 2022) and can also contribute to local warming (Meng

et al., 2022) due to human activities. Additionally, socioeconomic

growth typically entails increased energy consumption which

often relies on the combustion of fossil fuels, resulting in both

heat generation (Li et al., 2020) and atmospheric pollution

(Feng et al., 2023). Lastly, wind patterns can simultaneously
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FIGURE 4

Representation of the UHI and its correlation with air pollution. The normalized values of corrected temperatures (continuous line) and PM2.5

concentrations (broken line) are plotted for each monitoring station (panel A). Negative kilometers are arbitrary attributed to the North-West districts

for displaying the shape of the UHI. Panels B and C represent the correlation of the corrected temperatures with the distance from the urbanization

axis and air pollution, respectively.

TABLE 2 Correlation (Pearson’s coe�cient) of temperature with main environmental and demographic variables (refer to Table A1 in the Appendix for

data sources).

Natural land (%) Urban area (%) Agricultural area (%) Population density

(inhab/km2)

PM2.5(µg/m
3)

Temperature (◦C) −0.65 0.66 −0.60 0.57 0.87

influence PM2.5 and temperature. Wind plays a crucial role in

dispersing and transporting air pollutants over long distances

(Kleine Deters et al., 2017). It can also affect the presence

of temperature inversions that trap pollutants close to the

ground, especially in urban areas surrounded by mountains,

such as Quito (Glojek et al., 2022). Regarding temperature,

wind impacts heat distribution, which can either exacerbate

or mitigate the UHI effect by influencing local weather

conditions (Abbassi et al., 2022). To distinguish causality

from spurious correlation, the second analysis consists of

performing the CCM on the time series of the PM2.5 and

temperature variables.

3.2 Causal analysis

The causal analysis shows the best number of four embedded

dimensions for the studied sites. The non-linearity test

demonstrates that the deterministic dynamic system is non-

linear. These two results allow us to apply the CCM method to

infer a causal relationship between air pollution and temperature.

The CCM exhibits an important difference between the urban

and suburban areas (Figure 5). In the case of the three urban

districts a similar pattern can be observed (Figure 5, panel B).

For all of them, the cross-mapping is positive (prediction skill

> 0) and increasing with the library size. This result validates
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FIGURE 5

Convergent cross mapping of PM2.5 with temperature in urban (panel A) and suburban (panel B) areas.

TABLE 3 Summary of the tested criteria and causal deductions.

Urban areas Suburban areas

Criteria Belisario El Camal Carapungo Tumbaco Los Chillos Cotocollao

Xmap skill > 0 Yes Yes Yes No Yes Yes

Xmap skillր with Lib size Yes Yes Yes No No Yes

Surrogate test (p-value) 0.000 0.005 0.023 0.008 0.051 0.499

Causation YES YES YES NO NO NO

step 3 of the CCM workflow (Figure 3) for the urban sites. On

the contrary, the suburban areas present a dissimilar profile of

prediction skill (Figure 5, panel B). The xmap for Tumbaco is

negative and decreasing with the library size. Los Chilos has a

positive xmap, but its value decreases with the amount of training

data. Cotocollao is the only suburban neighborhood exhibiting a

positive xmap that increases with the library size. The fact that the

cross-mapping test (Figure 3, step 3) is not validated for Tumbaco

and Los Chillos means that no causal relationship between PM2.5

and temperature can be inferred for these two suburban areas.

This result is consistent with the fact that these zones are more

vegetated, especially the rainy district of Los Chillos, which might

have a double effect of mitigating both the particle pollution and

heat (Cohen et al., 2014; Xing and Brimblecombe, 2020).

The surrogate test (step 4) shows a significant difference of the

xmap between the original dataset and a shuffled version of the

time series for one suburban area (Tumbaco) and the three urban

areas (Table 3). For the other two suburban areas (Los Chillos and

Cotocollao) the p-value is above 0.05. This last analysis allows us to

conclude on the CCM-based causality of fine particulate matter on

temperature. Among the studied sites, only the urban districts meet

the three criteria to infer a causation. Consequently, we can deduce

that the concentrations of PM2.5 have an effect on the measured

temperature in the most urbanized areas of the city. For assessing

the UHI effect, urban and suburban districts are usually lumped

together and compared to the rural areas (Tzavali et al., 2015). Here

we show a reduced pollution effect for the suburban neighborhoods

in contrast to the urban core. This finding supports the hypothesis

of a causal effect of the fine particulate matter on the UHI. The

result, along with the correlation analysis, aligns with a previous

study pointing out the role of black carbon in increasing the urban

temperature (Wang et al., 2022a). This causal relationship can be

explained by anthropogenic emissions and radiative forcing effect

of black carbon on albedo (Wu et al., 2024; Kopp and Mauzerall,

2010).

Since we observe a causal effect of PM2.5 on temperature in

urban but not in suburban areas, we propose that there may be

a threshold effect of anthropogenic emissions contributing to city

warming. This observation is consistent with recent studies, which

demonstrate varying effects of PM2.5 concentration and chemical

composition between urban and suburban environments (Wu

et al., 2024). Furthermore, these studies highlight the importance of

non-linear heating mechanisms, which may depend on urban form

(Ming et al., 2023). Our findings, along with these studies, highlight

the need for further investigation into the underlying processes

driving these patterns, leaving open questions about the specific

mechanisms through which PM2.5 impacts urban temperatures.

The threshold effect can be understood through the mitigating

impact of spatial environment indicators on the interaction

between particulate matter and air temperature. Fang and Gu

(2022) showed that the significance of the coupling effect between

UHI intensity and PM2.5 concentrations is characterized by notable

spatial heterogeneity. This coupling is influenced by several spatial

indicators, including land cover, land use, building forms, and road

traffic density. Notably, vegetated areas exhibit a strong negative

correlation, suggesting that greenery can mitigate the interplay

between UHI and PM2.5, thereby reducing urban temperatures.

Conversely, urban forms characterized by high building density

and various land uses, such as residential and commercial

areas, are positively correlated with both temperature and PM2.5

levels (Rodríguez et al., 2016; Xu et al., 2017). Additionally,

road traffic density contributes further to this effect, releasing
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heat and pollutants that amplify the interaction between urban

warming and air quality degradation (Liu and He, 2012; Husni

et al., 2022). Overall, the enhanced human activity in built

environments exacerbates the coupling effect between UHI and

PM2.5, emphasizing the necessity for strategic urban planning that

incorporates vegetation and considers land use patterns to alleviate

these urban climate challenges.

Some possible limitations need to be discussed before drawing

final conclusions from this work. First, it is important to mention

that the accuracy of the causal inferences is impacted by the

measurement uncertainties. Yuan and Shou (2022) show that CCM

performs exceptionally well in a deterministic setting. Conversely,

the precision declines when measurement noise is introduced.

The greater the noise level, the higher the likelihood of failing to

detect causal relationships. However, the probability of this issue

is minimal, as data collection is conducted using state-of-the-art

equipment that is rigorously calibrated and controlled according

to a standard protocol, as outlined in section “2.2. Data Collection.”

Furthermore, in the unlikely event that measurement noise impacts

our results, it would hide actual causation (false negative) but would

not infer incorrect connections (false positive).

A second consideration is the representativeness of the six

districts. Although the monitoring stations are geographically

dispersed, they cover most of the metropolitan area of Quito.

The ability to measure environmental variables from East to

West across the city enables us to create a fair UHI profile that

encompasses both urban and suburban areas. Measurements in

purely rural areas could have enhanced the analysis by providing

background concentrations, but no such installations are available

in the region. Also, various types of districts are represented in

this sampling (Zalakeviciute et al., 2018b). This includes industrial

areas, primarily located in the North (Carapungo and Cotocollao)

and South (El Camal and Los Chillos) parts of the city, as well

as residential areas (Belisario and Tumbaco). Our results indicate

that the characteristics of the district (industrial vs. residential) are

less correlated with air temperature than with the concentration of

PM2.5, suggesting that fine particulate matter is a primary driver of

the UHI.

Lastly, potential confounding variables pose the main

challenge in inferring true causation in uncontrolled settings.

Here, meteorological conditions can be identified as a possible

confounding variable. However, the results of the causal analysis

can rule out this hypothesis. CCM determines whether a variable

truly influences another by examining how well the history of

one variable (i.e., temperature) can predict the state of another

(i.e., pollution). The fact that temperature consistently predicts

PM2.5 despite changes in meteorological conditions supports

the notion that fine particulate matter has a causal effect on air

temperature. This cross-mapping between the studied variables

helps to distinguish genuine causal relationships from those merely

correlated due to confounding influences.

4 Conclusions

The Urban Heat Island (UHI) is a complex interplay between

urban planning, local climate, and human activities. Due to

the fact that the effect of air pollution on this phenomenon is

underexplored, we investigated the link between fine particulate

matter (PM2.5–particulate matter with aerodynamic diameter ≤

2.5µm) and urban temperature. The first finding shows that even

in the highest capital city of the world (Quito, Ecuador) a clear

UHI effect is present. There is a negative correlation between

the distance from the urbanization axis and air temperature.

The second result reveals a high positive correlation between

the concentration of PM2.5 and temperature. A fair overlapping

between the geographic profile of the air contaminant and

temperature is observed. In order to avoid a spurious correlation,

a causal analysis based on CCM was performed. The findings

underscore the significance of the PM2.5 concentrations as a

contributor to the city’s thermal dynamics. A causal impact of

PM2.5 on the temperature is confirmed in the urban districts,

only. It is probably due to an effective range of pollution

concentration, which needs to exceed a certain threshold to

affect significantly the city temperature. This outcome aligns

with the expected characteristics of the UHI, where urban areas

experience higher temperatures compared to their suburban and

rural neighborhoods.

While urban districts have more asphalt surfaces, suburban

areas feature more dirt or concrete tile roads, which may influence

the urban albedo of Quito. Specifically, asphalt and soot from

traffic-related PM contribute to a warming effect in urban regions,

whereas lighter, more naturally derived PM in suburban areas

has a cooling effect (Zereini and Wiseman, 2011). In previous

research examining the chemical composition of PM10, which also

includes PM2.5, we observed distinct chemical differences between

urban and suburban sites. Specifically, the urban site exhibited

more elements related to anthropogenic sources, including black

carbon, while suburban PM10 was composed of more natural

elements (Zalakeviciute et al., 2020). In other words, the distinction

between urban and suburban areas can be attributed to the fact

that PM2.5 primarily originates from dust in suburban regions,

while the source of fine particulate matter in urban areas is largely

anthropogenic. This human-generated pollution contains black

carbon, which warms cities by absorbing sunlight and heats the

urban atmosphere (Schmidt, 2011).

Our study supports the idea that minimizing the emission

of air pollutants can reduce the UHI effect (Cao et al., 2016;

Wang et al., 2021). Addressing the UHI impact is pivotal in the

broader context of global warming mitigation. Urban planning

strategies, including the expansion of green spaces, promotion of

’cool roofs’, or alternative solutions, in addition to enhancement

of public transportation, could be instrumental in reducing

air temperature of the cities. The present work is the first

statistical demonstration of the causal impact of anthropogenic

atmospheric emissions on the UHI. Our findings can support

the public decision-making process by adopting policies that aim

to (i) impose stricter standards for greenhouse effect pollutant

emissions and fuel by replacing gasoline-powered cars with hybrid,

electric and hydrogen vehicles; and (ii) reflect on urban solutions

that mitigate air pollution and elevated temperature to help

prevent chronic diseases. Further research is needed to evaluate

the long-term effects of green infrastructure and sustainable

transportation policies. In-depth studies should also explore the
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interconnectedness of UHI, atmospheric pollution, climate change,

and their collective impact on human health.
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Appendix

TABLE A1 Spatial and environmental parameters for each district.

Tumbaco Los Chillos El Camal Cotocollao Belisario Carapungo

Natural land cover (%) 6.35 16.16 5.27 5.45 2.45 9.81

Urban area (%) 92.91 72.97 94.73 94.73 97.55 90.19

Agricultural area (%) 0.73 10.87 0 0 0 0

Population density (people/km2) 11.2 2.2 85.01 71.97 22.1 30.38

Mean PM2.5 (µg/m
3) 13.13 14.80 21.74 21.74 17.21 18.08
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