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Introduction: Traditional Graph Pattern Matching (GPM) researchmainly focuses

on improving the accuracy and e�ciency of complex network analysis and

fast subgraph retrieval. Despite their ability to return subgraphs quickly and

accurately, these methods are limited to their applications without medical data

research.

Methods: In order to overcome this limitation, based on the existing research

on GPM with the lung cancer knowledge graph, this paper introduces the

Monte Carlo method and proposes an edge-level multi-constraint graph pattern

matching algorithm TEM with lung cancer knowledge graph. Furthermore,

we apply Monte Carlo method to both nodes and edges, and propose a

multi-constraint hologram pattern matching algorithm THM with lung cancer

knowledge graph.

Results: The experiments have verified the e�ectiveness and e�ciency of TEM

algorithm.

Discussion: This method e�ectively addresses the complexity of uncertainty

in lung cancer knowledge graph, and is significantly better than the existing

algorithms on e�ciency.

KEYWORDS

graph pattern matching, probability graph, lung cancer knowledge graph, Monte Carlo

method, multi-constranint

1 Introduction

Graph pattern matching (GPM) has always been crucial in graph computing, evolving

to meet the requirements of emerging applications. The field of graph pattern matching

was originally rooted in protein isomorphism research (Hu and Ferguson, 2016; Tian and

Patel, 2008) and later expanded to cover community discovery (Liu et al., 2021; Su et al.,

2022), expert identification (Li et al., 2016; Wei et al., 2014), development of recommender

systems (Fan et al., 2013), social group discovery (Khan et al., 2020; Sato et al., 2016;

Chikhaoui et al., 2020), and range group identification (Fan et al., 2010). In 2024, Li

et al. Li et al. (2024) introduced the concept of probability graph pattern matching for

lung cancer knowledge graph, and proposed a multi-constraint graph pattern matching

algorithm TKG-McGPM, which combined with Monte Carlo method and candidate node

screening to improve the diversity and validity of matching results. However, we believe

there are some disadvantages that: (1) Different parameter characteristics: The node trust

value TDT is based on explicit relationships or attributes, and it is not suitable for theMonte

Carlo method, while the marginal parameter diagnosis and treatment cycle value TDC and

the cost-benefit analysis value TCV involve uncertainty factors, and they are more suitable

for the Monte Carlo method. (2) Computational complexity and resource consumption:

Monte Carlo methods require a lot of computational resources and are suitable for edge
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matching rather than node matching, as the latter tends to be more

efficient and of lower complexity.

Therefore, it is more reasonable and efficient to apply the

Monte Carlo method to edge matching. Hence, this paper proposes

an edge-level multi-constraint graph pattern matching algorithm

(TEM) based on lung cancer knowledge graph, which ensures

the correctness of the matching results and increases the diversity

by using the random method to obtain the values of the two

parameters TDC and TCV on the edge. In order to further discuss

the effectiveness and efficiency of using the Monte Carlo method

on both nodes and edges, a hologram multi-constraint pattern

matching algorithm (THM) has been proposed. Experimental

results show that the TEM algorithm is superior to the existing

algorithms and the THM algorithm. All in all, contributions of this

paper include:

• The necessity of employing Monte Carlo methods for edge

matching to achieve superior subgraph matches is proposed;

• To ensure optimal pattern graph alignment, the conventional

graph pattern matching model is refined, introducing an edge-

level approach tailored specifically to a lung cancer knowledge

graph;

• Addressing prevailing challenges, we propose TEM, an edge-

level graph pattern matching algorithm grounded in the

context of a lung cancer knowledge graph;

• To rigorously assess the efficacy and efficiency of the TEM

algorithm, we further introduce THM, a hologram pattern

matching algorithm also rooted in the lung cancer knowledge

graph framework.

2 Preliminary

2.1 Lung cancer knowledge graph

The knowledge graph used in this paper is derived from

the tumor knowledge graph designed by Li et al. (2024) which

consists of five participating nodes: attending physician (AP),

testing instrument (TI), tumor type (TC), nursing staff (PM) and

treatment method (TM). The pattern graph is shown in Figure 1

and the data graph is shown in Figure 2, where each node has an

associated trust value reflecting its trustworthiness in the eyes of

others.

The relevant concepts are defined as follows:

Definition 2-1: Diagnostic and therapeutic trust value TDT

represents the degree of trust between participating nodes in the

tumor knowledge graph, ranging from 0 to 1.

Definition 2-2: Diagnosis and treatment cycle value TDC

represents the efficiency of resource allocation among these nodes,

also in the range of 0 to 1.

Definitions 2-3: Diagnostic and therapeutic cost-benefit analysis

value TCV compares the cost of a medical intervention with its

outcomes (e.g., survival and quality of life) to determine which

intervention provides the highest cost-benefit ratio. There are two

ways to calculate it: (1) The first approach (C/E) compares the

effect under fixed costs and focuses on cost savings. It calculates

the cost per unit of effect, such as the amount spent each

year to extend life. This approach emphasizes cost savings. (2)

The second approach (E/C) compares the effect of fixed costs

and emphasizes the improvement in survival. It determines the

effect generated per unit cost, considering the case of how a

particular cost prevents multiple infection-related complications.

This approach emphasizes improving survival. In this study, we

assume that patients prioritize improved survival. Therefore, the

patient chooses the second calculation method TEC . We compute

TDC and TCV along the path by multiplication and TDT by

averaging.

2.2 Pattern graph matching

According to the correspondence between the data graph

and the pattern graph, the graph pattern matching study can be

divided into two categories: isomorphic GPM and simulated GPM.

Isomorphic pattern matching requires a double-shot function to

ensure that the topology of the matching subgraph perfectly reflects

the pattern graph. Typical algorithms include VF2 (Foggia et al.,

2001), VF3 (Carletti et al., 2018), R-join (Cheng et al., 2008), and

G-Ray (Tong et al., 2007). This type of matching is key in 3D

object matching and protein structure matching, and indexing,

parallelization, and distribution methods are often used to improve

efficiency. Due to its NP integrity, the computationally high cost

makes the strict matching standard unsuitable for applications

where accuracy is not a primary consideration. Based on this,

scholars turned to simulation-based graph pattern matching. The

concept of graph simulation was first proposed by Henzinger et al.

(1995), and it requires that the nodes in the matching subgraph

maintain the same successor relationship as their corresponding

nodes in the pattern graph. Fan et al. (2010) converted exact

one-to-one matching into binary relational search by bounded

length, and Liu et al. (2015) extended bounded simulation to

accommodatemulti-constraint graph patternmatching, combining

node and edge attribute information. Liu et al. (2020) proposed

the multi-fuzzy constraint graph pattern matching to solve the

limitation of ignoring the precursor adjacency relationship of the

existing model, and introduced the strong simulation matching

model of multi-fuzzy constraints, which matched the precursor

relationship and the successor relationship of the candidate nodes

at the same time, and effectively eliminated the nodes that did

not meet the adjacency relationship. In addition, Liu et al. (2022)

proposed a graph pattern matching model, which considers the

number of nodes matched by each node in a fixed pattern

graph, which is especially important when the matching subgraph

contains too many matching nodes. For semi-supervised graph

pattern matching with multiple constraints, Yan (2023) proposed

a semi-supervised graph pattern matching algorithm based on

bisimulation edge sequence guidance named DS-ES-SS GPM,

which added the preference of decision makers to the matching

process. Jin et al. (2023) proposes a strong simulation matching

algorithm TPC-GPSSM based on timing priority constraint. The

algorithm adds time order constraint in the matching process of

the graph topology structure of the pattern graph to achieve the

purpose of pruning in advance and reducing the computational

complexity. Guo (2024) used graph pattern matching technology

to predict the quality problems of the slab caused by the fluctuation
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FIGURE 1

Pattern graph.

of the characteristic mode of working conditions in the continuous

casting process in real time, so as to provide guidance for the quality

improvement of the slab.

In order to study the application effect of graph pattern

matching in medical field, Li et al. (2024) introduced the concept

of probability graph pattern matching specially applicable to lung

cancer knowledge graph, and proposed a multi-constrained graph

pattern matching algorithm TKG-McGPM that combines Monte

Carlomethod and candidate node screening, aiming to enhance the

diversity and effectiveness of matching results and assist patients

in selecting the best tumor treatment plan. However, although the

TKG-McGPM algorithm improves the matching performance, it

still faces the challenge of balancing computational efficiency and

accuracy when dealing with complex graph structures. Especially

in the parameter processing of edges, how to effectively use the

Monte Carlo method for optimization has become a key problem.

Based on this, we propose the Edge Standardized Monte Carlo

Matching Method (EdgeNormMC) to discuss the effect of applying

the Monte Carlo method to the two parameters of the edge. In

this method, the values of the two parameters TDC and TCV on

the edges are scaled to the interval [0,1], and then the Monte

Carlo method is used to perform multiple random sampling in

the specified interval to select the optimal candidate edges from

the possible matching set. The whole matching process is shown

in Figure 3.

Definition 2-4: A data graph GD = (V ,E, fDV , fDE ) is a directed

graph with node and edge attributes, where:

- V is the set of nodes of the data graph;

- E is the set of edges of the data graph, and (vi, vj) ∈ E represents

the directed edge from node vi ∈ V to node vj ∈ V ;

- fDV is a function defined on a set of nodes, and in a Medical

Knowledge Graph (TKG), each node has an attribute constraint

value TDT and a label ρ, where ρ represents the type of node,

and the value of ρ can be AP, TI, TC, PM and TM;

- fDE is a function defined on a set of edges, and ∀e ∈ E, fDE (vi, vj)

is the attribute set of e. In a TKG, for the directed edge (vi, vj),

fDE (vi, vj) contains TDT , TDC and TCV .

Definition 2-5: A pattern graph GP = (VP,EP, f
P
V , f

P
E , f

P
l
, f Pm) is a

directed graph with node and edge attributes, where:
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FIGURE 2

Data graph.

- VP is the set of nodes of the pattern graph;

- EP is the set of edges of the pattern graph, and (ui, uj) ∈ EP
represents the directed edge from node ui ∈ VP to node uj ∈ VP;

- f PV is a function defined on VP, and ∀u ∈ VP, f
P
V (u) is the

attribute set of u. In TKG, the function f PV (u) corresponding to

node u has the same meaning as the attribute of the node set in

the data graph above;

- f PE is a function defined on EP, and ∀e ∈ EP, f
P
E (e) is the attribute

set of e such that for each edge in EP, and f PE (ui, uj) is the set of

properties associated with (ui, uj).

- f P
l
is a function defined on EP, and ∀(ui, uj) ∈ EP, f

P
l
(ui, uj) is the

length constraint of the edge (ui,uj), whose values are positive

integers k or symbols ∗, respectively, indicating that the interval

of length ui to uj of the edge does not exceed k or there is no

length limit. In TKG, without loss of generality, f P
l
(ui, uj) = 2.

- f Pm is a set of membership constraint functions defined on node

properties or edge properties.

Definition 2-6 (Edge normalized Monte Carlo matching method,

EdgeNormMC): For a pattern graph GP = (VP,EP, f
P
V , f

P
E , f

P
l
, f Pm)

and a data graph GD = (V ,E, fDV , fDE ), GD matches GP,

denoted as GP � GD, if there is a binary relationship

S⊆ VP × V :

- For all u ∈ VP, there is v ∈ V such that (u, v) ∈ S;

- For each pair (u, v) ∈ S,

- If there is a membership calculation function for node

attribute in f Pm, then the corresponding attribute in f
D
V (v) only

needs to satisfy the corresponding membership constraint;

otherwise, fDV (v) needs to satisfy the constraint f PV (u) defined

on node u;

- u ∼ v, f PV (u) = fDV (v), and

- For each edge (u, u′), from the data graph GD, there is a path

p from v to v′, so that (u′, v′) ∈ S, f PV (u
′) = fDV (v′) and if

f
p

l
(u, u′) = k, then the length of the interval from node v to

node v′ in the path plen(p) ≤ k;

- If there is a membership calculation function for the

aggregated attributes on the matching path in f Pm, the

corresponding aggregated attributes in the edge only need to

satisfy the correspondingmembership constraints; otherwise,

the aggregated attributes on the matching path need to satisfy

the corresponding attribute constraints in f PE .

Example 2.1. Consider a lung cancer diagnosis and treatment plan

that needs to be consulted, and the plan needs to be organized

by five nodes: Attending physician (AP), Testing instruments

(TI), Types of lung cancer (TC), paramedic (PM), and Treatment

(TM), and the interaction between them is shown in Figure 1.

The data graph can be expressed as GD = (V ,E, fDV , fDE ), where

represents the role type, role name and trust impact factor TDT ,

and fDE represents the diagnosis and treatment cycle value TDC

and the diagnosis and treatment cost-benefit analysis value TCV

between participants. The pattern graph can be expressed as GP =

(VP,EP, f
P
V , f

P
E , f

P
l
, f Pm), where f

P
V represents the role constraint and

trust impact factor constraint TDt for pattern nodes, f PE represents

the diagnosis and treatment trust constraint TDT , diagnosis and

treatment cycle value constraint TDC , diagnosis and treatment cost
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FIGURE 3

Matching process.

benefit analysis value constraint TCV for matching path of pattern

edges, and f P
l
represents the matching path length constraint for

pattern edges. f Pm = (fmDt , f
m
DT , f

m
DC , f

m
CV ,TDtm, TDTm,TDCm,TCVm),

where fmDT represents the membership calculation function defined

on the node trust impact factor constraint TDt , and TDtm represents

the corresponding membership constraint value. fmDT ,f
m
DC and fmCV

respectively represent the membership functions defined on the

pattern edge attribute constraints TDT , TDC and TCV , while TDTm,

TDCm and TCVm respectively represent the membership constraint

values of the corresponding attribute constraints.

For the convenience of calculation, The membership constraint

values TDT , TDC and TCV of each attribute are set to 0.2, and

TDtm is set to 0.3. In this study, the main purpose of specifying the

uniform value of the constraint value is to simplify the calculation

process, so that readers can understand the matching calculation

process more clearly and smoothly. It should be pointed out

that in the actual correlogram, the values corresponding to each

edge are not uniform, but show different situations, and these

values are randomly generated. According to the EdgeNormMC

definition, we can get the matching node Helen of AP in the

pattern graph, because the outgoing edge (AP,TC) of AP matches

the path(Helen,SLCLIA) in the data graph, and the outgoing

edge (AP,TI) matches the path(Helen,RATS) in the data graph.

The matching node SLCLIA of TC is determined because we

can get that the incoming edge (AP,TC) of TC matches the

path(Helen,SLCLIA) in the data graph, the incoming edge (TI,TC)

matches the path(RATS,SLCLIA) in the data graph, and the

incoming edge (AP,TC) matches the path(Meg,SLCLIA) in the

data graph. We can get results similar to those of other matching

nodes in the model, the final matched subgraph Gsub = (Vsub,

Esub), including Vsub = (Helen, RATS, SLCLIA, Operation, Drug,

Meg). Esub=(Helen,RATS), (Helen,SLCLIA), (RATS,SLCLIA),

(SLCLIA,Operation), (SLCLIA,Drug), (Drug,Operation),

(Meg,SLCLIA).

3 GPM with lung cancer knowledge
graph

At present, there are two main types of multi-constraint

graph pattern matching algorithms. One is composed of two core

modules, that is, the matching of pattern edges and the connection

of matching paths based on the topology of the pattern graph.

The other is based on sequential exploration of the topology of

pattern nodes. The existing graph pattern matching algorithm in

lung cancer domain, TKG-McGPM, adopts thematching algorithm

NTSS based on topological ordered exploration of pattern nodes,

and introduces Monte Carlo method in the node matching process,

which has achieved certain results. However, considering that

node matching focuses more on certainty and accuracy, while

edge matching is more suitable for dealing with uncertainty and

probabilistic simulation optimization, we believe that Monte Carlo
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method applied to edge matching may be more reasonable and

efficient.

To solve the above problems, we first propose an edge-

level graph pattern matching algorithm TEM based on lung

cancer knowledge graph by using Monte Carlo method on

edges. Experimental results show that the proposed algorithm is

significantly better than the existing TKG-McGPM algorithm in

performance. In order to further explore the application potential

of Monte Carlo method in lung cancer graph pattern matching,

we also propose a hologram pattern matching algorithm THM

based on lung cancer knowledge graph. In this section, the main

algorithm flow of the TEM algorithmwill be detailed, and the THM

algorithm will be introduced in the next section.

3.1 Description of the TEM algorithm

The matching process of pattern nodes is divided into two

key stages. Firstly, according to the constraints on the pattern

nodes in the pattern graph, the candidate nodes that meet

the conditions are selected. Then, according to the topological

structure characteristics of the pattern nodes in the pattern graph,

the selected candidate nodes are further filtered.

Require: Node whose mode is to be matched u∈ VP, Node

set V of the data graph

Ensure: The set of candidate nodes Candu of u

while For each node V in v, if V.visited =false do

if labelv(u) ∈ labelv(v) and fmDt(Dt) ≥ Dtm then

Add v to u’s set of candidate nodes set Candu

end if

end while

return Candu

Algorithm 1. GetNodeCandidate Algorithm for pseudo code

In the lung cancer knowledge graph matching described in this

paper, the constraints on the nodes include the constraint labelv on

the node label and the constraint TDt on the node trust impact

factor. In addition, f Pm also contains a membership calculation

function fmDt for node trust impact factor constraint TDt and the

corresponding membership constraint TDtm. For a pattern node u,

we have labelv(u) ⊂ labelv(v) and fmDt(Dt) ≥ TDtm if there exists a

candidate node v ∈ V , and the set Candu of candidate nodes of

u can be obtained by the GetNodeCandidate method as shown in

Algorithm 1.

The TEM algorithm proposed in this paper still uses the node

topology order to match pattern nodes, and this method can prune

invalid matches by judging whether the candidate nodes meet the

previous topology structure.

The input of the TEM algorithm is data graph GD and pattern

graph GP, and the output is the set GAll
sub

of matching subgraphs.

Firstly, a topologically ordered sequence VT of pattern nodes and

a node VE with indegree 0 are obtained by topological sorting

algorithm. Then the GetNodeCandidate algorithm is called to

obtain the candidate node Candus of the starting matching node

us, and the above steps are shown in lines 1-2 of Algorithm 2.

Require: Data graph GD and Pattern graph GP

Ensure: Set of all matching subgraphs GAll
sub

Get the topological sorting sequence VT of the

pattern graph and the node VE with zero degree

Call GetNodeCandidate algorithm to get candidate

node Candus, which starts with matching node us

Example Initialize the storefile,i = 0, num=0

while i< length(Candus) do

vs=Candus[i]

Edge(vs,v’)=EdgeMatching(vs,(us,u’))

Gtemp=EdgeAttribute(Edge(vs,v’))

if There is a node corresponding to the start

node of the pattern edge then

Gsub=Recursivematching(num+1,VT,VE,storefile)

end if

Add the intermediate result Gsub to GAll
sub

i=i+1

end while

return GAll
sub

Algorithm 2. TEM algorithm

It loops through the candidate node set of the starting node,

and then uses the pattern edge matching methods EdgeMatching

and EdgeAttribute to match all matching paths that meet the

conditions, and then calls the Recursivematching method to obtain

the matching subgraph Gsub, and adds the matching subgraph to

the matching subgraph set GAll
sub

. This is shown in lines 4-10 of

Algorithm 2.

The specific execution steps of the Recursivematching method

are shown in Algorithm 3. Firstly, it is determined whether the

number of the currently processed pattern edge is equal to the

number of edges of the pattern edge. If it is equal, it means that all

pattern edges have been processed and the matching results can be

judged and stored, as shown in lines 1-5 of Algorithm 3. If not, loop

through the topological sort nodes and match the pattern edges for

each candidate node, as shown in lines 7-16 of Algorithm 3. The

result that has been matched is read from the cache, and if there

is no one in the cache, the GetNodeCandidate function is called to

obtain the candidate node set Canduc of uc, as shown in lines 9-

12 of Algorithm 3. For each candidate node vc, EdgeMatching and

EdgeAttribute are called to filter edges with multiple constraints

and match the next edge recursively, as shown in lines 13-16 of

Algorithm 3.

Example 3.1. Taking the pattern graph in Figure 1 and the data

graph in Figure 2 as examples, the TEM algorithm firstly sorts the

nodes in the pattern graph shown in Figure 1, and obtains the

topologically ordered sequence VT ={AP,PM,TC,TI,TM} of pattern

nodes and the set VE ={AP,PM} of pattern nodes with in-degree

0. Then, the set of candidate nodes CandAP={Helen} of AP is

obtained. Helen is added to the list of AP candidate nodes in Gtemp,

and the pattern edge (AP,TI) matching starts from Helen. After the

matching path (Helen,RATS) is obtained, the candidate node set

CandTI={RATS} of pattern node TI is also obtained. Then, starting

from the second node of the pattern node topological sorting
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Require: The number of the pattern edge num, the

topological sort sequence VT and the node VE with

zero degree

Ensure: The result storefile

if num=the number of sides of the pattern graph

then

for All nodes x of the pattern graph do

Clear the matching nodes and edges that do

not meet the conditions

Store the matching result Gtemp to storefile

end for

return

end if

i=1

while i<length(VT) do

uc=VT[i]

if uc ∈ VE then

Call the GetNodeCandidate function to get the

candidate node set Canduc for uc

elseRead results Canduc from Gtemp

end if

for Each candidate node vc in Candus do

Edge(vc,v’)=EdgeMatching(vc,(uc,u’))

Gtemp=EdgeAttribute(Edge(vc,v’))

end for

Recursivematching(num+1,VT,VE,storefile)

end while

return storefile

Algorithm 3. Recursivematching algorithm.

Require: Pattern edge (u,u’), start node v∈V and data

graph GD

Ensure: Set Edge(v,v’) that satisfies the path length

constraint

Initialization Q = ∅

while Queue Q is not empty do

Take a path from Q pathj(v,v’)

if pathj(v,v’) is not in Edge(v,v’) then

if There is another path from v to v’ in

Edge(v,v’) then

Add pathj(v,v’) to pathlist(v,v’)

elseAdd pathj(v,v’) to Edge(v,v’)

end if

end if

end while

Obtain adjv, the set of adjacent nodes of node v

for L in adjv do

if L satisfies the length constraint and L

satisfies the constraint defined on the node u’

then

pathi=pathj(v,v’)+(v,adjv)

Add pathi to Q

end if

end for

return Edge(v,v’)

Algorithm 4. EdgeMatching algorithm.

sequence VT , the pattern nodes are matched in turn according to

the topological sequence of the nodes in the pattern graph.

Require: Edge(v,v’),fPE(u,u’),f
P
m

Ensure: Gtemp

while For each v’ in Edge(v,v’) that satisfies the

length constraint, the pathlist pathlist(v,v’) do

totalSumDC=0

totalSumCV=0

while For every path P in pathlist(v,v’) do

Calculate aggregate values ADT,ADCandACV for

each attribute

totalSumDC+=ADC(v,v
′)

totalSumCV+=ACV(v,v
′)

end while

Calculate the proportion of each value in

totalSumDC and totalSumCV, and use the random

function to map into the interval [0,1] to obtain

fDC and fCV.

for i do from 1 to 1000

Record the number of times mapped to each

interval in fDC secondDC;

end for

for j do from 1 to 1000

Record the number of times mapped to each

interval in fCV secondCV;

end for

secondDC and secondCV are ranked separately

The first n second values with large values and

a crossing point for this path are taken as the

candidate path pathlist2

while F door each path P in pathlist2(v,v’)

if thenfmDT(ADT(V,V
′)) ≥ Dtm,fmDC(ADC(V,V

′)) ≥

DCm,fmCV(ACV(V,V
′)) ≥ CVm

SuitP(v,v’)=P

end if

end while

if S thenuitP(v,v’) is not null

add SuitP(v,v’) to Gtemp

end if

end while

return Gtemp

Algorithm 5. EdgeAttribute algorithm.

The general idea of Algorithm 4 is to start fromnode v, breadth-

first traverse the edges in the data graph, and record each traversal

path pathj(v, v
′) starting from v. When the end point of the path

v′ matches u′, pathj(v, v
′) is added to the set of matching paths

Edge(v, v′) satisfying the path length constraint. After obtaining the

matching paths of all full conditions, the EdgeAttribute method

needs to be called again to review the multiple constraints defined

on the pattern edge (u, u′), and the specific steps are shown in

Algorithm 5. For a list of paths from v to v′ pathlist(v, v′), compute

the aggregated values ADT ,ADC,ACV on each path, and then

perform Monte Carlo filtering on the attributes TDC and TCV on
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FIGURE 4

The screening process of DC.

the edges. Taking the screening of TDC as an example, the specific

process is shown in Figure 4. The proportion value k for each node

is obtained by normalizing each attribute value by dividing it by

the sum. These values k are then mapped onto an interval f of [0,

1], proportional to its size. Generate multiple random values in

the range [0, 1] by repeatedly executing a random function. The

generated values are mapped to intervals f and the proportion of

values mapped to each interval is calculated, selecting the attribute

value corresponding to the top n (adjustable parameter) values that

exhibit a significant proportion as the new attribute value, as shown

in lines 3-13 of Algorithm 5. Subsequently, the range of constraint

values is judged, and the paths that conform to the constraint values

are added to Gtemp.

Example 3.2. For matching paths e1(SLCLIA,Drug),

e2(SLCLIA,Operation) and e3(SLCLIA,Drug,Operation) of

edge (TC,TM) in pattern Figure 1, where 8={ADT ,ADC ,ACV }, 8

represents the set of aggregated attribute values on the path, 8e1 =

{0.5, 0.7, 0.5}, 8e2 = {0.5, 0.6, 0.6}, 8e3 = {0.5, 0.48, 0.54}. Suppose

we want to select two candidate edges at random, then we first
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sum the TDC and TCV of the three edges to obtain totalSumDC =

1.78, totalSumCV = 1.64, Then the proportion of TDC and TCV of

the three edges in totalSumDC and totalSumCV is Pe1=(0.39, 0.3),

Pe2=(0.34, 0.37), Pe3=(0.27, 0.3), respectively. Similarly, we can get

the mapping interval fDC = [e1 (0-0.39), e2 (0.4-0.73), e3 (0.74-1)]

and CV mapping interval fCV = [e1 (0-0.3), e2 (0.31-0.67), e3

(0.68-1)]. Executing the random function from 0 to 1,000 times

yields the number of times it maps to the two interval values

secondDC=(431, 330,239), secondCV=(378,511,111), assuming the

first two largest numbers. Then path e1 and path e2 enter the next

step as candidate paths for normal edge condition matching to

filter out edges with too low constraint value.

3.2 Description of the THM algorithm

THM algorithm is a combination of LcKG-McGPM algorithm

and TEM algorithm, and Monte Carlo method is applied in

node matching and edge matching. Therefore, the main difference

between the THM algorithm and the TEM algorithm lies in

the screening of candidate nodes, that is, the difference in the

GetNodeCandidate function. The rest of the part is not discussed

here, please refer to Algorithm 6.

Require: Node whose mode is to be matched u∈ VP, Node

set V of the data graph

Ensure: The set of candidate nodes Candu of u

while For each node V in v, if V.ited =false do

if labelv(u) ∈ labelv(v) then

Add v to u’s set of candidate nodes,

nodeCandidate

end if

end while

Example Initialize totalSum=0

for ui in nodeCandidate do

totalSum+=ui.factor

end for

The proportion of each value is calculated and

mapped to the interval [0,1] using the random

function to get ratioValues

for i from 1 to 1,000 do

Records the number of times mapped to each value

in ratioValues (second)

end for

Sort the second

Add the first n second largest nodeCandidate to

Candu

return Candu

Algorithm 6. GetNodeCandidate algorithm.

4 Experiments

In this section, our experiments were conducted using a PC

running Windows 10, equipped with an Intel Core i9-10900F CPU

TABLE 1 Data sets adopted in experiments.

Data set Number of
nodes

Number of
edges

Descriptive
information

LCKGdataset1 6,020 178,414 Tumor

knowledge graph

data set 1

LCKGdataset2 75,000 934,577 Tumor

knowledge graph

data set 2

Slashdot 77,360 905,468 A friend/foe

social network

LCKGdataset3 78,000 949,289 Tumor

knowledge graph

data set 3

clocked at 2.80 GHz and 32 GB of RAM. In order to ensure the

authenticity and fairness of the experimental data, the data sets used

in this paper are LCKGdataset1, LCKGdataset2 and LCKGdataset3

created by Li et al. (2024). Each dataset possesses a unique edge and

node configuration with detailed specifications shown in Table 1.

To reduce potential errors and ensure reliability, the reported

results are arithmetic averages from ten iterations of each graph

with different configurations.

To compare the time efficiency of various algorithms on

different datasets, we calculated the duration required for each

algorithm to return an equal number of matched subgraphs,

and the results are shown in Figure 5. Here, the vertical axis

represents the execution time of the algorithm (in seconds),

while the horizontal axis represents the number of matched

subgraphs (NUM) , and from (a) to (d) represent the results of

running on the datasets LCKGdataset1, LCKGdataset2, Slashdot,

and LCKGdataset3, respectively. From Figure 6, it is obvious that

no matter how much NUM is controlled, the time required by

our proposed TEM algorithm is significantly less than that of the

TKG-McGPM algorithm, that is, the time efficiency of the TEM

algorithm is better than that of the TKG-McGPM algorithm.

In the complex process of graph pattern matching, a key factor

lies in the characteristic of graph structure itself, that is, the number

of edges is usually smaller than the number of nodes. Especially

in the four datasets selected in this experiment (LCKGdataset1,

LCKGdataset2, Slashdot and LCKGdataset3), this phenomenon of

quantitative difference is particularly prominent. For example, in

the process of running on LCKGdataset1, after detailed statistics

and analysis, the number of nodes and edges involved in matching

reaches thousands, while the number of edges is only about half of

the number of nodes. The same is true for several other datasets,

which means that graph pattern matching is theoretically less

computationally expensive for edges than for nodes.

Our TEM algorithm focuses on the Monte Carlo method

applied to the edge matching process, while the TKG-McGPM

algorithm uses relevant mechanisms and involves more

computational considerations in the node matching process.

Since Monte Carlo method itself is based on random sampling to

operate, each operation will incur a corresponding computational

cost. When dealing with nodes, due to the large number of nodes,

more elements need to be traversed and analyzed, which leads
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FIGURE 5

Pattern graph for the experiment.

to the accumulation of computing time. As for edges, due to the

relatively small number of edges, the number of random sampling,

condition judgment and corresponding calculation operations will

be reduced when using the Monte Carlo method, so the calculation

time required by the Monte Carlo method for edges will be less

than that for nodes.

Based on the above analysis, in the actual matching process,

TEM algorithm can effectively avoid a large amount of computing

consumption caused by too many nodes by virtue of its advantage

of using Monte Carlo method in edge matching, so as to produce

less time overhead. This reduction in time cost is not a small,

local change, but plays a positive role in the entire matching

process. From the overall point of view, this makes the whole

matching process run more efficiently, and then improves the

overall matching efficiency. It not only means that the results

can be output faster in a single matching task, but also in the

face of large-scale graph pattern matching requirements or

scenarios that require multiple repeated matching operations, the

time cost saved by TEM algorithm will be more considerable,

which provides a more timely and feasible solution for

practical applications.

In this study, we set the number of matching results (NUM)

to 100, 200, 300, and 400, respectively, and randomly draw 50

matching edges from each result set. To analyze the matching

results more systematically, we conducted an in-depth analysis of

the mean distribution of TDC values and TCV values, and this

statistic is defined as MeanVal. As shown in Figure 7, the X-axis

represents the number of matching results (NUM), and the Y-axis

represents the mean MeanVal. Compared with the TKG-McGPM

algorithm, our proposed TEM algorithm shows a wider distribution
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FIGURE 6

The change in the time taken to return di�erent numbers of matching subgraphs on di�erent data sets.

range, and most of the values are concentrated in the interval with

high value ratios from 0.7 to 1.0.

Firstly, this shows that the key element of the diversity of

matching results is fully taken into account in the design and

operation of the TEM algorithm. In the actual application scenarios

of graph pattern matching, the diversity of matching results means

that users can be provided with more potential matching options

with different perspectives and different characteristics, which

is particularly important for complex application fields such as

medical knowledge graphs. For example, in medical decision AIDS,

diverse matching results can cover multi-dimensional information

such as different treatment plans and different diagnostic ideas,

so as to help medical personnel make more comprehensive

considerations. The reason why TEM algorithm can achieve such

diversity is that its internal mechanism is not limited to a single

matching path or simple matching rule in the matching process,

but through reasonable strategies, it can mine and present different

possibilities frommultiple levels when generating matching results,

avoiding the homogenization of results. Therefore, the distribution

range of the final MeanVal is broadened to cover a wider range

of numerical intervals, especially in the high-value ratio interval,

which shows a relatively concentrated trend, which also reflects that

the algorithm can effectively filter out those matching edges with

low relative value and focus on the matching results with more

value and higher quality. The matching edge with high value can

be highlighted in the result, and the reference value of the overall

matching result is improved.

In contrast, NTSS and ETOF-K can also achieve high mean

values in some cases and seem to provide good quality matching

results on the surface, but a closer look at the distribution of

their MeanVal shows a narrow distribution. This phenomenon

is not accidental, and it profoundly reflects the characteristics

of the strategies adopted by these algorithms in optimizing the

matching results and the possible limitations. In the process of

optimizing matching, these two algorithms focus more on the

direct improvement of the quality of matching results, for example,

they may try to make each output matching result as close as

possible to a preset high quality standard by means of stricter

screening rules and more accurate matching conditions. However,

this approach to some extent makes them fall short in mining

the diversity of potential matches. Because the algorithm focuses

too much on the optimization of quality, it is easy to follow a

relatively fixed and limited path to find results when searching

the matching space, thus ignoring other potential matches that

may exist, although they are not optimal in some indicators,

but have unique value. Finally, the matching results show the

characteristics of concentration and narrow range in the numerical

distribution. It can not cover more possibilities as comprehensively

as TEM algorithm, so it may provide relatively limited reference

information in the face of complex and changing practical

application requirements.

Further analyzing the root cause of this difference, for the

TKG-McGPM algorithm, diversity is given higher importance in

the node matching stage, which is worth recognizing, because as

the key elements in the graph structure, the diverse matching

combinations of nodes can bring rich changes to the whole

matching results. However, the algorithm has some shortcomings

in the edge matching link, which only considers the size of the

comprehensive value of diagnosis and treatment. In the actual

graph pattern matching, the edge not only carries simple numerical
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FIGURE 7

The distribution of MeanVal values on di�erent data sets.

information, but also the connection relationship between the edge

and the node, the topological structure position and other factors

affect the diversity and rationality of the matching. However, the

TKG-McGPM algorithm does not fully consider the influence of

these edge-related multi-dimensional features on the matching

diversity, which leads to the loss of many potential possibilities that

can enrich the matching results in the process of edge matching,

and then the overall matching results are limited in diversity.

In Monte Carlo simulation, randomness is a key parameter

factor that affects the performance of the algorithm. Immediately

following, we analyze the effect of different random execution times

on the distribution of constraint values on edges , as shown in

Figures 8–11. The X-axis of each plot is the mean, MeanVal, and

the Y-axis is the number of matched subplots.In Monte Carlo

simulations, the range involved in random execution counts is

determined bymultiple experiments. Specifically, when the value of

random execution count is too small, its impact on the final result

is relatively weak. If the count is too large, it will undoubtedly cost

more time. Based on several rigorous experimental explorations

and comprehensive consideration of various factors, we carefully

selected four relatively ideal counting results of 1,000, 2,000, 3,000,

and 4,000 to carry out comparative experiments. Through such an

experimental setting, the influence of random execution times on

constraint values can bemore intuitively presented, which is helpful
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FIGURE 8

When NUM=100, di�erent random executions on di�erent datasets a�ect the distribution of constraint values on edges.

FIGURE 9

When NUM=200, di�erent random executions on di�erent datasets a�ect the distribution of constraint values on edges.

for us to analyze the internal relationship between relevant variables

deeply and accurately, so as to provide a strong basis for subsequent

research and conclusion derivation. It can be seen from the figure

that when controlling the number of matching results (NUM), the

value of MeanVal tends to stabilize in a higher numerical interval

as the number of random executions increases. This indicates that
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FIGURE 10

When NUM=300, di�erent random executions on di�erent datasets a�ect the distribution of constraint values on edges.

FIGURE 11

When NUM=400, di�erent random executions on di�erent datasets a�ect the distribution of constraint values on edges.

the increase of the number of random executions can improve

the accuracy of the matching results, that is, the more random

times, the closer the results are to the optimal solution. Therefore,

we can satisfy patient preferences by providing different random

number options. For patients with high matching level priority,

more random samples can be selected to obtain matching results
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FIGURE 12

The distribution of MeanVal values between the two algorithms on di�erent datasets.

with higher TDC and TCV values. However, for patients who do not

care much about the matching values on the edges, a lower random

frequency can be chosen to ensure a more uniform distribution of

TDC and TCV in the matching results.

From a macro point of view, this method of flexibly

adjusting the number of random executions according to different

patient preferences not only fully demonstrates the flexibility and

adaptability of the matching algorithm, but also has important

practical significance in practical applications. Its flexibility is

reflected in the ability to quickly adjust the running parameters

of the algorithm to generate matching results that meet specific

requirements. Adaptability shows that the algorithm can be widely

applied to different patient groups with different preference

types. Whether patients focus on high-quality matching or

balanced and stable matching results, the algorithm can effectively

meet the needs. At the same time, by allowing patients to

understand the credibility of the matching results more clearly

and comprehensively, it further enhances the patient’s acceptance

and sense of identity for the whole matching process and the final

result, which helps to improve the practicability and promotion

value of the algorithm in the actual medical scene, so that

it can better serve the patient groups with different needs. It
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FIGURE 13

Temporal e�ects of running on di�erent datasets.

provides strong support for medical decision-making and other

related applications.

Considering the potential application of Monte Carlo method

in node and edge matching, we combine the TKG-McGPM

algorithm with the TEM algorithm, and propose the THM

algorithm by using Monte Carlo method on both edges and nodes.

In order to comprehensively and objectively evaluate the actual

performance of THM algorithm, we carefully design and carry out

a series of rigorous performance analysis work, focusing on the

comparative analysis with TEM algorithm.

The reason why TEM algorithm is selected as the comparison

object is that TEM algorithm has shown certain advantages

and characteristics in previous research and practical application.

Through the comparison of the two, the characteristics, advantages

and disadvantages of THM algorithm can be more clearly

highlighted. Specifically, the THM algorithm is able to generate

more diverse solutions by applying Monte Carlo methods on the

nodes and edges, which is clearly demonstrated in Figure 12. We

can see that compared with TEM algorithm, the matching results

generated by THM algorithm show more abundant changes in

the interval distribution of the mean MeanVal. However, any

algorithmic feature always comes with a certain cost. For THM

algorithm, its advantage of producing diverse solutions is at the

cost of consuming a large amount of computing resources. For

THM algorithm, its advantage of producing diverse solutions

comes at the cost of consuming a lot of computing resources. The

reason behind this is that the Monte Carlo method is essentially a

random sampling-based method, and its working principle dictates

that a large number of simulation operations are required in

order to obtain reliable and statistically significant results. Each

simulation sampling process involves the calculation and judgment

of the attributes and relationships of nodes and edges. With the
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continuous accumulation of simulation times, the consumption

of computing resources increases geometrically. Especially in the

face of large-scale medical knowledge graphs or complex graph

structures, the consumption of such computing resources will

be more significant. For example, when dealing with the actual

medical knowledge graph containing massive medical data nodes

and complex edge relationships, the THM algorithm may need to

occupy a large amount of memory space for storing intermediate

calculation results. At the same time, the processor also needs to

be in a high load state for a long time to complete numerous

simulation sampling and result statistics.It is this high dependence

on computing resources and large consumption that directly leads

to the obvious disadvantage of THM algorithm in terms of time

efficiency, which is clearly presented in Figure 13.

Considering the above factors such as time efficiency and

practicality of results, although THM algorithm has a non-

negligible advantage in diversity, TEM algorithm has undoubtedly

become a more ideal choice due to its excellent performance in

these key dimensions. It can better balance the relationship between

algorithm performance and practical application requirements,

provide efficient and practical solutions for graph pattern matching

tasks in medical knowledge graph and other related fields, and

better meet the current requirements for fast response and accurate

decision-making in practical applications of algorithms.

5 Conclusions

In the context of current research on graph pattern matching

algorithms, this study takes the existing KG-McGPM algorithm

as the cornerstone, and through in-depth analysis and innovative

exploration, proposes two improved graph pattern matching

algorithms: TEM and THM, which are mainly used in subgraph

matching of lung cancer knowledge graph. By introducing the DC

and CV parameters on the edge of the Monte Carlo method, the

diversity of matching results is increased. In order to improve the

matching effect, the original graph pattern matching model has

been modified, and a marginal graph pattern matching algorithm

based on lung cancer knowledge graph (TEM) has been proposed.

To further verify the effectiveness and efficiency of TEM, a

hologram pattern matching algorithm (THM) has been proposed,

and the Monte Carlo method has been applied to nodes and

edges. Experimental results show that the performance of the

TEM algorithm is better than that of the existing algorithms

and the THM algorithm. Although the algorithm proposed in

this study has achieved excellent performance in the specific field

of lung cancer knowledge graph, there is still room for further

exploration and improvement from the perspective of macro

academic research and practical application expansion. Future

research work can focus on extending these algorithms to other

medical fields and different types of knowledge graph application

scenarios, and deeply investigate their versatility and adaptability

through practical verification in diverse contexts. This not only

helps to further verify the scientific and reliability of the algorithm

itself, but also provides an effective solution for graph pattern

matching problems in more fields.

In addition, with the continuous development of computer

technology and the increasing scale of data, the calculation

speed and matching quality of the algorithm are always the

key aspects that need to be paid attention to. Future research

can focus on adopting more efficient data structures, such as

exploring new graph storage structures or index methods, to

optimize the efficiency of the algorithm in data storage and

reading. At the same time, combined with advanced optimization

algorithms, such as greedy algorithm, dynamic programming

algorithm and other ideas, the calculation process of the existing

algorithm is deeply optimized, and the overall calculation speed is

effectively improved.
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