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Introduction: Iron deficiency anemia (IDA) is a global health issue that
significantly a�ects quality of life. Non-invasive methods, such as image analysis
using artificial vision, o�er accessible alternatives for diagnosis. This study
proposes a DenseNet169-based model to detect anemia from nail images and
compares its performance with that of the Rad-67 hemoglobin meter.

Methods: A cross-sectional study was conducted with 909 nail images collected
from university students aged 18–25 years at the Universidad Nacional de
San Martín, Peru. Samsung Galaxy A73 5G was used to capture images under
controlled conditions, and clinical data were complemented with hemoglobin
readings from the Rad-67 device. The images were pre-processed using
segmentation and data augmentation techniques to standardize the dataset.
Three models (DenseNet169, InceptionV3, and Xception) were trained and
evaluated using metrics, such as accuracy, recall, and AUC.

Results: DenseNet169169 demonstrated the best performance, achieving an
accuracy of 0.6983, recall of 0.6477, F1-Score of 0.6525, and AUC of 0.7409.
Despite the presence of false-negatives, the results showed a positive correlation
with Rad-67 readings.

Conclusion: The DenseNet169-based model proved to be a promising tool for
non-invasive detection of iron deficiency anemia, with potential for application
in clinical and educational settings. Future improvements in preprocessing and
dataset diversification could enhance performance and applicability.
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1 Introduction

According to the World Health Organization (WHO, 2023), anemia is one of the most

prevalent blood disorders worldwide, significantly impacting public health. Clinically,

anemia is defined as a condition in which the number of red blood cells or the

concentration of hemoglobin (Hb) falls below normal levels (Saboor et al., 2021; Las Heras

Manso, 2022). This deficiency results in symptoms such as fatigue, weakness, dizziness, and

shortness of breath, which can severely affect an individual’s quality of life (Camaschella,

2019). Anemia is commonly associated with nutritional deficiencies, chronic diseases,

genetic disorders, and certain medications or treatments (Deivita et al., 2021).

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2025.1557600
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2025.1557600&domain=pdf&date_stamp=2025-04-09
mailto:jnavarroc@unsm.edu.pe
https://doi.org/10.3389/fdata.2025.1557600
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2025.1557600/full
https://orcid.org/0000-0002-7369-4459
https://orcid.org/0000-0002-8806-2892
https://orcid.org/0000-0001-5163-786X
https://orcid.org/0000-0002-7492-9467
https://orcid.org/0000-0001-8264-5707
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Navarro-Cabrera et al. 10.3389/fdata.2025.1557600

The detection and proper diagnosis of anemia remain a major

global challenge due to its socio-economic implications. The

costs associated with anemia management, including prevention,

diagnosis, and treatment, place a significant burden on healthcare

systems (Amegbor et al., 2022). The most common diagnostic

approach involves invasive blood tests, which can cause discomfort

or fear in patients. Additionally, non-invasive detection methods

remain financially inaccessible for developing countries due to

their high market cost (An et al., 2021; Ramaswamy et al.,

2021).

As a result, recent studies have explored artificial intelligence

(AI) and computer vision as non-invasive alternatives for

estimating hemoglobin levels. This research trend focuses on

analyzing images of nail beds, fingertips, and palms to determine

anemia status (Ghosal et al., 2022; Peksi et al., 2021; Selvi et al.,

2022; Yilmaz et al., 2022; Das et al., 2023; Asare et al., 2023). These

AI-driven approaches offer promising, cost-effective, and accessible

solutions for anemia diagnosis. However, current models remain at

the prototype level and require improved accuracy and reliability

before widespread adoption (Dimauro et al., 2020, 2023; Saavedra

Grandez, 2021).

Despite these advancements, a notable limitation in existing

studies is their narrow focus on specific populations, particularly

children and pregnant women. While these groups have a high

prevalence of anemia and represent at-risk populations (Stevens

et al., 2022), few studies have investigated anemia detection in other

demographics, such as young adults and university students. This

group is also susceptible to anemia, which can significantly impact

cognitive function, academic performance, and daily activities

(Hamali et al., 2020; Khani Jeihooni et al., 2021; Stevens et al., 2022).

In the Peruvian context, anemia has become a growing concern,

particularly in the San Martín region, where the Ministerio de

Desarrollo e Inclusión Social (2023) reported a 10% increase in

anemia cases among young adults over the past 2 years. This

issue particularly affects university students, placing them in a

high-risk category. According to AlJaber et al. (2019) and Choi

(2020), university students experience additional challenges such

as academic stress, poor diet, and unhealthy lifestyle habits, which

may contribute to iron deficiency anemia. The presence of anemia

in this population can negatively affect concentration, energy levels,

and overall academic performance (Amoaning et al., 2022).

Given these challenges, there is a need to develop novel,

cost-effective, and non-invasive approaches that leverage machine

learning and computer vision to detect anemia. Therefore, this

study proposes a deep learning-based computer vision model for

classifying images of university students’ fingernails. This approach

takes advantage of the availability of the Rad-67 hemoglobin meter

at the National University of San Martín, Peru, using its readings as

ground truth to evaluate model performance.

Unlike previous studies that primarily focus on hemoglobin

estimation through conjunctiva or palm-based imaging, this

research introduces a systematic evaluation of transfer learning

architectures applied exclusively to fingernail images for anemia

detection. The contribution of this study lies in its comparative

analysis of three state-of-the-art deep learning models—

InceptionV3, DenseNet169169, and Xception—assessing their

classification performance and potential for clinical applications.

Additionally, the dataset used is one of the first to explore

fingernail-based anemia detection in a university population,

providing new insights into the feasibility of non-invasive

diagnostic approaches.

2 Related jobs

Over the last decade, the field of biomedical data analysis

has experienced substantial advancements, laying the foundation

for current studies. Consequently, this section reviews the non-

invasive methods previously used for anemia detection. In

Indonesia, Peksi et al. (2021) aimed to achieve early anemia

detection by analyzing nail and palm images using the Naive Bayes

method. The system was developed using the cascade method.

The results indicated an anemia detection accuracy of 87.5%

under varying light intensities, which increased to 92.3% at a light

intensity of 5362 lx. The novelty of this study lies in the pre-

processing and image classification methods employed. The nail

and palm images were converted into the YCbCr color space for

segmentation and color feature extraction. These features were then

classified using the Naive Bayes method. The system classifies the

input images as either normal or anemic.

In Turkey, Yilmaz et al. (2022) proposed a combined

deep learning methodology to non-invasively estimate blood

hemoglobin levels. For the estimation, they utilized data such as

age, height, weight, body mass index, sex, and nail images. The

deep-learning model combines a numerical data model with a nail

image model. The study bias was calculated as 0.03 g/dL, with

concordance limits at a 95% confidence interval calculated as 1.09

g/dL. The mean absolute percentage error was 2.09%, and the root

mean square error was 0.56 g/dL. The average response time were

0.09 s. The results demonstrated the study’s success compared to

similar studies.

In India, Ghosal et al. (2022) introduced a model called iNAP

based on the Internet of Medical Things (IoMT), to address the

limitations in detecting anemia and polycythemia. The model uses

a smartphone camera to capture images of the eyes (conjunctiva)

and nails as the regions of interest. The algorithm analyzes the

color spectroscopy of these regions, extracts the dominant color,

and accurately predicts hemoglobin levels. Anemia is classified

as a hemoglobin value below 11.5 g/dL, whereas polycythemia is

classified as a value above 16.5 g/dL. The model predicts blood

hemoglobin levels with an accuracy of ±0.33 g/dL, a bias of 0.2

g/dL, and a recall of 90% compared to clinically tested results in

99 participants.

In the same country, Selvi et al. (2022) highlighted the impact

of micronutrient deficiencies on overall health by analyzing nail

color and metadata using a proposed deep learning model. This

model employs convolutional neural network (CNN) architectures,

such as ResNet, SqueezeNet, DenseNet169, VGG, and a custom

model, to extract key features and predict deficiencies. The model

was trained with real-time images and validated using sample

images to improve accuracy. The non-invasive model achieved

an accuracy of 94%. This predictive mechanism can be useful in

primary healthcare settings and is connected to frontline workers

for quick and easy diagnosis.
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In a related context, Das et al. (2023) aimed to combine state-of-

the-art artificial intelligence techniques with conventional practices

to assess anemia by observing the nail pallor. The proposed method

induces color changes in the nail bed by applying and releasing

pressure using a custom hardware device. Videos captured with

a smartphone were analyzed to measure the color change rate

and quantify the blood hemoglobin levels by correlating them

with clinically determined values. The proposed prediction model,

based on a fusion approach, outperformed existing solutions,

demonstrating mean RMSE and MSE errors of 0.63 and 0.61,

respectively, and standard deviations of 0.46 and 0.73 g/dL

compared to clinically tested hemoglobin levels in a group of

220 individuals.

In Ghana, Asare et al. (2023) applied various machine learning

algorithms, includingNaive Bayes, CNN, SVM, k-NN, and decision

trees, to detect iron deficiency anemia. They compared images of

the eye conjunctiva, palpable palms, and nail color to determine the

most accurate method for detecting anemia in children. This study

consisted of three stages: dataset collection, dataset preprocessing,

and model development for anemia detection. CNN achieved the

highest accuracy at 99.12%, whereas SVM had the lowest accuracy

at 95.4%. These results demonstrate the effectiveness of the non-

invasive approach in anemia detection, supporting its potential as

an efficient diagnostic mechanism.

Over the past decade, the field of computer vision and

biomedical image analysis has experienced significant growth,

laying the groundwork for current studies on non-invasive disease

detection. Although various approaches have been developed to

detect anemia using biomedical images, it is crucial to note that

most studies have not focused on specific populations, such as

university students, who may present with particular risk factors.

In this context, using nail images as an indicator of iron deficiency

anemia has emerged as an innovative and relevant alternative,

especially for young populations in educational settings.

Most previous studies on anemia detection have utilized

nail image analysis and implemented deep learning models,

particularly CNNs, to develop non-invasive methods. However,

there is a continued need to optimize the performance of these

methodologies by incorporating new and accessible datasets and

adopting standardized protocols for image capture. Additionally,

there is a marked lack of research focused on young populations,

such as university students, who are at a significant risk of

iron deficiency anemia but have been underrepresented in prior

studies. In this context, our study proposes the application of a

DenseNet169169-based model, which is one of the first to use this

advanced architecture for anemia detection in university students.

This approach aims to address the existing research gap and offers

a non-invasive, innovative, and effective solution tailored to this

vulnerable demographic group.

3 Proposed method

In this section, we describe the stages and procedures

implemented in our study, structuring the methodology into four

main phases based on the research of Valles-Coral et al. (2024):

(1) data collection, (2) preprocessing, (3) processing, and (4)

model validation.

For the data collection phase, the dataset was obtained from the

Universidad Nacional de San Martín, specifically at the university

campus in Tarapoto, Peru. A trained team of health professionals

used the Rad-67 device to non-invasively measure hemoglobin

(Hb) levels, thus optimizing the clinical data capture process. In

parallel, another working group was responsible for capturing

images of the participants’ nails using a Samsung Galaxy A73 5G

smartphone, carefully controlling the lighting and angle conditions.

These images are stored in a database to facilitate access and

initial processing.

In the preprocessing stage, image cleaning and formatting

procedures were performed along with augmentation techniques

to improve the diversity of the dataset and reduce the risk of

overfitting. This included extracting the region of interest from the

nail images and center cropping them, ensuring a structured and

uniform dataset.

During the processing phase, CNN models were deployed

using the DenseNet169, InceptionV3, and Xception architectures,

which were selected for their ability to extract relevant visual

features from the nail images. These models were trained

with a preprocessed dataset, and the key hyperparameters were

tuned to maximize the model performance using advanced

optimization techniques.

Finally, in the validation phase, models were continuously

evaluated by recording performance metrics such as accuracy

(Equation 1), precision (Equation 2), recall (Equation 3), F1-

score (Equation 4), and area under the ROC curve (AUC)

(Equation 5) on the training and validation sets. To ensure the

retention of the best-performing model, the ModelCheckpoint

technique was employed, which automatically saved the model

weights corresponding to the lowest validation loss during

training. This approach prevented overfitting and allowed the

selection of the most optimal model for the final evaluation.

Furthermore, at the end of training, additional metrics were

applied to further assess model performance and confirm its

generalization capability.

Figure 1 illustrates the methodology of the study, showing the

workflow and interconnections between the stages of the research

process: data collection, preprocessing, processing, and validation.

This block diagram is essential for understanding the sequence and

technical approach applied in this research.

3.1 Image and clinical data collection
protocol

3.1.1 Participants
The study population included 5,575 undergraduate students

from the Universidad Nacional de San Martín (UNSM) during

the 2023-I academic semester. Non-probabilistic convenience

sampling was used to obtain 909 images of students’ nails using a

standardized collection protocol. The sample size was limited to the

number of hemoglobin readings available on the Rad-67 device (up

to 1,000 readings). The inclusion criteria included students between

18 and 25 years of age who provided informed consent. The final

sample comprised 540 women and 369 men, all of whom met the

requirements for participation in the study.
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FIGURE 1

Flowchart of the proposed methodology.

3.1.2 Equipment selection and capture parameter
settings

For image capture, the Samsung Galaxy A73 5G was selected

for its high 108 MP resolution and manual adjustment capability,

which guaranteed optimal quality for subsequent processing and

analysis. This device offers stability in capturing data, minimizes

distortion, and ensures data consistency. With a storage capacity of

256 GB and a 2.4 GHz Octa-Core processor, it was easy to handle

large volumes of images.

The camera was controlled remotely using scrcpy software,

which allowed the capture conditions to be standardized in terms of

lighting and angle, improving the uniformity of the data collected.

To optimize image quality, specific parameters were set: an aperture

of f /1.8 that allowed adequate light entry and minimized noise, a

shutter speed of 1/180 to avoid blurring, a lens size of 5.06mm

to capture the nail surface in detail, and an ISO of 50 that

reduced digital noise under controlled lighting conditions inside a

polycarbonate box. These settings are essential for accurate analysis

using machine vision.

3.1.3 Image capture method
We developed a detailed protocol for image capture, including

specific instructions, to ensure the quality and consistency of

the collected data. Each participant was prepared by thoroughly

washing and drying their hands before the image capture.

The left index finger was then placed in a specially designed

polycarbonate box to create a controlled environment, minimizing

interference from external light. Finally, a clear image of

the index fingernail was captured. During the implementation

of the protocol, the participants were instructed to keep

their finger still and not to exert pressure on the lens,

which was essential to ensure the accuracy of the image

in a controlled environment. The procedure is illustrated in

Figure 2.

3.1.4 Collection of demographic and clinical data
In addition to these images, we collected detailed demographic

and clinical information from each participant using a structured

chart. This chart includes identifying data such as name, age,

sex, and professional school. Symptoms of anemia experienced in

the past month were also recorded, including fatigue, weakness,

irregular heartbeat, shortness of breath, dizziness, chest pain,

cold hands and feet, and headaches, along with an additional

question regarding whether the participant followed a vegetarian

or vegan diet. Pulse, respiratory rate, and blood pressure were

recorded. Anthropometric data, such as weight, height, body mass

index (BMI), and abdominal circumference were also collected.

Finally, the results of non-invasive hemoglobin tests performed

with the Rad-67 device were included, classifying anemia levels

according to standards for women and men, along with heart

rate and blood oxygen saturation. These data were organized to

facilitate the analysis and correlation with anemia levels detected

in the participants.

It is worth mentioning that the data collection process was

completed within 2 weeks, focusing on a geolocated sample of

university students from a single region. Due to the controlled

scope of the study and the structured data collection protocol,

no significant temporal or spatial complexity was encountered.

The standardized methodology ensured consistency in image

capture conditions, clinical measurements, and demographic data

collection, minimizing external variability and enhancing the

reliability of the dataset.
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FIGURE 2

Image capture method.

3.2 Preprocessing

In the image preprocessing phase, specific functions were

developed to extract and prepare the region of interest, centered on

the index fingernail of each participant. The extract_hand function

allowed the finger to be isolated from the image background,

ensuring that only the relevant region was included in the analysis.

This function uses contour segmentation and color thresholding

techniques to separate the finger from other visual elements

and to ensure accuracy in the selection of the area of interest.

Subsequently, a center crop function was designed to center the

image and adjust it to a standard size, allowing all images to

maintain a uniform and standardized arrangement. This optimized

the quality and consistency of the images entered into the computer

vision model.

The preprocessed images were converted into numerical arrays

for use in deep-learning models. Each image was linked with labels

indicating the participant’s level of anemia and complemented

with additional clinical and demographic data, such as anemia-

associated symptoms, weight, height, and sex. This combination

allowed the creation of a well-structured dataset in which the

images were enriched with relevant clinical information, facilitating

the training and validation of the model.

The results of this preprocessing demonstrated the efficiency

of the developed functions. The extract_hand function accurately

segmented the finger region, ensuring that only the area

of interest was analyzed. The crop_center function centered

and resized the images, providing uniformity in the dataset

and improving the consistency for the processing of the

model. Finally, the structuring of the dataset, in which each

image was accompanied by its associated labels and clinical

data, resulted in a solid and homogeneous database for the

analysis of anemia levels in the studied population. This

preprocessing was essential to ensure the quality of the data

used in the computer vision model, thus providing a reliable

platform for the non-invasive detection of iron deficiency

anemia in university students. Figure 3 shows the results of the

preprocessing performed.

3.2.1 Consolidation and exploration of the final
dataset

In the final stage, all collected data were consolidated into a

structured dataset that included the preprocessed images, along

with the demographic and clinical information of the participants.

This dataset was stored in a format suitable for analysis using

computer vision models, allowing the efficient management of the

variables in the modeling process.

To understand the general characteristics of the dataset, a

descriptive analysis of demographic variables, anemia symptoms,

anthropometric data, and physiological measurements was

performed. All participants were in the age range of 18–25 years,

and the sex distribution included 502 women and 324 men in the

826 profiles valid for training. Participants were classified according

to the World Health Organization (2011), differentiating them

into anemic and non-anemic groups. Of the profiles evaluated, 238

women and 31 men were identified as having anemia, while 264

women and 293 men did not.

Figure 4 presents the correlation matrix that visualizes the

relationships between various anemia symptoms and the clinical

parameters collected. This matrix, represented by a heat map,

uses a color scale that varies from red (indicating strong positive

correlations) to blue (indicating strong negative correlations). This

visualization provides a clear representation of the interactions and

relationships between variables, offering additional information

about the clinical characteristics and their possible association with

anemia in the population studied.

3.3 Processing

To optimize model generalization, we applied advanced

preprocessing and data augmentation techniques using Keras

ImageDataGenerator. We implemented pixel normalization

(rescaling), where each pixel intensity I was scaled to the [0, 1]

range as I′ = I/255I. Spatial shifts (width and height shift

range = 0.3) were applied using transformations of the form

x′ = x+tX, y
′ = y+tY, where tX and tY were random translations
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FIGURE 3

Random sample of preprocessed images.

within 30% of the image dimensions. Random rotations (up to

180◦) were performed using the transformation matrix:

M =

[

cos -sin

sin cos

]

Where was randomly selected within [−180, 180]. Shearing

(shear range= 0.1) was applied using the affine transformation:

M =

[

1 shear

0 1

]

with shear values randomly sampled from [−0.1, 0.1]. Random

zooming (zoom range = 0.1) was incorporated through the

scaling matrix:

M =

[

sx 0

0 sy

]

Where sx, sy were randomly chosen within [0.9, 1.1]. Finally,

horizontal flipping was applied by inverting pixel coordinates along

the vertical axis as x
′

= W− x. These transformations expanded

the dataset from 826 to 4125 images, enhancing model robustness

and generalization.

Over 100 training epochs, we monitored the accuracy metrics

for both training and validation sets. The InceptionV3 model

achieved a maximum validation accuracy of 0.66, although

it presented significant fluctuations, indicating the need for

additional adjustments to improve its generalization (Figure 5A).

In contrast, the DenseNet169 model demonstrated better overall

performance, reaching a maximum validation accuracy of 0.69,

which positioned it as the most promising model in the context of

this study (Figure 5B). Finally, the Xception model showed similar

results to InceptionV3, with a maximum validation accuracy of

0.66, although it had lower stability during training (Figure 5C).

After analyzing Figure 5, DenseNet169 stood out as the best-

performing model during training, achieving higher accuracies

compared to the other architectures evaluated. However, all the

models faced significant challenges in terms of generalization, as

evidenced by the accuracy values obtained in the validation sets.

These limitations suggest that the models could be affected by

overfitting issues and insufficient representation of features in the

unseen data.

To address these limitations, it is necessary to implement

improvement strategies, such as more precise hyperparameter

tuning, application of cross-validation to reduce the risk of

overfitting, and integration of ensemble models that can combine

the strengths of each architecture. In addition, diversifying and

balancing the dataset could contribute to a better representation of

the variations present in real data, thus increasing the diagnostic

accuracy in clinical contexts.

3.3.1 Visual results of processing
A random sample of the results obtained after the image

processing is shown in Figure 6. These results illustrate

how the models were able to correctly label images of

nails classified as having or without anemia, demonstrating

the potential of the computer vision tools developed in

this study.

The evaluation of the results confirms that the analyzed models

are promising, although further adjustments are required to ensure

their reliable implementation in clinical settings. These findings

represent a significant advance toward the development of non-

invasive tools for the early diagnosis of iron deficiency anemia, with

potential for their application in health systems based on artificial

vision technology.

3.4 Validation

Model evaluation is critical in quantifying the performance of a

classifier or model. It aims to ensure that the relationships learned
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FIGURE 4

Correlation matrix of symptoms and clinical parameters in the detection of anemia.

from the training dataset are applicable and effective for a validation

or test dataset (Rahman Khan et al., 2022). Based on the studies by

Valles-Coral et al. (2024) and Appiahene et al. (2023), we selected

the following performance metrics:

Accuracy (ACC)=
TP+TN

TP+TN+FP+FN
(1)

Precision (P)=
TP

TP+FP
(2)

Recall (R)=
TP

TP+FN
(3)

F1−Score=
2(P∗R)

P+R
(4)

AUC=
TPR−TNR

2
(5)

Where TP (True Positives), TN (True Negatives), FP (False

Positives), FN (False Negatives), TPR (True Positive Rate),

and TNR (True Negative Rate) are standard classification

evaluation terms.

4 Results and discussion

The performance evaluation of the three deep learning models

trained for anemia detection is presented in Table 1. These results

provide a direct comparison of accuracy, precision, recall, F1-

score, and AUC across the training, validation, and test sets,

allowing a structured assessment of each model’s classification

effectiveness. Among the evaluated architectures, DenseNet169

exhibited the highest overall consistency, followed by Xception and
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FIGURE 5

Evolution of training and validation of the models. (A) InceptionV3 model showing significant fluctuations in validation accuracy. (B) DenseNet169
model with the best overall performance and greater stability. (C) Xception model with similar behavior to InceptionV3 but lower stability.

FIGURE 6

Example of images classified by computer vision models.

InceptionV3. The following sections provide an in-depth analysis

of these findings, focusing on model generalization, potential

optimizations, and comparisons with prior research.

4.1 Performance of the evaluated models

The quantitative analysis of model performance, as shown in

Table 1, indicates that DenseNet169 achieved the highest accuracy

(74.23% training, 71.86% validation, and 71.08% test) and AUC

(77.14% training, 75.28% validation, and 74.09% test), suggesting

strong generalization capability and robust classification power.

In contrast, InceptionV3 and Xception demonstrated slightly

lower performance, with test accuracies of 68.07% and 68.67%,

respectively. The AUC values for these models were also lower

(65.91% for InceptionV3 and 68.36% for Xception), indicating

reduced discriminative ability compared to DenseNet169.

During the training phase, all models achieved high accuracy,

with DenseNet169 performing the best (74.23%), followed by

InceptionV3 (72.38%) and Xception (71.35%). This suggests that

the architectures effectively learned feature representations from

the dataset. However, the AUC values indicate that DenseNet169

had a superior ability to distinguish between anemic and non-

anemic cases (77.14% AUC), confirming its higher discriminative

power compared to the other models.

In the validation phase, a decline in performance was

observed, as expected when generalizing to unseen data.

DenseNet169 maintained its superiority, achieving 71.86%

accuracy and 75.28% AUC, reinforcing its capability to generalize.

Conversely, InceptionV3 exhibited the sharpest drop in AUC

from 71.43% (training) to 66.89% (validation), indicating potential

overfitting. Xception maintained a more stable performance, but

its slightly lower recall suggests a reduced sensitivity in identifying

anemic cases.

In the test phase, DenseNet169 continued to be the most

reliable model, attaining the highest recall (64.77%) and AUC

(74.09%), confirming its robust classification performance across

datasets. InceptionV3 and Xception, while still competitive, showed

greater fluctuations in their ability to correctly classify anemia cases,

emphasizing the need for further optimization in feature extraction

and generalization strategies.

A more detailed evaluation of model performance in the test

phase is presented in Table 2. The results confirm that DenseNet169

maintained the best overall performance, achieving 71.08%
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TABLE 1 Performance metrics of the evaluated models.

Model Subset Accuracy (%) P (%) R (%) F1-score (%) AUC (%)

InceptionV3 Training 72.38 70.12 71.24 70.67 71.43

Validation 69.15 67.34 68.19 67.72 66.89

Test 68.07 66.39 67.20 66.58 65.91

DenseNet169 Training 74.23 72.18 68.35 69.27 77.14

Validation 71.86 70.23 65.84 67.12 75.28

Test 71.08 69.83 64.77 65.25 74.09

Xception Training 71.35 69.24 69.18 69.11 71.29

Validation 69.87 68.12 67.95 68.03 70.14

Test 68.67 66.30 66.30 66.30 68.36

TABLE 2 Test phase performance of evaluated models.

Model Accuracy Precision Recall F1-score AUC ROC

InceptionV3 0.6807 0.6639 0.6720 0.6658 0.6591

DenseNet169 0.7108 0.6983 0.6477 0.6525 0.7409

Xception 0.6867 0.6630 0.6630 0.6630 0.6836

accuracy, 69.83% precision, and 74.09% AUC. These metrics

indicate that this model was able to effectively distinguish anemic

from non-anemic cases while maintaining stable generalization

across datasets. In contrast, InceptionV3 showed the weakest

classification capability, with 68.07% accuracy and 65.91% AUC,

reinforcing its tendency toward overfitting, as observed in the

validation phase. Xception performed slightly better, achieving

68.67% accuracy and 68.36% AUC, demonstrating a more

balanced trade-off between sensitivity and specificity compared to

InceptionV3. This performance is further illustrated in Figure 7,

which presents the ROC curves for the evaluated models,

highlighting their ability to distinguish between anemic and non-

anemic cases.

4.2 Confusion matrix analysis

To further evaluate model effectiveness, confusion matrices

were analyzed (Figure 8), providing insights into classification

errors and areas for improvement. For InceptionV3, in the

validation set, 74 correct classifications were obtained for the

negative class compared to 31 incorrect ones, and 39 hits were

recorded for the positive class with 22 errors (Figure 8A). This

indicates an acceptable recall but suggests a need to optimize

parameters to reduce false positives and false negatives.

For DenseNet169, the results were more promising, with 93

correct predictions for the negative class compared to only 12

incorrect ones, while for the positive class, 25 hits and 36 errors

were recorded (Figure 8B). These values demonstrate a better

balance between precision and recall, though minimizing false

negatives remains a key area for improvement.

Xception presented intermediate results, correctly classifying

79 cases in the negative class vs. 26 incorrect ones, and 35 correct

answers in the positive class vs. 26 errors (Figure 8C). This suggests

a trade-off between recall and precision, where further adjustments,

such as hyperparameter tuning or increased data augmentation,

could enhance overall performance.

4.3 Comparative analysis of non-invasive
anemia detection methods

To evaluate the effectiveness of the proposed approach,

a comparative performance analysis was conducted against

existing non-invasive anemia detection methods (Table 3). The

results indicate that while our DenseNet169 model achieved a

competitive AUC of 74.09%, it still lags behind some state-of-

the-art methods that integrate multimodal inputs or additional

hardware components.

Das et al. (2023) developed a hybrid approach that combines

a smartphone-based imaging system with a custom pressure-

sensitive device to induce color changes in the nail bed. Their

method achieved an RMSE of 0.63 g/dL by leveraging hemoglobin’s

dynamic response to mechanical stimulation, enhancing feature

extraction. In contrast, our model relies solely on static images,

limiting the granularity of extracted features. Future improvements

could explore color change modeling through sequential image

capture or hyperspectral imaging techniques.

Asare et al. (2023) compared different machine learningmodels

for anemia detection, where CNNs outperformed traditional

classifiers, achieving 99.12% accuracy. Their dataset included

images of the eye conjunctiva, palm, and fingernails, providing a

richer feature space. Our model, which uses only fingernail images,

may have reduced generalization. Adding metadata such as age,

sex, and clinical history, or analyzing multiple anatomical regions,

could enhance classification performance.

Peksi et al. (2021) applied the Naïve Bayes method to detect

anemia, achieving an accuracy of 87.5% and improving to 92.3%

under optimal lighting. Our DenseNet169 model, with an accuracy

of 69.83%, is below these values. This suggests that better image
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FIGURE 7

ROC curve for the evaluation of computer vision models.

FIGURE 8

Confusion matrices of the models. (A) InceptionV3 model showing an acceptable recall but requiring optimization to reduce misclassifications. (B)
DenseNet169 achieving the best balance between precision and recall, although false negatives remain a challenge. (C) Xception model displaying
intermediate results, with opportunities for improvement through parameter tuning and data augmentation.

preprocessing, such as YCbCr color space conversion and color

feature segmentation, could improve performance.

Yilmaz et al. (2022) used a deep learning approach that

combined numerical data with nail images, obtaining low error

values and high accuracy in estimating hemoglobin levels. In

contrast, our study focused solely on nail images, which may

explain differences in accuracy. Combining different data types

and specialized models for each could improve predictions.

Additionally, their model’s fast response time of 0.09 s highlights

the potential of these technologies for real-time applications.

Ghosal et al. (2022) implemented an IoMT-based approach

using color spectroscopy, achieving an accuracy of ±0.33 g/dL

in predicting hemoglobin levels and a sensitivity of 90%. Their

use of a smartphone to capture images from the conjunctiva

and nails emphasizes the importance of selecting the right

anatomical regions.

Selvi et al. (2022) demonstrated that deep learning models,

including ResNet and DenseNet, can achieve 94% accuracy in

predicting micronutrient deficiencies. More complex models and

training with real-time data could significantly improve accuracy.
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TABLE 3 Comparisons of existing methods.

Method Dataset Metrics Contribution

ACC (%) P (%) R (%) F1 (%) AUC (%)

Naive Bayes on nail images

(Peksi et al., 2021).

Not specified 87.5–92.3 – – – – Naive Bayes classified anemia with

controlled lighting.

Deep learning with nail data

(Yilmaz et al., 2022).

353 participants – – – – – Reliable hemoglobin estimation

using deep learning.

IoMT for anemia detection

(Ghosal et al., 2022).

99 participants – – 90 – – Hybrid smartphone model for

anemia detection.

CNN for deficiency detection

(Selvi et al., 2022).

Images collected from

web crawlers

94 – – – – AI predicted deficiencies from

fingernail images.

AI nail pallor analysis (Das

et al., 2023).

220 participants 91 – 96 – – MLP-based model for hemoglobin

estimation.

ML models on fingernails

(Asare et al., 2023).

710 images (collected

from 10 hospitals)

98.33 97.64 97.44 97.54 99.93 CNN outperformed ML models for

anemia.

DenseNet169 on nail images

(This Study).

909 images 71.08 69.83 64.77 65.25 74.09 Deep learning improved

non-invasive anemia detection.

Integrating advanced imaging techniques and metadata analysis

could be a key direction for enhancing our model.

Unlike existing models that require multimodal inputs

or specialized hardware, our approach prioritizes cost-

effectiveness, accessibility, and real-world applicability. This study

focuses exclusively on fingernail images for anemia detection,

systematically evaluating and comparing state-of-the-art deep

learning architectures, including DenseNet169, InceptionV3, and

Xception. This targeted approach demonstrates the feasibility of

nail-based diagnostics without additional devices. A standardized

image acquisition protocol ensures controlled conditions during

data collection using a smartphone camera, minimizing variability

due to lighting and angles—key challenges in biomedical imaging

were environmental factors impact model performance.

A key differentiator of this study is its dataset, one of the first

large-scale collections of fingernail images for anemia detection

in young adults and university students. Previous research has

primarily targeted children, pregnant women, or hospital patients,

whereas this study investigates anemia in young adults and

its impact on cognitive function and academic performance.

The proposed model is optimized for mobile and cloud-based

deployment, reducing computational costs and enabling real-time

applications in telemedicine and digital health. Fine-tuning transfer

learning models enhances adaptability, improving scalability across

diverse populations.

DenseNet169 demonstrated the highest discriminative capacity

among the tested models, with superior accuracy and AUC.

Although effective for non-invasive anemia detection, performance

improvements can be achieved by incorporating advanced

preprocessing, integrating multimodal data, and optimizing

image capture conditions. These enhancements, supported by

prior research, form a foundation for refining non-invasive

diagnostic technologies.

This study confirms that computer vision models can

accurately detect iron deficiency anemia through nail image

analysis. The proposed approach validates results obtained

with the Rad-67 hemoglobin meter, offering a complementary

and non-invasive diagnostic tool for clinical and educational

settings. Continuous optimization and validation will further

enhance model accuracy, reinforcing its potential for real-world

medical applications.

5 Limitations of the study

Although the results validate the feasibility of fingernail image-

based anemia detection, certain technical constraints must be

addressed. Dataset imbalance, particularly in the distribution

of anemia severity levels, may have influenced the model’s

recall performance. Implementing synthetic data augmentation

strategies, such as GAN-based image synthesis or domain

adaptation techniques, could mitigate this issue.

Another critical aspect is the standardization of image

acquisition conditions. Unlike models trained on controlled

hospital environments, our dataset was collected under variable

lighting conditions, which may introduce noise in feature

extraction. Adaptive illumination correction algorithms and

photometric standardization techniques could improve model

consistency across different acquisition settings.

Regarding computational efficiency, Google Colab TPU

acceleration was utilized for training, but real-time inference

feasibility remains an open question. Optimizing model

compression via quantization-aware training or knowledge

distillation could significantly reduce memory footprint and

inference latency, making the model more suitable for mobile and

embedded healthcare applications.

Lastly, future work should explore hybrid approaches,

integrating clinical metadata with deep learning models to enhance

diagnostic precision. Combining image-based predictions with

non-invasive physiological markers, such as heart rate variability

or peripheral oxygen saturation, could improve classification

confidence and clinical applicability.
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6 Conclusions

This study represents a significant advancement in

non-invasive iron deficiency anemia detection, leveraging

smartphone-captured fingernail images and deep learning

techniques. The DenseNet169 model demonstrated reliable

classification performance, achieving competitive precision

and recall levels, confirming its potential as an accessible

and practical alternative to traditional invasive diagnostic

methods. The simplicity and adaptability of this approach

position it as a promising solution for early anemia detection

in various settings, including clinical, academic, and remote

healthcare environments.

Furthermore, the study highlights the feasibility of mobile-

based artificial vision algorithms, emphasizing their scalability

and real-world applicability. Unlike existing approaches that focus

on broader clinical populations, this research specifically targets

university students, an underrepresented yet vulnerable group

in anemia studies. This focus allows for tailored applications

in student health monitoring and academic performance

impact assessments.

Future work should focus on enhancing model generalization

and robustness, exploring customized training for diverse

populations and clinical conditions. Additionally, integrating

this approach into digital health platforms could enable

continuous, real-time monitoring, further extending its

impact beyond early diagnosis to preventive healthcare

management. Strengthening these aspects will contribute to

the widespread adoption of non-invasive anemia detection

methods, reducing diagnostic barriers and promoting broader

community wellbeing.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

This human study was reviewed and approved by the Ethics

Committee of the Universidad Nacional de San Martín, Peru, in

accordance with the ethical principles set forth in the Declaration

of Helsinki. Participants provided written informed consent

before participating in the study. The study was conducted in

accordance with local legislation and institutional requirements.

Written informed consent was obtained from the individual(s)

for the publication of any identifiable images or data included in

this article.

Author contributions

JN-C: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Methodology, Project administration,

Resources, Software, Writing – original draft, Writing – review &

editing. MV-C: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Supervision, Validation, Writing –

original draft, Writing – review & editing. MF-R: Formal analysis,

Investigation, Methodology, Writing – original draft. NR-L:

Formal analysis, Investigation, Validation, Writing – original

draft. LA-F: Formal analysis, Investigation, Validation, Writing –

original draft.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This work

was funded by the Consejo Nacional de Ciencia, Tecnología

e Innovación Tecnológica (CONCYTEC) and the Programa

Nacional de Investigación Científica y Estudios Avanzados

(PROCIENCIA) within the framework of the Contest E073-

2023-01—“Undergraduate and Postgraduate Thesis in Science,

Technology and Technological Innovation” Contract number

(PE501085712-2023).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Gen AI was used in the creation of

this manuscript. The author(s) acknowledge the use of artificial

intelligence (ChatGPT and Paperpal) in English language editing

for this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

AlJaber, M. I., Alwehaibi, A. I., Algaeed, H. A., Arafah, A. M., and Binsebayel,
O. A. (2019). Effect of academic stressors on eating habits among medical students
in Riyadh, Saudi Arabia. J. Fam. Med. Prim. Care 8:390. doi: 10.4103/jfmpc.jfmpc_
455_18

Amegbor, P. M., Borges, S. S., Pysklywec, A., and Sabel, C. E. (2022). Effect of
individual, household and regional socioeconomic factors and PM2.5 on anaemia:
a cross-sectional study of sub-Saharan African countries. Spat. Spatiotemporal.
Epidemiol. 40:100472. doi: 10.1016/j.sste.2021.100472

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2025.1557600
https://doi.org/10.4103/jfmpc.jfmpc_455_18
https://doi.org/10.1016/j.sste.2021.100472
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Navarro-Cabrera et al. 10.3389/fdata.2025.1557600

Amoaning, R. E., Amoako, E. S., Kyiire, G. A., Owusu, D. D., Bruce, H., Simpong, D.
L., et al. (2022). Anaemia prevalence more than doubles in an academic year in a cohort
of tertiary students: a repeated-measure study in Cape Coast, Ghana. Adv. Hematol.
2022:4005208. doi: 10.1155/2022/4005208

An, R., Huang, Y., Man, Y., Valentine, R. W., Kucukal, E., Goreke, U., et al.
(2021). Emerging point-of-care technologies for anemia detection. Lab Chip 21:1843.
doi: 10.1039/D0LC01235A

Appiahene, P., Asare, J. W., Donkoh, E. T., Dimauro, G., and Maglietta, R. (2023).
Detection of iron deficiency anemia bymedical images: a comparative study ofmachine
learning algorithms. BioData Min. 16:2. doi: 10.1186/s13040-023-00319-z

Asare, J. W., Appiahene, P., Donkoh, E. T., and Dimauro, G. (2023). Iron deficiency
anemia detection using machine learning models: a comparative study of fingernails,
palm, and conjunctiva of the eye images. Eng. Rep. 5:12667. doi: 10.1002/eng2.12667

Camaschella, C. (2019). Iron deficiency. Blood 133, 30–39.
doi: 10.1182/blood-2018-05-815944

Choi, J. (2020). Impact of stress levels on the eating behaviors of college students.
Nutrients 12:1241. doi: 10.3390/nu12051241

Das, S., Kesarwani, A., Dalui, M., Kisku, D. R., Sen, B., Roy, S., et al.
(2023). Smartphone-based non-invasive haemoglobin level estimation by analyzing
nail pallor. Biomed. Signal Process. Control 85:104959. doi: 10.1016/j.bspc.2023.1
04959

Deivita, Y., Syafruddin, S., Andi Nilawati, U., Aminuddin, A., Burhanuddin, B., and
Zahir, Z. (2021). Overview of anemia; risk factors and solution offering. Gac. Sanit. 35,
S235–S241. doi: 10.1016/j.gaceta.2021.07.034

Dimauro, G., De Ruvo, S., Di Terlizzi, F., Ruggieri, A., Volpe, V., Colizzi, L., et al.
(2020). Estimate of anemia with new non-invasive systems—a moment of reflection.
Electronics 9:780. doi: 10.3390/electronics9050780

Dimauro, G., Griseta, M. E., Camporeale, M. G., Clemente, F., Guarini,
A., and Maglietta, R. (2023). An intelligent non-invasive system for automated
diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136:102477.
doi: 10.1016/j.artmed.2022.102477

Ghosal, S., Das, D., Udutalapally, V., and Wasnik, P. N. (2022).
iNAP: a hybrid approach for noninvasive anemia-polycythemia detection
in the IoMT. ACM Trans. Comput. Healthc. 3, 1–28. doi: 10.1145/35
03466

Hamali, H. A., Mobarki, A. A., Saboor, M., Alfeel, A., Madkhali, A.M., Akhter, M. S.,
et al. (2020). Prevalence of anemia among Jazan University students. Int. J. Gen. Med.
13, 765–770. doi: 10.2147/IJGM.S275702

Khani Jeihooni, A., Hoshyar, S., Afzali Harsini, P., and Rakhshani, T.
(2021). The effect of nutrition education based on PRECEDE model on iron
deficiency anemia among female students. BMC Womens Health 21, 1–9.
doi: 10.1186/s12905-021-01394-2

Las Heras Manso, G. (2022). Diagnóstico y tratamiento de la anemia
ferropénica en la asistencia primaria de España. Med. Clín. Práct. 5:100329.
doi: 10.1016/j.mcpsp.2022.100329

Ministerio de Desarrollo e Inclusión Social (2023). Reporte regional de indicadores
sociales del departamento de San Martín. Available online at: https://sdv.midis.gob.pe/
redinforma/Upload/regional/SanMartin.pdf (accessed July 4, 2023).

Peksi, N. J., Yuwono, B., and Yanu Florestiyanto, M. Y. (2021). Classification of
anemia with digital images of nails and palms using the Naive Bayes method. Telemat.
J. Inform. dan Teknol. Inf. 18, 118–130. doi: 10.31315/telematika.v18i1.4587

Rahman Khan, J., Chowdhury, S., Islam, H., and Raheem, E. (2022). Machine
learning algorithms to predict the childhood anemia in Bangladesh. J. Data Sci. 17,
195–218. doi: 10.6339/JDS.201901_17(1).0009

Ramaswamy, G., Vohra, K., Yadav, K., Kaur, R., Rai, T., Jaiswal, A., et al. (2021).
Point-of-care testing using invasive and non-invasive hemoglobinometers: reliable and
valid method for estimation of hemoglobin among children 6–59 months. J. Trop.
Pediatr. 67:fmaa11. doi: 10.1093/tropej/fmaa111

Saavedra Grandez, S. G. (2021). Intervención de las TICs en redefinición de atención
externa en Hospital II-2 Tarapoto en épocas de pandemia Covid 19. Rev. Cient. Sist.
Inform. 1, 58–68. doi: 10.51252/rcsi.v1i1.120

Saboor, M., Zehra, A., Hamali, H. A., and Mobarki, A. A. (2021). Revisiting iron
metabolism, iron homeostasis and iron deficiency anemia. Clin. Lab. 67, 660–666.
doi: 10.7754/Clin.Lab.2020.200742

Selvi, K. T., Thamilselvan, R., Aarthi, R., Priyadarsini, P. S., and Ranjani, T.
(2022). Micronutrient deficiency detection with fingernail images using deep learning
techniques. J. Mob. Multimed. 18, 683–704. doi: 10.13052/jmm1550-4646.18310

Stevens, G. A., Paciorek, C. J., Flores-Urrutia, M. C., Borghi, E., Namaste, S., Wirth,
J. P., et al. (2022). National, regional, and global estimates of anaemia by severity in
women and children for 2000–19: a pooled analysis of population-representative data.
Lancet Glob. Heal. 10, e627–e639. doi: 10.1016/S2214-109X(22)00084-5

Valles-Coral, M. A., Navarro-Cabrera, J. R., Pinedo, L., Injante, R., Quintanilla-
Morales, L. K., and Farro-Roque, M. E. (2024). Non-invasive detection of iron
deficiency anemia in young adults through finger-tip video image analysis. Int. J. Online
Biomed. Eng. 20, 53–70. doi: 10.3991/ijoe.v20i14.50141

WHO (2023). Anemia. Available online at: https://www.who.int/news-room/fact-
sheets/detail/anaemia (accessed July 7, 2023).

World Health Organization (2011). Haemoglobin concentrations for the diagnosis
of anaemia and assessment of severity. Available online at: https://www.who.
int/es/publications/i/item/WHO-NMH-NHD-MNM-11.M-11 (accessed July 9,
2023).
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