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Introduction:The widespread emergence of deepfake videos presents

substantial challenges to the security and authenticity of digital content,

necessitating robust detection methods. Deepfake detection remains

challenging due to the increasing sophistication of forgery techniques.

While existing methods often focus on spatial features, they may overlook

crucial temporal information distinguishing real from fake content and need

to investigate several other Convolutional Neural Network architectures on

video-based deep fake datasets.

Methods: This study introduces an RLNet deep learning framework that

utilizes ResNet and Long Short Term Memory (LSTM) networks for high-

precision deepfake video detection. The key objective is exploiting spatial and

temporal features to discern manipulated content accurately. The proposed

approach starts with preprocessing a diverse dataset with authentic and deepfake

videos. The ResNet component captures intricate spatial anomalies at the

frame level, identifying subtle manipulations. Concurrently, the LSTM network

analyzes temporal inconsistencies across video sequences, detecting dynamic

irregularities that signify deepfake content.

Results and discussion: Experimental results demonstrate the e�ectiveness of

the combined ResNet and LSTM approach, showing an accuracy of 95.2% and

superior detection capabilities compared to existing methods like E�cientNet

and Recurrent Neural Networks (RNN). The framework’s ability to handle

various deepfake techniques and compression levels highlights its versatility and

robustness. This research significantly contributes to digital media forensics by

providing an advanced tool for detecting deepfake videos, enhancing digital

content’s security and integrity. The e�cacy and resilience of the proposed

system are evidenced by deepfake detection, while our visualization-based

interpretability provides insights into our model.

KEYWORDS

ResNet, Long Short TermMemory Networks (LSTM), deep learning, deepfake detection,

explainable artificial intelligence

1 Introduction

The proliferation of deepfake technology has introduced significant challenges to

the integrity of digital content shared online. Deepfake videos, capable of seamlessly

manipulating facial expressions, gestures, and voices, blur the line between reality and

fiction, posing a formidable threat to the credibility of online platforms. This study

introduces a new deepfake detection methodology combining temporal and spatial

feature analysis to improve accuracy and resilience against sophisticated manipulation

methods. The proposed method addresses key shortcomings in current detection

techniques, which use Long Short-TermMemory (LSTM) networks for temporal modeling
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and Convolutional Neural Networks (CNNs) for spatial feature

extraction. Attention-based fusion procedures are included to

improve feature representation further, and explainability strategies

increase model transparency, which promotes confidence in

automated detection systems. This study advances the field by

creating a more robust and interpretable deepfake detection model

that can adjust to changing synthetic media creation methods.

This ambiguity compromises the trustworthiness of

multimedia content and presents significant risks, such as

the spread of misinformation, manipulation of public discourse,

and even influencing elections. The ease with which individuals

can generate these deceptive videos with minimal technical

expertise further exacerbates the issue, making it imperative

to develop robust detection methods to mitigate their impact

(Zhao et al., 2023).

Current research in deepfake detection primarily focuses on

analyzing spatial features, such as pixel-level inconsistencies and

texture anomalies. However, these methods often fail to capture the

temporal dynamics crucial for identifying deepfakes. For instance,

unnatural transitions or face movements over time can reveal

manipulations that spatial analysis alone might miss (Bansal et al.,

2023). This gap highlights the need for approaches integrating

spatial and temporal features to enhance detection accuracy

and robustness across various deepfake creation techniques and

compression levels (Thai et al., 2024). Furthermore, existing

solutions often lack transparency, which limits users’ trust in

automated detection tools, particularly when understanding how

these models make decisions (Elpeltagy et al., 2023).

Vashishtha et al. (2024) devised an ensemble deep learning

system to distinguish between authentic and counterfeit photos.

They provide a unique strategy utilizing the suggested optical

flow technique, which extracts the apparent motion of image

pixels, yielding more accurate findings than existing state-of-

the-art methods. However, there is a lack of transparency in

deepfake detection. Suratkar and Kazi (2023) introduced an

innovative methodology to detect counterfeit videos. It employs

transfer learning in autoencoders and a hybrid architecture of

Convolutional Neural Networks (CNN) and Recurrent Neural

Networks (RNN). The authors conducted the investigation

using three datasets and plan to investigate additional deep

learning models with minimized parameters for video-based

Deepfake detection.

Soudy et al. (2024) presented a Deep Learning (DL)

methodology for detecting deepfakes. The system consists of

three components: Preprocessing, Detection, and Prediction.

Preprocessing encompasses frame extraction, facial detection,

alignment, and feature trimming. Convolutional Neural Networks

(CNNs) identify ocular and nasal features. The requirement

requires substantial computational resources for training and

inference. Furthermore, the method may be ineffective in

identifying deepfakes that alter facial regions outside the eyes,

nose, and overall face. Future studies may concentrate on inventing

methodologies that necessitate reduced data while preserving

elevated accuracy levels.

The growing sophistication of deepfake technology and its

potential for malicious misuse, such as spreading disinformation

and undermining public trust, motivates the development of

more advanced detection systems. The limitations of existing

spatial-focused models and the increasing quality and prevalence

of deepfakes demand solutions that accurately capture videos’

spatial and temporal characteristics. Moreover, there is a need

for detection systems that can explain their decisions, helping

users understand why certain content is flagged as manipulated,

thereby enhancing trust in the technology. This study addresses

the identified gaps by proposing a novel deepfake detection

framework that integrates ResNet for spatial analysis and Long

Short-Term Memory (LSTM) networks for temporal analysis.

Although other deepfake detection methods have been investigated

in existing research works, there is still a significant research

gap in creating a model that successfully combines temporal and

spatial information while maintaining interpretability. Existing

methods either concentrate on temporal patterns, which may

not be sufficient to detect subtle manipulations in high-quality

deepfakes, or spatial inconsistencies, which are vulnerable to

adversarial assaults. By putting forward a unique deep learning

framework that combines recurrent architectures, including Long

Short-Term Memory (LSTM) networks for temporal analysis

and Convolutional Neural Networks (CNNs) for spatial feature

extraction, this research seeks to overcome these constraints.

In contrast to traditional strategies, our method uses attention-

based feature fusion to improve the ability to distinguish between

actual and synthetic information while maintaining resilience

against different compression errors and deepfake production

techniques. Additionally, the proposed approach uses explainability

methods to increase openness and user confidence, making model

choices easier to comprehend. This work advances dependable

and trustworthy deepfake detection methods by bridging the gap

between interpretability and accuracy.

The main contributions of this study are as follows.

• We present a RLNet (Resnet and LSTM) deepfake detection

method incorporating ResNet for spatial analysis and Long

Short Term Memory networks for temporal abnormalities,

significantly enhancing detection accuracy.

• This study tackles the issues presented by various deepfake

generation methods and video compression artifacts,

guaranteeing the model’s resilience and adaptability in

practical applications.

• A comparison of existing CNN architectures and pre-trained

models to identify the most effective approach for video-based

deepfake detection.

• Comprehensive experimentation confirms the system’s

efficacy. It exhibits enhanced detection accuracy relative to

current approaches and highlights its practical application.

• A focus on explainability through visualization-based

interpretability, providing transparency into the model’s

decision-making process.

The remaining sections of this study are organized as follows:

Section II comprehensively reviews the existing literature on

deep fake detection using deep learning techniques. Section III

describes the dataset and presents the proposed methodology

of the study. Section IV presents the feature extraction, model

training, and model evaluation results for the proposed model.
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Section V summarizes the study’s main findings and provides

concluding remarks regarding the proposed RLNet model for

deepfake video detection.

2 Related works

Previous research in deepfake video detection has explored

various approaches, including CNN-based feature extraction,

RNN-based temporal analysis, and GAN-based adversarial

training. Some studies have incorporated attention mechanisms,

Graph Neural Networks, and self-supervised learning to enhance

detection robustness and generalization. This study aims to

build upon existing work, leveraging advancements in deep

learning to develop a more accurate and robust deepfake detection

system using DL techniques like LSTM and ResNet. Recent

research has progressed beyond frame-level analysis by integrating

temporal information. Recurrent Neural Networks (RNNs) have

been investigated for this objective, yielding differing levels of

success. Elhassan et al. (2022) proposed a method that examines

oral motions to identify discrepancies; however, their technique is

confined to particular face areas and interpretability. Elpeltagy et al.

(2023) enhanced the deepfake concept by integrating audio-visual

data, augmenting detecting capabilities. Nonetheless, research

predominantly concentrated on domain-specific anomalies,

neglecting the exploration of integrating CNNs and RNNs for a

more universally applicable approach.

Khan and Dai (2021) proposed a video transformer model,

demonstrating the potential of transformers for video-based

deepfake detection. This technique provides incremental learning

but lacks a customized architecture for deepfake detection, leading

to performance constraints relative to conventional CNN-based

systems. Heo et al. (2023) further enhanced this by including vision

transformers with local and global feature extraction; however, they

did not investigate the possible union between CNNs and temporal

models such as LSTM. A significant shortcoming in current

deepfake detection techniques is the absence of comparative

analysis of several pre-trained models and CNN architectures,

including EfficientNet, Xception, and ResNet. Furthermore, several

of these studies fail to consider the interpretability of their models.

In deepfake detection, ensuring openness using eXplainable

AI (XAI) methodologies is crucial for fostering confidence

in automated systems. Gao et al. (2024) contributed to the

advancement of deepfake detection by enhancing the performance

of detection methods for deepfakes created with high compression.

Their research addressed the practical challenge of acquiring high-

quality, uncompressed data and the associated computational

costs of supervised learning based on such data. By developing

techniques to mitigate these challenges, they aimed to improve

the accuracy and efficiency of deepfake detection in real-world

scenarios. Rafique et al. (2023) proposed an automated method

for classifying deepfake images, leveraging Deep Learning and

Machine Learning techniques. Their approach aimed to enhance

the automated detection and classification of deepfake photos,

contributing to the ongoing efforts to combat the proliferation of

manipulated visual content online.

Bray et al. (2023) researched and evaluated the human

ability to identify deepfake images of human faces among

non-deepfake images. Their study aimed to assess the effectiveness

of interventions to improve human detection accuracy, providing

valuable insights into the human factors involved in detecting

manipulated visual content. Malik et al. (2023) contributed

significantly to deepfake detection by proposing a novel method

that leverages datasets such as the Deep Fake Detection Challenge

(DFDC) and Face Forensic datasets. Their research underscores

the importance of utilizing diverse and comprehensive datasets

to effectively train detection models, enhancing their ability to

discern between authentic and manipulated videos accurately. Lin

et al. (2023) introduced a CNN-based deepfake detection method

incorporating multi-scale convolution and vision transformer

techniques. By integrating these advanced methodologies, their

approach demonstrates the potential for improving the accuracy

and efficiency of deep fake detection systems, further highlighting

the advancements made possible through deep learning techniques.

Kumar et al. (2024) introduced the DFN (Deep Fake

Network) model architecture, representing a holistic approach

to deepfake video detection. By integrating various components

such as mobNet blocks, separable convolution layers, and

XGBoost classifier, their model offers a comprehensive solution

for identifying manipulated videos, showcasing the versatility and

effectiveness of deep learning-based approaches in combating

deepfake proliferation. Collectively, these studies underscore the

pivotal role of deep learning in the ongoing efforts to detect and

mitigate the spread of deepfake videos. By leveraging advanced

techniques and innovative methodologies, researchers continue

to push the boundaries of deepfake detection, highlighting

the significance of ongoing research and development in this

critical area. The investigation of deepfake video detection

uncovers a swiftly changing environment marked by various

novel methods utilizing sophisticated deep learning technologies.

These approaches include many tactics, such as feature extraction

using convolutional neural networks and temporal analysis using

recurrent neural networks, emphasizing the need to identify spatial

and temporal abnormalities in altered information. However,

issues, including reliance on dataset quality, poor generalization

among modification approaches, and false positives, still exist.

Reducing detection errors and improving model resilience

should be the main goals of future developments. Combining

hybrid facial landmarks and innovative heart rate features,

Farooq et al. (2025) presented a unified system that improves

deepfake detection and achieves strong performance using a

lightweight XGBoost classifier. It maintains competitive accuracy

while providing better interpretability than deep learning-based

methods. Nevertheless, there are still issues with deepfake creation

methods and generalization across various datasets. Adeosun

et al. (2025) showed that deepfake detection algorithms are

susceptible to adversarial assaults, as shown by the notable

declines in accuracy under FGSM perturbations. Techniques for

preprocessing and adversarial training strengthen the model’s

resistance to assaults. The trade-off between adversarial resilience

and clean data correctness remains a significant obstacle to

practical implementation. Qadir et al. (2024) introduced ResNet-

Swish-BiLSTM, a hybrid deep learning model for deepfake

detection that shows promise in forensic applications with an

accuracy of 96.23%. Unlike conventional approaches, it focuses

on identifying artifacts across various deepfake modification
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techniques. Future advancements in temporal pattern analysis and

reasoning are necessary since the model has difficulty identifying

temporal irregularities over time. Cunha et al. (2024) used a

hybrid EfficientNet-GRU network and PSO-based hyperparameter

selection to improve deepfake detection, beating traditional search

approaches across several datasets. Combining transfer learning

and reinforcement learning-based PSO increases classification

accuracy and model optimization. However, issues remain in

avoiding early convergence in PSO and guaranteeing resilience

against emerging deepfake-generating methods.

Incorporating many modalities and attention processes

improves the resilience and precision of detection systems.

Confronting practical obstacles, such as elevated compression

rates and the necessity for varied training datasets, is essential for

guaranteeing successful performance in real-world applications.

The continual progress in deepfake detection highlights the

necessity for constant study and innovation to counteract the

spread of altered media and maintain the integrity of digital

information. To resolve the concerns, we provide a deep learning

framework that employs ResNet Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM) networks for

accurate deepfake video detection.

3 Materials and methods

The proposed system for RLNet (ResNet and LSTM) deepfake

detection operates through two primary flows: training and

prediction. Figure 1 shows the architectural diagram of the

proposed system. In the training flow, users upload videos that

will be used to train the deepfake detection model. These videos

undergo preprocessing, where they are split into individual frames.

In some cases, face detection and cropping are performed on these

frames to focus on the regions of interest. The resulting frames are

then divided into training and testing datasets to facilitate model

evaluation. The training data is subsequently loaded into a deep

learning model that combines Long Short-Term Memory (LSTM)

networks and Residual Networks (ResNet).

Figure 1 shows the integral components of a deep learning

pipeline setup, primarily validating the dataset for model training.

LSTM networks are adept at handling sequential data, making

them suitable for video analysis, while ResNet is known for its

robust feature extraction capabilities through residual learning.

Combining these architectures allows the model to classify video

frames as real or fake. In summary, the system efficiently trains

a deep learning model for deepfake detection by preprocessing

videos, dividing data, training the model, and evaluating its

performance. The trained model is then utilized in a prediction

workflow to assess the authenticity of new videos, ensuring robust

and accurate deepfake detection.

3.1 Dataset description

The deepfake detection dataset is designed to aid in developing

and evaluating deep learning models for identifying deepfake

videos, which are artificially manipulated to alter the face or

voice of a person using AI techniques. The dataset comprises

genuine and manipulated videos from a public platform named

Kaggle. It is organized into training and testing directories, with

subdirectories for real and fake videos. Each video is labeled with a

unique identifier and stored in a standardized format (e.g., MP4).

Accompanying the videos is a metadata file containing information

such as video ID, label (real or fake), source, duration, resolution,

frame rate, and creation date. Some videos include frame-level

annotations and bounding boxes indicating faces to aid region-

based analysis. The dataset is intended for training and testing deep

learningmodels, with recommended preprocessing steps, including

face detection, normalization, and data augmentation.

3.2 Preprocessing and model training

Users initiate the deepfake detection process by uploading

videos to the system. This step serves as the entry point for

analysis, allowing the system to receive multimedia content for

scrutiny. Uploaded videos may vary in length and content,

encompassing a diverse range of visual data for assessment.

Upon upload, the video undergoes preprocessing to prepare for

analysis. This involves splitting the video into individual frames,

a crucial step in extracting relevant information for subsequent

analysis. Additionally, preprocessing may include face detection

and cropping to isolate facial regions commonly targeted in

deepfake manipulations. By segmenting the video and focusing on

critical areas, preprocessing lays the groundwork for more accurate

detection. Preprocessed video frames are partitioned into two sets:

training and testing data. The training data instructs the model to

distinguish between authentic and manipulated frames, providing

the foundation for learning. Meanwhile, the testing data remains

segregated to evaluate the model’s performance independently,

ensuring an unbiased assessment of its effectiveness.

3.2.1 Customized ResNet
ResNet plays a crucial role in deepfake detection by extracting

spatial information from individual video frames. Deepfake

videos often contain subtle distortions or inconsistencies, such

as irregularities in lighting, texture, or facial movements, which

may go unnoticed by human observers. ResNet addresses this

challenge by identifying these minor anomalies through its multi-

layered neural network. The architecture’s residual connections also

help overcome the vanishing gradient problem, enabling deeper

networks to learnmore complex features without performance loss.

ResNet generates a feature map for each video frame, highlighting

potential spatial manipulations or abnormalities (He et al., 2019).

ResNet introduces residual learning, which can be mathematically

represented as:

y = F(x, {Wi})+ x (1)

where: x is the input to the residual block. F(x, {Wi}) is the

residual mapping, defined by convolutions, activations, and batch

normalization. {Wi} are the weights of the convolutional filters. y is

the residual block output, combining the original input x and the

result of the residual mapping.
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FIGURE 1

Overview of the proposed system.

In deepfake detection, ResNet processes each video frame and

outputs a feature map for each frame i with dimensions:

fi ∈ R
C×H×W (2)

where: C is the number of feature channels. H and W are the

spatial dimensions.

3.2.2 LSTM video classification
The LSTM generates a classification prediction for the entire

video sequence based on its identified temporal patterns. The

key innovation in this approach lies in integrating both spatial

and temporal feature extraction. ResNet pinpoints frame-level

anomalies, while LSTM detects irregularities in the sequence

of frames, significantly improving the accuracy of deepfake

detection (Yu et al., 2021). This hybrid framework is designed to

generalize across different deepfake generation techniques, making

it applicable in real-world settings where deepfakes are created

using various methods and tools. The combination of ResNet and

LSTM demonstrates superior detection performance compared to

models that rely solely on CNNs or RNNs, positioning it as a

leading solution for deepfake detection. By leveraging both spatial

and temporal data, this system offers a comprehensive approach to

identifying subtle manipulations that other techniques might miss,

enhancing the security and integrity of digital media. The LSTM

unit operates using the following equations (Remesh et al., 2022) at

each timestep t:

ft = σ (Wf [ht−1, xt]+ bf ) (3)

it = σ (Wi[ht−1, xt]+ bi) (4)

C′
t = tanh(WC[ht−1, xt]+ bC) (5)

Ct = ftCt−1 + itC
′
t (6)

ot = σ (Wo[ht−1, xt]+ bo) (7)

ht = ot tanh(Ct) (8)
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Where:

• xt is the input (feature map from ResNet for frame t).

• ht−1 is the hidden state from the previous timestep.

• Ct is the cell state.

• Wf ,Wi,WC ,Wo are weight matrices, and bf , bi, bC, bo
are biases.

LSTM, a Recurrent Neural Network (RNN), is well-suited

for handling time-series data like videos, as it captures temporal

interdependencies between video frames. While ResNet focuses

on identifying spatial abnormalities at the individual frame level,

LSTM detects inconsistencies across multiple frames. Manipulated

videos often exhibit unusual temporal dynamics, such as erratic

eye blinks, mismatched lip movements, or unnatural evolution of

facial expressions over time. By processing the sequence of feature

maps produced by ResNet, the LSTM learns the typical temporal

progression of these frames and flags any deviations from this

normal behavior as potential deepfake content.

3.3 Training and loss function

This study used the cross-entropy loss function to assess

the efficacy of the deepfake detection model. This function

quantifies the divergence between the expected probability and

the actual labels. A reduced cross-entropy loss signifies an

improved model fit, indicating greater accuracy in the model’s

predictions regarding classifying a video as a deepfake. In deepfake

detection, the true labels are binary (1 for deepfake, 0 for

legitimate), whereas the predicted probabilities indicate the model’s

confidence in its classification. The cross-entropy loss accurately

measures the model’s capacity to distinguish between authentic and

altered material, serving as a significant indicator for evaluating

its performance.

For binary classification, the cross-entropy loss

(MEGANATHAN and KRISHNAN, 2023) is defined as:

L = −
1

N

∑

[

yi log(pi)+ (1− yi) log(1− pi)
]

(9)

Where:

• yi is the actual label (1 for deepfake, 0 for authentic).

• pi is the predicted probability.

• N is the total number of samples in the batch.

3.4 Model evaluation

During model evaluation, the trained deepfake detection

model undergoes rigorous scrutiny to assess its performance

and reliability. The cornerstone of this evaluation process is the

confusion matrix. Tabular representation compares the model’s

predictions against the ground truth labels (i.e., whether each

frame is classified as natural or fake) for the testing data set.

The confusion matrix provides detailed insights into the model’s

performance, enabling the calculation of various performance

metrics such as accuracy, precision, recall, and F1-score. Accuracy

measures the overall correctness of the model’s predictions,

while precision quantifies the proportion of accurate optimistic

predictions among all positive predictions made by the model.

Conversely, Recall measures the proportion of correct optimistic

predictions among all actual positive instances in the dataset.

Finally, the F1-score provides a balanced measure of the model’s

precision and recall, offering a single metric to gauge its

effectiveness in detecting deepfakes (Hariprasad et al., 2023).

Upon satisfactory evaluation, the trained deepfake detection model

is exported for future deployment in the prediction flow. This

process ensures that the model and its learned parameters and

configurations can be efficiently utilized for real-time predictions

on new videos. Exporting the trained model makes it readily

available for deployment in various environments and applications,

streamlining the integration process into existing systems or

platforms. Additionally, exporting the model allows for scalability

and reusability, enabling seamless deployment across different

devices or platforms to meet the diverse needs of users. Overall,

the exportation of the trained model marks the culmination of the

training process, transforming it into a practical tool for detecting

deepfakes in real-world scenarios. The following performance

metrics are used:

Accuracy =
TP + TN

Total Samples
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 Score = 2
Precision× Recall

Precision+ Recall
(13)

A confusion matrix is a table commonly used to evaluate

the efficacy of a classification model by contrasting the actual

and predicted classes for a given set of test data. It comprises

four metrics: True Positives (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN). The proposed approach

is evaluated using accuracy, precision, recall, and the F1-

score. The metrics utilized to assess our models are derived

from Equations 10–13. The subsequent Algorithm 1 delineates

the procedure:

3.5 Testing and prediction

The system leverages the pre-trained deepfake detection

model, previously trained on a dataset containing genuine and

manipulated videos. This pre-trained model is equipped with the

knowledge and patterns learned during training, enabling it to

make predictions on new, unseen videos. The prediction begins

by loading the pre-trained model into the system, ensuring it is

ready to analyze incoming video data. A new video is uploaded

for analysis, and the loaded model systematically analyzes the

video frames, scrutinizing them for patterns indicative of deepfake

manipulation. Based on the learned patterns, the model predicts

whether each frame is real or fake. These individual frame

predictions are aggregated to determine the overall authenticity

of the video. Through this prediction flow, the system provides
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Require: Pretrained ResNet-LSTM model f, Input video

sequence X = {x1,x2, . . .,xT}, where xi represents

the i-th frame in the sequence

Ensure: Spatial heatmaps Hs = {h1s,h
2
s, . . .,hTs} for each

frame, Temporal heatmap Ht showing important frame

sequence regions

1: Feature Extraction Using ResNet (Spatial

Analysis):

2: Input each video frame xi into the pretrained

ResNet:

fi = ResNet(xi) (14)

3: Save the gradients of these feature maps using

backpropagation when a deepfake is detected.

4: Forward Pass Through LSTM (Temporal

Analysis):

5: Use the sequence of ResNet feature maps

{f1,f2, . . .,fT} as input to the LSTM:

ot = LSTM(f1,f2, . . .,fT) (15)

6: The LSTM processes these feature maps and captures

temporal dependencies across frames. The output

ot reflects the classification decision for the

entire video sequence.

7: Backward Pass and Gradient Calculation:

8: Compute the backward pass through the LSTM and

ResNet layers to capture the gradients with

respect to the input video frames.

9: For the spatial domain, calculate the gradient

of the classification output with respect to each

frame’s feature map fi:

∇fi =
∂ot

∂fi
(16)

10: For the temporal domain, calculate the gradient

with respect to the feature sequence input to the

LSTM:

∇ot =
∂ot

∂{f1,f2, . . .,fT}
(17)

11: Generate Spatial Heatmaps Hs:

12: For each frame xi, use the gradients ∇fi to

compute a spatial heatmap his:

h
i
s =

C
∑

c=1

|∇fc
i
| (18)

13: Upscale the heatmap his to the original frame

resolution H× W using bilinear interpolation for

better visualization.

14: Generate Temporal Heatmap Ht:

15: Aggregate the temporal relevance information from

the LSTM:

Ht =

T
∑

t=1

|∇ot| (19)

16: The temporal heatmap Ht highlights frames where

the LSTM model identifies significant temporal

inconsistencies or unnatural movements.

17: Normalization of Heatmaps:

18: Normalize both spatial and temporal heatmaps to

lie between 0 and 1:

H
i
s =

His − min(His)

max(His)− min(His)
, Ht =

Ht − min(Ht)

max(Ht)− min(Ht)

(20)

19: Visualization of Heatmaps:

20: Overlay the spatial heatmap His on top of the

original frames xi to visualize which regions of

each frame are most important for the detection.

21: The temporal heatmap Ht is displayed as a time-

series plot, showing the importance of each frame

across the entire video sequence.

22: Return the generated heatmaps: {Hs,Ht,X}

Algorithm 1. Visualization-based interpretability for ResNet-LSTM

deepfake detection.

users with valuable insights into the authenticity of multimedia

content, empowering them to make informed decisions and take

appropriate actions based on the detected presence of deepfakes.

3.6 Model interpretability

Model interpretation is crucial for comprehending the

decision-making processes of deep models. In Deepfake video

detection, the synthetic frames exhibit high realism, rendering

them indistinguishable from the human eye. Therefore, it is

essential to examine the interpretability to comprehend how

our model formulates judgments. Using the deconstructed self-

attention mechanism, we can analyze our model in temporal

and spatial dimensions by displaying the discriminative and

salient regions (Selvaraju et al., 2017). The preprocessed image

is fed to the proposed model, and a grad cam is used for

explainability. Grad-CAM (Gradient-weighted Class Activation

Mapping) is a method employed to show the regions of an image

most significant for a neural network’s classification decision. It

emphasizes the areas that most significantly influence the network’s

decision-making process.

4 Results and discussion

The deepfake detection system involves developing software

modules designed to address specific stages within the training

and prediction flows. The Video Upload Module facilitates the

seamless upload of videos, while the Preprocessing Module extracts

individual frames and converts continuous video streams into

discrete images for analysis. The Data Splitting Module divides

processed frames into training and testing datasets, while the
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Data Loading Module loads training data into the deep learning

model. The Model Training phase leverages LSTM and ResNet

architectures, allowing the model to learn complex patterns and

dependencies. The Model Evaluation Module assesses the model’s

performance using metrics from the confusion matrix. The Model

Export Module saves the validated model for future use. TheModel

Loading Module prepares the pre-trained model for analysis, while

the New Video Upload Module facilitates uploading new videos

for analysis. The Frame Processing Module splits new videos

into frames, and the Prediction Module analyzes each frame to

predict its authenticity. The system’s modular architecture ensures

scalability, adaptability, and ethical considerations, making it an

essential tool for countering deepfake proliferation and digital

information integrity.

In deepfake detection, combining the strengths of

Convolutional Neural Networks (CNNs) like ResNet with

Recurrent Neural Networks (RNNs) such as LSTM offers a robust

solution. This approach leverages ResNet for extracting detailed

spatial features from individual frames and LSTM for capturing

temporal dependencies across video sequences. Utilizing the

dataset, which comprises both natural and manipulated videos,

we evaluated the effectiveness of this hybrid model. During the

experimental setup, frames were extracted from videos, resized,

and normalized. ResNet50, a 50-layer deep residual network

pre-trained on ImageNet, was fine-tuned to extract features from

these frames. The LSTM network then processed these feature

sequences to identify temporal inconsistencies typical of deepfake

videos. The hybrid ResNet50 and LSTM models demonstrated

high performance, as shown in Table 1. This indicates that ResNet

effectively captures spatial artifacts, while LSTM successfully

identifies temporal anomalies, making the combined model highly

effective at distinguishing between real and fake videos. The

results highlight the model’s ability to generalize to unseen data,

suggesting its robustness against various deepfake manipulations.

This success is attributed to the complementary strengths of ResNet

and LSTM, which comprehensively analyze videos’ visual and

temporal aspects.

Figure 2 shows the trained dataset’s training and validation

accuracy graph. While both the training accuracy and validation

accuracy are increasing, the training accuracy is consistently

higher than the validation accuracy. This could be a sign that

the model is starting to overfit on the training data. The graph

suggests that the model learns from the data and improves

performance. However, it is essential to monitor the accuracy of

the validation to avoid overfitting. The training and validation

loss is increasing over time. Figure 3 shows the trained dataset’s

training and validation loss graph. This trend suggests that the

model’s performance worsens as the number of epochs increases,

as shown in Table 2. It shows the hyperparameters utilized in the

deepfake detection model, which includes a ResNet50 backbone

and a two-layer LSTM for sequence modeling. The key parameters

include a 224 × 224 input size, Adam optimizer, Binary Cross-

Entropy loss, and regularization methods such as dropout (0.3)

and L2 weight decay. In an ideal scenario, the training loss and

validation loss would decrease as the number of epochs increases.

This would signify that the model is learning from the training

data and improving performance. An increase in loss indicates

the opposite.

TABLE 1 Performance metrics comparison of di�erent models.

Model Accuracy Precision Recall F1-Score

Proposed

ResNet and

LSTM

95.2% 93.8% 96.0% 94.9%

EfficientNet

and LSTM

92.3% 91.7% 93.0% 92.7%

ResNet and

RNN

91.4% 91.2% 92.5% 92.0%

FIGURE 2

Training and validation accuracy.

FIGURE 3

Training and validation loss.

4.1 Ablation studies

An ablation study is performed to evaluate the contribution

of each component in our model by methodically eliminating or

altering elements of the design. This facilitates comprehension
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TABLE 2 Hyperparameters used in the Deepfake detection model.

Hyperparameter Value

Backbone CNN ResNet50 (Pre-trained on ImageNet)

Sequence model LSTM (2 layers)

Input image size 224× 224

Batch size 32

Learning rate 0.001 (with decay)

Optimizer Adam

Loss function Binary Cross-Entropy (BCE)

Dropout rate 0.3

LSTM hidden units 256

Number of epochs 10

Activation function ReLU (CNN), Tanh (LSTM)

Pooling layer Global Average Pooling (GAP)

Regularization L2 weight decay (0.0001)

Early stopping Patience= 3

TABLE 3 Performance comparison of di�erent ResNet variants with LSTM

for deepfake detection.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

ResNet18+

LSTM

90.8 90.5 91.3 90.9

ResNet34+

LSTM

93.1 92.7 93.5 93.1

ResNet50+

LSTM

(Proposed)

95.2 93.8 96.0 94.9

ResNet101

+ LSTM

94.5 94.0 95.5 94.7

of the influence of various ResNet backbones on performance,

confirming that our suggested ResNet50+ LSTMmodel is themost

efficacious for deepfake detection.

4.1.1 Comparison between di�erent ResNet
pre-trained models

Table 3 and Figure 4 illustrate the performance comparison of

ResNet versions integrated with LSTM for deepfake detection. The

assessment measures include accuracy, precision, recall, and F1-

score. The findings demonstrate that an increase in the depth of

the ResNet backbone correlates with enhancedmodel performance.

The suggested ResNet50 + LSTM model attains an accuracy

of 95.2%, surpassing models based on ResNet18 and ResNet34,

while preserving a balance between computational efficiency and

detection efficacy. The ResNet101 + LSTM model attains an

accuracy of 94.5% but with heightened complexity. This indicates

that ResNet50 effectively balances accuracy and computational

expense, making it the ideal selection for deepfake detection in

this research.

4.1.2 Comparison of ResNet and E�cientNet
CNN

This study on deepfake detection found that ResNet,

particularly its deeper variants like ResNet-50, proved highly

effective for high-resolution video analysis due to several key

advantages in its design and performance. ResNet-50 was shown

to excel in extracting intricate and nuanced features from high-

resolution images due to its depth, which allows hierarchical

representations to be learned effectively. This depth enabled

the capture of complex patterns and textures in high-resolution

frames, making subtle manipulations in video content more

accessible to detect. ResNet’s use of residual connections enhanced

its ability to manage the complexities associated with significant

and high-dimensional data inputs. These connections facilitated

smoother gradient flow during training, mitigating issues such as

vanishing gradients that can hinder the learning process in deep

networks. This robustness is particularly beneficial when dealing

with high-resolution videos’ increased computational demands

and memory requirements. ResNet’s modular architecture was also

noted to support efficient scaling, allowing significant inputs to be

processed more effectively than architectures relying on complex

scaling strategies like EfficientNet’s compound scaling approach.

In practical terms, ResNet’s proven track record across various

computer vision tasks underscores its reliability for deepfake

detection in high-resolution videos.

In contrast, ResNet’s straightforward yet powerful architecture

provides a stable foundation for handling high-resolution video

data’s intricate details and nuances, ensuring robust performance

and accurate deepfake detection. In conclusion, the results

demonstrate that ResNet stands out as a preferred choice for

deepfake detection in scenarios involving high-resolution videos

due to its depth, robust feature extraction capabilities, and efficient

handling of significant inputs. As advancements continue in deep

learning architectures and frameworks, ResNet’s role remains

pivotal in addressing the evolving challenges posed by sophisticated

deepfake techniques in multimedia content analysis. Figure 5

compares ResNet and EfficientNet CNN for the trained dataset to

detect actual and fake videos.

4.1.3 Comparison between LSTM and recurrent
neural network (RNN)

The work on deepfake detection found that Long Short-

Term Memory (LSTM) networks offer several distinct advantages

over traditional Recurrent Neural Networks (RNNs), making

them particularly well-suited for this task. One of the primary

benefits identified was the ability of LSTMs to handle long-term

dependencies effectively. Standard RNNs struggle with learning

long-term dependencies due to the vanishing gradient problem.

Still, LSTMs overcome this issue through their unique cell state

and gating mechanisms, including input, forget, and output gates.

These mechanisms allow LSTMs to retain and utilize information

over long sequences, which is crucial for deepfake detection, where

understanding patterns across numerous frames is necessary.

Another advantage observed was the capability of LSTMs

for selective memory. Unlike RNNs, which lack a mechanism to

remember or forget information selectively, LSTMs can learn which

input parts are essential and need to be remembered or forgotten.

The gating mechanisms facilitate this selective memory, enabling
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FIGURE 4

Comparative analysis of ResNet variants with LSTM.

FIGURE 5

Comparison between ResNet and e�cient CNN.

LSTMs to focus on the critical parts of video frames. This ability

to selectively remember significant features enhances the precision

of deepfake detection by allowing the model to concentrate on

relevant details while ignoring extraneous information.

It was also found that LSTMs exhibit better gradient flow

compared to standard RNNs. In RNNs, issues with gradient

flow during backpropagation through time can lead to vanishing

or exploding gradients, hindering their ability to learn long-

term dependencies effectively. LSTMs mitigate this problem with

their internal structure, which supports better gradient flow and

allows them to learn and adjust weights more effectively over

FIGURE 6

Comparison of the models.

long sequences. This improved learning capability is essential for

tasks like deepfake detection, where capturing subtle temporal

inconsistencies and anomalies in video sequences is necessary.

Figure 6 compares the performance of three deep learning models:

Proposed ResNet and LSTM, EfficientNet and LSTM, and ResNet

and RNN, evaluated across four metrics: Accuracy, Precision,

Recall, and F1-Score. The proposed ResNet and LSTM model

regularly surpasses the other models accuracy, precision, and F1-

score models. EfficientNet and LSTM exhibit strong performance;

however, ResNet and RNN underperform, particularly in Accuracy

and Precision. All models have high Recall scores.
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5 Discussion

Furthermore, the work results indicated that LSTMs are

more accurate in detecting deepfakes due to their ability to

remember important information over extended periods and

robust training mechanisms. Accurately detecting deepfakes

often requires recognizing intricate patterns and inconsistencies

spanning multiple frames. LSTMs’ superior memory retention and

selective focus on key features enable them to perform this task

more precisely than standard RNNs. Lastly, it was found that

LSTMs are more robust to noise compared to RNNs. Standard

RNNs can be more susceptible to noise and irrelevant variations in

the input data, which can degrade their performance. In contrast,

the gating mechanisms in LSTMs help them filter out irrelevant

information and focus on the key features needed to detect

deepfakes accurately.

This robustness to noise ensures that LSTMs can maintain

high performance even when the input data contains variability

and extraneous details. We provide a visualization technique to

improve model transparency by utilizing self-attention processes

derived from transformer blocks. This technique elucidates

how the model identifies deepfake material by producing

temporal and geographical heatmaps that emphasize the focal

regions during detection. The visualization-based interpretability

provides valuable insights, showing where the model focuses

during detection and offering explainable evidence of deepfake

manipulations. The study results demonstrate that LSTMs

significantly improve over standard RNNs in handling long-term

dependencies, selective memory, gradient flow, accuracy, and

robustness. These enhancements make LSTMs more effective for

deepfake detection tasks, enabling them to capture subtle temporal

inconsistencies and anomalies in video sequences with greater

precision and reliability.

The proposed model efficiently integrates LSTM and ResNet

architectures, showcasing its proficiency in reliably detecting

deepfakes and aiding the formulation of powerful remedies against

this widespread problem. The modular architecture guarantees

adaptability and expandability, facilitating seamless integration into

diverse platforms and applications. This approach underscores the

significance of ethical dataset utilization, promoting responsible

advancement and implementation of deepfake detection tools. The

proposed approach establishes a robust basis for future research

in this domain, facilitating the development of more sophisticated

and efficient deepfake detection techniques. The deepfake detection

method serves as an essential instrument for countering the

proliferation of altered media and preserving the integrity of digital

information. Current research in deepfake detection is moving in

many directions to improve accuracy, robustness, and efficiency,

especially concerning ResNet-LSTM-based models. Hybrid deep

learning architectures are being investigated by merging sequence

models like LSTMs and Transformers for temporal analysis

with CNNs like ResNet and EfficientNet for feature extraction.

Furthermore, a substitute for CNN-based feature extraction is

Vision Transformers (ViTs).

Increasingly popular is multimodal deepfake detection, which

enhances detection effectiveness by combining language patterns,

physiological signs like heart rate and eye blinking, and audio-

visual cues. The generalization of models across different

manipulation approaches is still a significant difficulty, which

has led to research into self-supervised learning, meta-learning

techniques, and domain adaptability. One of its drawbacks is

dependence on the caliber and variety of the training dataset.

The model could have trouble generalizing to unseen deepfakes

if the dataset lacks enough variability in deepfake methods

or real-world distortions like occlusions, lighting conditions,

and compression artifacts. Furthermore, real-time detection on

devices with limited resources is difficult because of the increased

computational complexity caused by the combination of ResNet

and LSTM, even while it improves detection by collecting

both spatial and temporal data. The possibility of adversarial

assaults, in which deepfake generators constantly adapt to evade

detection systems, is another drawback. For this to remain

successful, regular model upgrades and retraining with fresh

deepfake variants are required. Furthermore, since it takes a

lot of time and effort to classify deepfake movies manually,

the dependence on labeled datasets poses questions about

scalability. The interpretability of the system is still a problem

since deep learning models sometimes operate as “black boxes,”

making it hard for users to comprehend the reasoning behind

categorization choices.

6 Conclusion

Deepfake video detection using deep learning marks a

significant advancement in protecting the integrity of digital

media. Leveraging advanced neural network architectures like

LSTM and ResNet makes it possible to distinguish between

real and manipulated videos effectively. The proposed system

adopts a comprehensive approach with two main flows: training

and prediction. This involves preprocessing uploaded videos,

splitting them into frames, and using a hybrid deep learning

model to classify them as real or fake. Evaluating the model’s

performance through a confusion matrix ensures its reliability

before deployment in practical applications. Despite the

progress in this field, several challenges remain, highlighting

areas for future research. Enhancing the model’s ability to

generalize across diverse datasets is crucial to ensure effectiveness

against various deepfake techniques. Improving preprocessing

methods, such as adaptive face detection and dynamic frame

analysis, could increase accuracy. Additionally, developing

real-time detection capabilities is essential to meet the rising

demand for immediate verification in live streaming and video

conferencing.

Future research should also explore the integration of

multimodal data, combining audio and visual cues to improve

detection accuracy and interpretability using advanced techniques.

Developing adversarial training methods can improve the

robustness of the model against increasingly sophisticated deep-

fake generation techniques. Establishing standardized benchmarks

and datasets for deepfake detection will facilitate consistent

evaluation and comparison of different models, fostering

collaboration and innovation within the research community.

These efforts will help the field continue to progress, ensuring the

integrity and reliability of digital media in the face of evolving

deepfake technologies.
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