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Editorial on the Research Topic

Natural language processing for recommender systems

Introduction

Recommender systems have become indispensable in the information age, guiding

users through vast datasets and enabling personalized, contextually relevant interactions.

By leveraging user and item similarities through collaborative filtering and content-based

strategies, these systems aim to match user preferences with novel and useful suggestions.

Textual data, rich in meaning, has been key to this progress, with recent advances in

machine learning and NLP making it even more useful. The advent of Large Language

Models (LLMs) has enabled deeper understanding of context and semantics, transforming

how text informs recommendations.

The four articles in this Research Topic show how NLP is used in recommender

systems to solve different challenges and improve modern methods. They highlight how

NLP can enhance systems in areas like data analysis, user satisfaction, skill evaluation and

language translation.

Bhuvaneswari and Varalakshmi propose a novel hybrid framework that

integrates Neural Machine Translation (NMT) and Statistical Machine Translation

(SMT) for improving translation performance in low-resource language pairs,

specifically English-Tamil.

This research aligns with prior studies like Lample et al. (2018) and Qi et al.

(2018) in leveraging monolingual data for low-resource translation. However, unlike these

studies that primarily rely on back-translation, the hybrid NMT-SMT approach optimizes

translation quality by systematically selecting high-quality outputs. The use of beam

search decoding, as supported by Freitag and Al-Onaizan (2017), further enhances the

model’s efficacy.

Compared to Wang et al. (2017), who explored phrase-based SMT and reranking for

higher-resource languages, this paper extends the application to low-resource settings,
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addressing unique challenges like idiomatic expressions and

rare word handling. The integration of SMT ensures better

initialization and incremental improvement, demonstrating

a novel contribution in advancing machine translation for

under-resourced languages.

Dietz et al. present a comprehensive study on data-driven

models for travel destination characterization in recommender

systems. The research addresses the challenge of selecting

data sources and features that best align with the concept

of a “touristic experience,” which lacks a clearly defined

ground truth.

This study complements existing research such as Quercia

et al. (2015), which also explores data-driven models for

urban analytics. Unlike these studies, Dietz et al. focus on

a systematic evaluation of methods using rank agreement

metrics and expert validation, offering a unique perspective

on optimizing recommender systems. Compared to similar

works in content-based recommendation, such as Lops et al.

(2011), this paper emphasizes the integration of textual data

and expert-grounded evaluation, advancing practical applications

in tourism.

Jemal et al. introduce a multi-modal recommender system

designed to predict project manager performance within a

competency-based framework. The research focuses on automating

competency score prediction to address the inefficiencies and biases

inherent in manual assessment.

This work aligns with performance modelling approaches,

such as Thai-Nghe et al. (2010) in education-focused systems,

but extends them to project management with a multi-modal

and NLP-enhanced framework. Unlike existing models such as

Shahhosseini and Sebt (2011), which use fuzzy logic to assign

competencies in construction projects, Jemal et al. incorporate

robust recommendation techniques and NLP embeddings to

enhance prediction accuracy.

The study’s focus on multi-modal data integration sets it

apart from traditional frameworks (e.g., Dainty et al., 2005),

while its use of advanced NLP tools contrasts with simpler

regression-based methods. By addressing cold-start challenges for

new users and competencies, this research makes a significant

contribution to both recommender systems and competency-

based evaluation.

Zhang et al. investigate the effects of feature-based explanations

and output modalities (text vs. voice) on user satisfaction with

service recommender systems.

This study aligns with findings by Tintarev and Masthoff

(2012) and Bilgic and Mooney (2005) on the importance of

explanations for transparency and user trust. However, it diverges

by highlighting the nuanced role of modality, an area less explored

in previous work like that of Herlocker et al. (2000) or Chen and Pu

(2005). Unlike Kouki et al. (2019), who focused on persuasiveness,

Zhang et al. provide empirical evidence on satisfaction variability

by modality and design factors, extending the applicability of

explanations in service domains.

Discussion

These studies share several common themes that

highlight key priorities and methods in using NLP

for recommender systems. First, all emphasize the

importance of context. Whether understanding data,

explaining recommendations or evaluating competencies,

context helps make recommendations more relevant

and useful.

Second, the studies use advanced NLP techniques to analyse

and transform text data. For example, Dietz et al. use ranking

methods, while Bhuvaneswari and Varalakshmi rely on hybrid

training models. These approaches show how NLP not only

supports but also drives solutions for specific challenges, delivering

clear performance improvements.

Third, there is a focus on innovation through combining

different methods and data types. Jemal et al. use a multi-

modal framework, while Zhang et al. explore how different

explanation styles affect user satisfaction. These examples show

the growing need for more complex systems that can handle

diverse requirements, which aligns with the trend of using

hybrid models and multi-modal data processing to improve

recommender systems.
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