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Community health outcomes significantly impact older populations’ wellbeing

and quality of life. Traditional analytical methods often struggle to accurately

predict health risks at the community level due to their inability to capture

complex, non-linear relationships among various health determinants. This study

employs a Random Forest Algorithm (RFA) to address this limitation and enhance

the predictivemodeling of community health outcomes. By leveraging ensemble

learning techniques and multi-factor analysis, this study aims to identify and

quantify the relative contributions of key health indicators to risk assessment. The

study begins with comprehensive data collection from diverse health sources,

followed by a systematic preprocessing stage, which includes resolving missing

values, normalizing variables, and encoding categorical features. Using bootstrap

sampling, multiple decision trees were trained on random subsets of health

data, ensuring variability in the model learning. The trees grow to full depth and

aggregate their predictions to enhance the accuracy. An out-of-bag (OOB) error

estimation was applied to refine the model and provide unbiased performance

assessments, ensuring robust generalization to unseen data. The proposed

model e�ectively analyzes key health indicators, ranking the feature importance

to determine the most influential predictors of health risks. Results indicate that

RFA achieves an accuracy rate of 92%, outperforming conventional prediction

methods in terms of precision and recall. These findings underscore the e�cacy

of Random Forest in identifying critical health risk factors, paving the way for

targeted and data-driven public health management strategies and interventions

tailored to older adults.
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predictive analytics, random forest, public health, health risk factors, machine learning,
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1 Introduction

Community health is an important aspect of public health. It identifies issues related to

the wellbeing of the population within a specific geographical area and identifies different

strategies for mitigating risks. Timely and early detection of these problems, especially in

terms of health, can reduce the likelihood of epidemics and provide better planning in the

event of a need or disaster (Pazzaglia et al., 2023). The ability of community health systems

to anticipate andmanage community health risks at an early stage is crucial. This is because

early recognition can prevent disease, reduce healthcare costs, and improve the overall

quality of life (Wulandari et al., 2023). However, predicting a community’s health outcomes
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is a complex task due to the large number of disparate datasets

consisting of demographic information, lifestyle factors, and

environmental conditions. Due to rapid changes in the socio-

economic and health status of the population, the amount of health

data is increasing every day. Due to their diversity and unevenness,

manual methods cannot process these data. Advancements in

machine learning models (MLMs) provide powerful tools to

analyze this data (Amiri et al., 2023) and generate meaningful

reports. This study leverages the capabilities of RFA to improve

community health outcomes and uncovers advanced predictive

models that can lead to better healthmanagement strategies (Suresh

and Herzog, 2024). Traditional methods for predicting community

health outcomes are based on different models, including linear

regression (LR), logistic regression (LogR), and decision trees (DT)

(Joubert and Reid, 2023). These methods are used to analyze

public health data but have significant limitations in terms of

data quality and characteristics. The first is the LR approach,

which uses linear relationships between variables to process data,

but its problem is that it oversimplifies complex interactions in

health data. The second method is LogR, which is useful for

binary outcomes but difficult for multi-class predictions. The third

is DT, which is flexible and has an increased ability to process

data but can lead to overfitting problems and performing poorly

on new and unseen data (Upadhyay et al., 2023). These models

also face challenges when working with high-dimensional data

and become less effective as the number of variables increases.

Overfitting is another major problem that complicates the model

and makes it impossible to generalize to new data. In addition,

traditional models require manual feature selection, which is a

time-consuming process that often misses important interactions

between variables (An et al., 2023).

To address these challenges, MLM offers promising solutions

such as Decision Tree (DT), Support Vector Machine (SVM), and

RFA. This is an ensemble learning technique that builds multiple

decision trees from a single node. It is constructed in such a way that

each tree is designed using a random subset of data with a selected

number of features (Vellela et al., 2023). This approach enables

the capture of complex non-linear relationships between variables,

thereby reducing the risk of overfitting and efficiently handling

high-dimensional data. Unlike conventional models, RFA does not

require manual feature selection, and automatically identifies the

most important features. It also provides information on how

important the feature is in generating insights. The system makes

the model more robust and performs well on both trained and

unseen data usingmultiple trees to interpret themodel’s predictions

(Vieira et al., 2022).

This study analyzed a large and comprehensive health dataset

using RFA. The data in the dataset is collected from various health-

related sources such as hospitals and communities. It includes

a variety of health indicators such as demographic information,

lifestyle factors, and medical history. The initial dataset consists

of errors and anomalies, which are removed using data cleansing

and preprocessing techniques and ensuring that the data is clean

and ready for analysis. This step involves dealing with missing

values, normalizing variables, and coding categorical features. After

preprocessing, the data is divided into training and test sets. The

training dataset was trained using the proposed RFA model, and

the hyperparameters were fine-tuned using cross validation. Once

trained, the model is tested on an invisible test set and predictions

are made using both risky and risk-free classes. The objectives of

this study are as follows:

• Demonstrate the application of RFA in predicting

community health outcomes by analyzing complex and

high-dimensional health datasets. It also highlights how RFA

can be effectively used to capture non-linear relationships

between health indicators.

• Identify key health indicators that influence community health

outcomes and determine feature importance through the RFA.

It provides insights into which variables are most crucial

for predicting health risks, which aids in targeted public

health interventions.

• It provides a comprehensive comparison between RFA

and traditional predictive models such as linear regression,

logistic regression, and decision trees. This shows that RFA

outperforms these traditional models, particularly in handling

multi-class predictions and reducing the risk of overfitting.

The rest of this study is structured as follows. The second part of

the next section provides a detailed literature review and discusses

the current state of predictive analytics in public health. Section

3 describes the data, preprocessing steps, and architecture of the

proposed RFA. It also explains the model’s training and validation

processes. Section 4 explains the results of the study. It includes

a comparison of random forests with other predictive models.

The study summarizes recommendations for future research and

application of public health policy in Section 5.

2 Literature review

The literature on predictive analytics in public health is

extensive and accommodates various machine-learning techniques

that have been applied to improve health outcome predictions.

This section reviews the key studies used in the forecasting of

community health.

2.1 Traditional statistical methods

A study conducted by Zhou et al. (2023) evaluates the

application of logistic regression (LogR) in predicting the incidence

of diabetes within a community. This method uses LogR to model

the probability of diabetes occurrence and considers it as a function

of several predictors, such as age, BMI, and family history. This

shows the capability of LogR to classify individuals as high- or low-

risk. Apart from the benefits of the utilized scheme, it highlighted

the limitations of LogR in handling multi-class predictions and

non-linear relationships among variables. The author pointed out

that LogR assumes that there is a linear relationship between

the predictors and the log odds of the outcome. This property

can lead to oversimplification of the models created to manage

complex health data. Similarly, the research by Dufera et al. (2023)

focuses on the application of linear regression (LR) to quantify the

estimation of obesity rates in various communities. The system

is built on the basic assumption of integration between obesity
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rates and other socio-economic factors such as income, education,

and even exercise amenities. The process entailed estimation of

the linear regression model, which sought to find a straight

line that minimized the sum of the squared errors between the

observed obesity rate and the predicted one. Nonetheless, due

to its simplicity and straightforward interpretability, the study

revealed that the application of LR encounters serious limitations,

meaning that it is not capable of correctly dealing with many

predictor relationships that form complex and non-linear patterns.

This constraint decreases the model’s reliability and feasibility in

a wide variety of practical public health scenarios. Another study

was conducted by Han et al. (2023), where the author aimed at

comparing the discrimination ability of LogR and DTs in terms of

mortality in infectious disease outcomes. It estimates the likelihood

of a surge in relation to environmental and demographic data, while

DTs were used to categorize the areas into risk zones. The authors

also discovered that, as compared to DTRs, DTs gave further

predictions by addressing non-linear associations and interaction

results, though they considered problems such as overfitting, for

instance, in studies with small sample sizes.

2.2 Machine learning approaches

Thanks to the development of machine learning (ML)

technology, better and more effective predictions can be made

about the health of the community. Real-life cardiovascular disease

risk assessment was conducted in a study that used decision trees

(DTs) to predict risk (Katsura et al., 2024). DT is used to divide the

dataset so that the subset aligns with major health issues such as

blood pressure, cholesterol levels, and smoking status. It works by

selecting the best features at each node and minimizing impurities

as measured by metrics such as the Gini index or entropy (Li,

2023). Another study related to community health assessment was

presented, which investigated the use of support vector machines

(SVMs) in predicting cancer outcomes. SVM works by finding the

optimal hyperplane to maximize the gap between the outcomes of

different classes, such as remission or relapse. The scheme works by

converting the data into a higher-dimensional space using a kernel

function that enables the SVM to handle non-linear relationships

between features. Although SVMs achieve high accuracy, the

complexity of themodel and the difficulty of interpreting the results

make them less suitable for public health applications. Similarly,

the article (Alshanbari et al., 2023) analyzes the application of

neural networks (NNs) in predicting mental health disorders and

uses a multi-layered neural network in which each neuron is

equipped with a weighted sum of inputs, followed by a non-

linear activation function. It uses backpropagation techniques in

which the network is iteratively adjusted with weights to minimize

prediction errors. These scenarios capture complex patterns in the

data but require large, computationally intensive datasets, which

limits their application to public health.

2.3 Advanced ensemble methods

Sinha Roy et al. (2023) focused on the application of ensemble

learning techniques and used random forests (RFs) in predicting

chronic diseases. It constructs multiple decision trees based on

random samples of data and then averages their decisions to

produce the output. RFs consist of a bootstrap aggregating

(bagging) process, where each tree is built using a distinct random

sample with replacement. This method shrinks the coefficient

estimates toward zero and thus reduces the variance and improves

the model stability. The study also demonstrates that RFs are more

accurate than single decision trees, especially when dealing with

large datasets. Similarly, a study that has been discussed by Kitson

et al. (2023) argued for the application of Bayesian networks (BNs)

as a tool for assessing public health implications. This process

entails the development of a probabilistic graphical model that

captures the conditional dependencies of the health indicators.

The BNs calculate the probability of the joint distribution of the

variables and apply the probability of Bayes’ theorem to compute

the change in an outcome with evidence. The method allows for

the natural representation of uncertainties through probabilities

but involves structural learning that relies significantly on domain

knowledge. This type of learning has been described in similar

studies (Silva et al., 2023; Ordovas et al., 2023; Salve et al., 2023).

The problems associated with the techniques that have been

discussed in this section, as far as public health predictions are

concerned, have flaws in non-linearity, class labels, and over-fitting,

and they cannot be generalized to new data. In response to the

abovementioned problems, the proposed study employs an RFA

approach. This helps avoid the problem of overfitting by building

several decision trees on a bootstrap sample and then averaging

their outputs. It also enhances generalization to new, unknown

data and the adequacy to capture non-linear ties and multi-class

expectations by consideringmany predictors and their interactions.

Further, RFA predicts the probability of features by determining

how much the performance of the model reduces if feature values

are permutated.

3 Methodology

In this section, an emphasis is placed on how the RFA

can be used for the prediction of community health status. It

provides a description of the data preprocessing techniques, model

building, and assessment. It begins with data collection on various

aspects of community health. Some of these records may include

records concerning the public health and demographics of the area

in question. The information is then preprocessed to eliminate

mistakes and outliers, after which an extensive RFA model is

developed. The dataset is then trained on the model, and the same

is used to classify the data so that it predicts different conditions

of the community health depending on the demographics. Figure 1

shows the process flow of the proposed RFA model.

3.1 Data collection

To make the proposed forecast more accurate and precise, this

study obtains a wide variety of data to increase the accuracy and

precision of the proposed forecast. This includes health metrics,

demographic details, and socio-economic factors. Health metrics

include blood pressure, body mass index (BMI), cholesterol levels,

and sugar levels. All these levels provide a snapshot of individual
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FIGURE 1

Process flow of the proposed RFA model.

health status. Second, there were demographic factors that included

age, sex, ethnicity, and marital status. It provides information on

how the state of health differs from one segment of the population

to another. The third factor is socio-economic factors. Housing

conditions, employment status, education, and income level are

factors that compose a measure of the population and are used

to examine the effect of socio-economic factors on health. Each of

these attributes is of a different type, and all aspects of community

health are investigated to examine them fromdifferent perspectives.

The list of major attributes used in this study is described in Table 1.

The data is collected from a range of sources, which

consist of health surveys, public health records, and socio-

economic databases. Health surveys are conducted by local health

departments and provide detailed health metrics and demographic

information. Public health records provide information about

historical data on health indicators, disease prevalence, and

community health trends. Similarly, socio-economic data is

obtained from national census databases and employment

records. This multi-source approach ensures that the dataset is

comprehensive, reliable, and represents the community’s health

landscape in an effective way. The chosen parameters are selected

because they directly impact health outcomes.

Approximately 1,000 individual records were collected for

this study. This large dataset includes detailed information on

each of the major parameters and is essential for training the

RFA effectively. The volume of the dataset with which the model

is trained enables it to learn complex patterns and interactions

between variables to make accurate predictions. Table 2 shows the

distribution of the data in the dataset.

This detailed data collection process ensures that RFA can

provide accurate and actionable insights into community health

outcomes, which can support effective public health interventions

and strategies. Table 3 shows the key health metrics used in this

study. The mean values provide a general sense of the population’s

health, whereas the standard deviations indicate variability within

the dataset. It also captures the range of the minimum and

maximum values and ensures that the dataset includes both normal

and extreme health conditions.

The demographic information gathered from the participants is

presented in Table 4. These factors include age, sex, and ethnicity.

The age attribute is distributed in such a way that it shows a

well-balanced representation of different age groups with a slight

emphasis on middle-aged individuals. The attribute related to

Gender is evenly distributed, while the ethnicity breakdown reflects

the diversity in the community. These demographic variables

are essential for understanding how health outcomes vary across

different groups.

Another key aspect of the dataset is the socio-economic

indicators. Table 5 outlines the socio-economic data collected

in the study, including income level, education, employment

status, and housing conditions. The data indicates that many

participants fall within the middle-income and higher education

categories. This socio-economic information helps in analyzing

the social determinants of health and their effects on the

community’s wellbeing.

The variables of the dataset are distributed differently in the

dataset. Each attribute has a specific number of values and ranges.

Figure 2 shows the distribution of attributes in the dataset.
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TABLE 1 Process flow of the proposed RFA model.

Attribute Description Type

Blood pressure Measurement of blood

pressure levels

Health metric

BMI Body mass index Health metric

Cholesterol levels Measurement of cholesterol

levels

Health metric

Blood sugar levels Measurement of blood sugar

levels

Health metric

Age Age of the individual Demographic

Gender Gender of the individual Demographic

Ethnicity Ethnic background of the

individual

Demographic

Marital status Marital status of the

individual

Demographic

Income level Annual income of the

individual

Socio-economic

Education level Highest level of education

achieved

Socio-economic

Employment status Current employment status Socio-economic

Housing conditions Quality of housing conditions Socio-economic

TABLE 2 Distribution of data in the dataset.

Parameter Percentage of total

Blood pressure 100%

BMI 100%

Cholesterol levels 100%

Blood sugar levels 100%

Age 100%

Gender 100%

Ethnicity 100%

Marital status 100%

Income level 100%

Education level 100%

Employment status 100%

Housing conditions 100%

Each attribute of the dataset has a relationship with other

attributes of the dataset. Some are directly dependent, and some are

indirectly dependent on each other. Understanding the interactions

between variables is helpful in identifying patterns that affect

overall health outcomes. Key variables, such as Age, BMI, Blood

Pressure, and Income, tend to interact in complex ways, which

reveal potential correlations and associations. For example, an

increase in age often correlates with important risk factors for

chronic diseases, such as higher BMI and blood pressure. Similarly,

lower-income groups typically experience higher health risks due to

limited access to healthcare and healthy living conditions. Figure 3

TABLE 3 Distribution of health data in the dataset.

Health metric Mean
value

Standard
deviation

Min
value

Max
value

Blood pressure

(mmHg)

120/80 130/85 90/60 180/120

BMI 25.4 4.5 18 35

Cholesterol

(mg/dL)

200 30 150 300

Blood sugar

(mg/dL)

90 20 70 140

TABLE 4 Distribution of demographic data in the dataset.

Demographic
attribute

Category Number
of

records

Percentage
of total

Age 18–24 5,000 10%

25–34 10,000 20%

35–44 12,000 24%

45–54 8,000 16%

55–64 7,000 14%

65+ 8,000 16%

Gender Male 25,000 50%

Female 25,000 50%

Ethnicity Caucasian 20,000 40%

African

American

15,000 30%

Hispanic 10,000 20%

Other 5,000 10%

shows the interactions among variables and assists policymakers in

observing the strength and direction of the correlations.

The dataset trends show that income tends to vary significantly

across different age groups in such a way that middle-aged

individuals generally earn more, which is a sign that age plays a

crucial role in income disparity and has a tendency to affect access

to healthcare. Additionally, a clear relationship exists between BMI

and systolic blood pressure, which indicates that individuals with

higher BMI are more likely to experience elevated blood pressure.

Finally, employment status also impacts health. As unemployed

individuals tend to have higher BMI and blood pressure, this shows

the influence of socio-economic factors on overall health. Figure 4

shows the Impact of variables on affording health services.

3.2 Data preprocessing

This phase of the study involves cleaning and preparing the

dataset for the analysis. The collected data may not be complete

for all attributes. It contains missing values, outliers, anomalies,

and normalized and uniform data. This study focuses on key steps

such as handling missing values, data normalization, categorical

encoding, outlier detection, and feature selection. To remove the
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TABLE 5 Distribution of socio-economic data in the dataset.

Socio-
economic
factor

Category Number
of

records

Percentage
of total

Income level <$25,000 12,000 24%

$25,000–$50,000 18,000 36%

$50,000–$75,000 10,000 20%

>$75,000 10,000 20%

Education level High School 15,000 30%

Some College 10,000 20%

Bachelor’s Degree 15,000 30%

Master’s Degree 7,000 14%

Employment status Employed 35,000 70%

Unemployed 10,000 20%

Retired 5,000 10%

Housing conditions Good 30,000 60%

Fair 15,000 30%

Poor 5,000 10%

anomalies, different techniques are used. The first is the handling

of missing values. The value of an attribute is not always available,

or it may not be properly filled. This causes the attribute value to

be missing. To deal with missing data, one common approach is

mean imputation (Bhushan et al., 2024). The equation for mean

imputation is

xi =
∑n

j=1 xj

n
(1)

Where xi is the missing value for a given feature, xj is the

observed value for the same feature in other records, and n is the

number of non-missing values for that feature. In the dataset, there

are missing data for the ‘BMI’ column in 3 records. The mean of

all available “BMI” values is computed, and the missing values are

replaced with that mean. Suppose the available values are 20, 22, 24,

and 26. The imputed value would be

xi =
20 + 22 + 24 + 26

4
= 23 (2)

After filling in the missing data from different records. The

data should be adjusted in a uniform and normalized manner.

To achieve this, Data Normalization is used. In this scheme, data

is scaled to a fixed range, most probably between 0 and 1. The

technique used for normalization is Min–Max scaling (Raza et al.,

2024), which is mathematically represented by

xnorm = x− xmin

xmax − xmin
(3)

Where xnorm is the normalized value, x is the original data

point, xmin is the minimum value in the dataset, and xmax is the

maximum value in the dataset. In the utilized dataset, the income

column ranges from $20,000 to $80,000. For a particular data point

where x = 50,000, the normalized value would be

xnorm = 50, 000− 20, 000

80, 000− 20, 000
= 30, 000

60, 000
= 0.5 (4)

Third, one of the most important features of the dataset is the

encoding of the categorical variables. These ML models use vector

data as input and do not recognize or process categorical data. ML

models work best with numerical data. Some features may be in the

form of texts or categories. These must be encoded before analysis.

To make the dataset fit for ML models, RFA, in this case, encoding

should be performed. This study uses a one-hot encoding approach.

This involves converting categories into binary vectors. Suppose

that the gender variable has two categories, Male and Female. By

using one-hot encoding, it becomes

Gender =
{

(1, 0), if Male

(0, 1), If Female
(5)

If the Gender values are like [Male, Female, Male], it is

encoded as

Gender = [(1, 0) , (0, 1) , (1, 0)] (6)

One of the features to make the dataset clean is the detection

and removal of outliers. Outliers in the data must be handled

carefully, as they are data points that differ significantly from the

rest of the data. These points can skew the analysis or affect the

performance of the ML models. It can be detected using statistical

methods such as the Z-score or Interquartile Range (IQR). Once

identified, a decision must be made to remove or adjust the data.

Some models are sensitive to outliers, while others are robust. The

Z-score for each data point is calculated as

Zi =
xi − µ

σ
(7)

Where Zi is the Z-score for the data point and xi is the value

of the data point, µ is the mean of the data and σ is the standard

deviation of the data given by Equation 8.

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x)2 (8)

Where xi sis the value of the dataset, x is the mean of the

selected value, and N is the total number of values. The Blood

Pressure column has amean of 120mmHg and a standard deviation

of 15 mmHg. For a data point where xi = 150, the Z-score would be

Zi =
150− 120

15
= 2 (9)

As per the previous assumption, a Z-score value above 3 or

below −3 is typically considered an outlier. Feature selection is

another key component in this phase. The dataset contains many

attributes. However, these attributes are not equally important.

Some are more important, whereas others are less important. To

decrease the overall processing power and increase the robustness

of the model, only the most relevant features were selected.
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FIGURE 2

Distribution of the attributes in the dataset used for Community health prediction.

This also reduces the issue of overfitting. Feature selection

techniques help in identifying the most important features, and

methods such as correlation analysis, variance thresholding, and

recursive feature elimination are commonly used. This step helps

in reducing complexity and improving model performance. The

correlation shows the relationship between two variables, and it is

computed as

rxy =
∑

(xi − x)
(

yi − y
)

√

∑

(xi − x)2
∑

(

yi − y
)2

(10)

where rxy is the correlation between variables x and y; xi and yi
are the individual data points of x and y, respectively; and x and

y are the means of x and y, respectively. In the proposed dataset, by

considering income values and

Age = [30, 40, 50, 60, 70] , (11)

Income = [40, 000, 50, 000, 60, 000, 70, 000, 80, 000]

The correlation between “Age” and “Income” can be computed

using the above formula. A result close to 1 indicates a strong

positive correlation. In the end, data transformation techniques,

such as log transformation and polynomial transformation, are

applied to the dataset. These schemes help in improving the

relationships between features. Log is useful when there are

exponential relationships in the data, while a Polynomial helps in

capturing non-linear relationships. Data transformation can lead

to improved model accuracy. Figure 5 shows the preprocessing of

the dataset.

3.3 Random forest algorithm

The dataset of community health is collected and then

preprocessed for the removal of noise, unwanted anomalies,

and errors. It also transforms the dataset into a specified

format such that it can be utilized by an ML Algorithm.

The proposed study uses RFA, which is an ensemble learning

method that combines the predictions of multiple decision

trees to achieve superior performance. The algorithm is divided

into several major steps, which include data sampling, tree

construction, feature selection, aggregation of predictions, and

feature importance evaluation. Each of these steps has a pivotal
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FIGURE 3

Correlation among di�erent attributes of the dataset.

impact on the performance of RFA. These techniques are

described below.

3.3.1 Data sampling
The first step of RFA is to divide the dataset and create multiple

subsets of the original dataset. This is achieved through a process

known as bootstrapping. Each subset of data, also known as a

bootstrap sample, is used to train an individual decision tree. This

process ensures that each tree is trained on a slightly different

dataset so that the overall generalization of the model is improved

and the variance of the model operationally is reduced. To create a

bootstrap sample, the algorithm randomly selects data points from

the original dataset D with replacement. This process continues

until the bootstrap sample has the same number of samples as that

of the original dataset. For instance, if the original dataset contains

patient records with attributes such as age, blood pressure, and

cholesterol levels, each bootstrap sample will contain a random

selection of these records. The result of bootstrap sampling creates

a new dataset D∗
i for each decision tree Ti. Ley says D represents

the original dataset with n samples. The bootstrap sample D∗
i is

generated by random sampling with replacement. For each tree Ti,

the bootstrap sample D∗
i is created as follows:

D∗
i = {

(

xj1, yj1
)

,
(

xj2, yj2
)

, . . . ,
(

xjn, yjn
)

} (12)

where (xji, yji) are randomly selected with replacement from D.

Each bootstrap sample most probably includes approximately 63%

of the original samples in such a way that some samples appear

multiple times and others do not appear at all. This is also used

to reduce overfitting. For the utilized health dataset with 1,000

patient records, a total of 100 bootstrap samples are generated, each

containing 1,000 records. Each of the 100 decision trees is trained

on a different bootstrap sample, which constructs a number of trees;

all trees then combine to create an RF. Table 6 provides sampling

details for the study.

3.3.2 Tree construction
The second step of the proposed algorithm is to construct

individual decision trees using bootstrap samples. These trees are
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FIGURE 4

Impact of variables on a�ording health services.

FIGURE 5

Analysis of the dataset using preprocessing techniques.

built using recursion, in which the data are divided based on

the selected features until a stopping criterion is met. The goal

is to create trees that capture different aspects of the data. Each

decision tree is constructed using respective bootstrap samples. The

process works in such a way that at each node of a tree, a subset

of features is randomly selected, which determines the best split.
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TABLE 6 Bootstrap sampling details.

Sample
number

Data sample size Percentage of
total data

Sample 1 70% of the dataset 70%

Sample 2 70% of the dataset 70%

Sample 3 70% of the dataset 70%

... ... ...

Sample 100 70% of the dataset 70%

F∗ = {}

M = |F|

for each feature fj in F:

for each split point θj of fj:

G(fj, θj) = 1 - Σ(pk2) for k = 1 to K

Gsplit(fj, θj) = (|Dleft|/|D|) ∗

G(Dleft) + (|Dright|/|D|) ∗ G(Dright)

IG(fj, θj) = G(D) - Gsplit(fj, θj)

f∗, θ
∗ = argmax(fj, θj) IG(fj, θj)

F∗ = F∗ ∪ {f∗}

F = F - {f∗}

return F∗

Algorithm 1. Classification of nodes in multiple trees.

This randomness helps reduce the correlation between trees and

enhances model diversity. The techniques used for splitting the

dataset are based on Gini impurity or mean squared error (MSE).

These are used to find the optimal feature and split point. For a

node n in a decision tree, a subset Fi of features is chosen from

the total set F. The Gini impurity for classification is described

mathematically as

Gini(n) = 1−
C

∑

c=1

p(c | n)2 (13)

where p(c| n) is the probability of class c at node n. For regression,

the mean squared error is calculated as follows:

MSE (n) = 1

|Tn|
∑

(x,y)∈Tn

(

y− y
)2

(14)

where y− is the mean target value at node n. Each decision tree

length is dependent on the maximum depth or termination criteria

already defined. The trees are not pruned and retain as much

information as possible. The number of decision trees is 100, with

a maximum depth of 15. A depth of 15 was selected to balance

the model complexity and interpretability. Each tree uses a random

subset of features at each node to determine the splits based on Gini

impurity. Algorithm 1 describes the process of tree construction by

splitting the dataset into multiple trees.

The feature-selection algorithm for RFA (Algorithm 2) works

by iterating each feature and determining the optimal split point

based on the Gini Index. This index is used to measure the

purity of the data in such a way that, in each feature and split,

the algorithm calculates the Information Gain, which depicts the

Initialize:

Predictions = []

RF = random forest

For each tree t in RF:

node = root node of t

While node is not a leaf node:

if fi(x) < θ:

node = left child of node

else:

node = right child of node

End While

Predictions. Append(node. Prediction)

Calculate majority vote:

y_hat = argmaxy(Σ(t=1 to N) I(yt = y))

Return yhat

Algorithm 2. Prediction of health using RFA.

TABLE 7 Random forest hyperparameters.

Hyperparameter Value Description

Number of trees 100 Number of trees in the Random Forest

Max features per split 3 Number of features randomly selected

per split

Bootstrap sample size 70% Percentage of data used for each

bootstrap sample

Minimum samples per

leaf

5 Minimum number of samples

required to be at a leaf node

Maximum tree depth 15 Depth of the trees (trees grow until all

leaves are pure)

improvement in classification. A feature that maximizes gain is

selected. This process is repeated for all features and split points,

and the best features are added to the final set. Table 7 describes the

tree constructions used in this study.

3.3.3 Feature selection
This feature of the study involves the selection of a subset

of features such that each feature is considered a node of the

decision trees. It introduces randomness and helps in reducing

the correlation between trees, which improves model performance

and stability. A random number of features is selected from the

dataset, namely F. Each node of the tree represents the feature as

Fi. where I is the number of features. The size of this subset is

determined based on whether the task is classification or regression.

For classification tasks, subset size is typically calculated using the

following equation:

F =|
√

|F| (15)

The best feature f∗ for splitting is selected based on the

following equation:

f ∗ = argMaxf∈FiCriterion(f ) (16)

where Criterion(f) is the Gini impurity used in the proposed

study. It is used to introduce randomness into the tree-building
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TABLE 8 Features selected from the dataset used in this study.

Feature Importance
score

Selected for
model

Blood pressure High Yes

Income High Yes

Chronic disease status Medium Yes

Age Medium Yes

Education level Low Yes

Housing condition Low No

Employment status Low No

Gender Low No

TABLE 9 Feature subsampling for tree construction.

Tree number Features considered

Tree 1 Blood pressure, income, age

Tree 2 Chronic disease status, income, education level

Tree 3 Blood pressure, age, education level

Tree 100 Income, chronic disease status, blood pressure

process and helps in the reduction of correlation between trees

and improving the overall model performance. By taking only a

subset of features at each node, the proposed RF model captures

a broader range of patterns. In this dataset, within a total of 20

features, RFA selects a random subset of 4 features at each node for

the classification tasks. The feature selection phase should ensure

that the features are not overlooked and that the model remains

effective by capturing different aspects of the data. Table 8 describes

different features selected for this study.

Importance Score reflects howmuch each feature contributes to

reducing impurity and improvingmodel accuracy, and the attribute

Selected for Model indicates whether the feature is included in the

final RF model based on its importance score.

3.3.4 Aggregation of prediction
This phase is related to the combination of outputs of all

decision trees in the RF, which produces the final prediction. Each

decision tree provides a prediction for a given sample in such a

manner that the final prediction is obtained by aggregating these

individual predictions.

ŷ = mode ({T1 (x) ,T2 (x) , . . . ,Tm (x)}) (17)

where Ti(x) is the prediction of the tree Ti for sample x. The

aggregation helps in reducing the variance of the model and

improving overall accuracy. The challenge in this process is the

decision that each tree contributes meaningfully to the final

prediction. If 70 out of 100 decision trees predict class A and 30

predict class B, the final prediction will be class A. Table 9 presents

different trees constructed with tree resampling.

3.3.5 Feature importance evaluation
Feature importance evaluation involves assessing the

contribution of each feature to the model’s predictions. This

step helps in identifying which features are most influential in

predicting health outcomes and can be useful for feature selection

and interpretation. It is calculated by measuring the extent to

which each feature decreases the impurity of nodes across all trees

and reflects the feature’s contribution to improving the model’s

predictions. The step helps in identifying which features are

most influential in predicting health outcomes and can be useful

for feature selection and interpretation. Figure 6 shows various

properties of the proposed model.

The algorithm for the prediction of community health

conditions based on data is depicted below.

Let us consider whether there is a prediction that a patient

has a high risk of developing a chronic disease, based on their

blood pressure, income, age, and education level. Suppose the

input data point comprises different variables with data as blood

pressure of 140 mmHg, income of $50,000, age of 55 years, and

education level of high school. Each tree in the Random Forest

evaluates this input and produces a prediction of either ‘High Risk’

or “Low Risk.” If 80 out of 100 trees predict High Risk, the Random

Forest aggregates these predictions and classifies the patient as

High Risk. This approach reduces the likelihood of overfitting and

improves the model’s overall predictive accuracy. Figure 7 shows

the RF for the proposed study with the prediction of Low Risk and

High Risks.

RFA is a powerful and flexible method for forecasting and

classification using available data. It creates multiple decision trees

with different subsets of data and features and aggregates its

predictions for achieving high accuracy and robustness.

3.4 Model training

After the model is constructed, it should be trained, validated,

and then tested on different data subsets. Hyperparameters, such

as the number of trees, the maximum depth of each tree, and the

number of features to consider at each split, are tuned to optimize

the model performance. After the model is trained, the model is

cross-validated, which evaluates the model during training and

avoids overfitting. The training process iteratively adjusts themodel

parameters, which improves prediction accuracy. Once the model

is trained, it is evaluated using a separate test dataset.

4 Results and discussion

After successful training and testing, the model needs to

be evaluated using different metrics and parameters. It assesses

how well the RFA performs in predicting outcomes related to

community health. The evaluation is ascertained by simulating the

RFA on collected datasets and comparing its predictions against

actual values. The process helps ensure the model’s accuracy,

precision, and overall reliability. It is also helpful for analyzing

errors, testing generalizability, and checking for overfitting. To

overcome this issue, the cross-validation technique is used, which

splits the data into training and testing sets, allowing the model
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FIGURE 6

Properties of the proposed RFA for Community Health.

to be tested multiple times. The simulation scenario focuses

on community health prediction based on socio-economic and

health parameters such as age, blood pressure, income, housing

conditions, and employment status. The model was simulated

in a controlled environment with varying levels of missing data,

training sizes, and trees in the forest. Each simulation replicates

a real-world scenario in which incomplete or noisy data are often

encountered in health applications. The simulation environment is

depicted in Table 10.

The RFA model designed in the proposed study describes

the architecture of processes and methodologies used to validate

and evaluate the proposed RFA model. The model is designed

to optimize the performance and accuracy of predictions in the

community health study. It consisted of 100 decision trees such

that each tree was constructed using a bootstrapped sample of

the data. This method allows for the creation of multiple diverse

trees that collectively improve overall prediction accuracy. The

maximum depth for each tree is limited to 15 meters, which is

used to ensure a balance between complexity and efficiency. This

will avoid overfitting while capturing the underlying patterns of the

data. The simulation parameters used in this study are depicted in

Table 11.

Different performance metrics are used to evaluate the

performance. The performance metrics are described as follows.

The first and most important factor is the determination of the

number of correct and incorrect predictions. These values were

gauged using four main techniques: true positive, true negative,

false positive, and false negative. True positives are values that

occur when the predicted label matches the actual label model and

correctly identifies an instance. Conversely, a True Negative occurs

when the model nullifies the condition, i.e., both the predicted and

actual labels are negative. On the other hand, a False Positive, also

known as a Type I error, arises when the model incorrectly predicts

the positivity of an instance and generates a false alarm. Finally, a

False Negative (Type II error) occurred when the model failed to

detect a condition that was present. By testing the proposed model,

different values of these performance metrics are measured, which

are depicted in Table 12.

A total of 1,000 records are analyzed using the proposed RFA

for the community health study. The details showed that the model

yielded 480 true positives and 450 true negatives, which indicates

a high degree of accuracy in correctly classifying positive and

negative outcomes. The false positives are 30 cases, and the false

negatives are 40 cases, which are fewer in number and showcase the

proposed method’s ability to minimize misclassification. Figure 8

shows the confusion matrix for the proposed study.

Another important aspect of the performance of the proposed

study is the Receiver Operating Characteristic (ROC). It graphically
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FIGURE 7

The Proposed RFA for the Community Health Predictions.

TABLE 10 Simulation environment of the proposed model.

Component Description Details

Simulation

platform

The platform used for

running the simulations

Jupyter Notebook

Operating system The OS used for running

the simulation

Windows 10

Programming

language

The language used for

coding the simulation

Python 3.10

Execution time Time taken for the

simulation to run

∼15 min

Random seed Seed to ensure the

reproducibility of results

Fixed Seed (e.g., 42)

Development IDE Integrated Development

Environment (IDE)

Jupyter Notebook

Software libraries Libraries used in the

simulation

Scikit-learn, pandas,

seaborn, matplotlib

Cross-validation Number of folds used in

cross-validation

10-fold cross-validation

represents the classification performance of a model by plotting the

True Positive Rate (TPR) (also called Sensitivity or Recall) against

the False Positive Rate (FPR) at various threshold settings.

TPR = TP

TP + FN
= 480

480 + 40
= 0.923 (18)

FPR = FP

FP + FN
= 30

30 + 450
= 0.062 (19)

Where TP is true positive, FP is false positive, and FN is false

negative. The ROC curve displays the trade-off between TPR and

FPR for different classification thresholds. A high TPR with a low

FPR represents good performance in forecasting and vice versa.

Figure 9 shows the ROC curves of this study.

To compare the performance of the proposed model with

other state-of-the-art models, it is compared with a Decision Tree

(DT), Support VectorMachine (SVM), andNeural Networks (NN).

The metrics used to compare these models with the proposed

model are Accuracy, Precision, Recall, F1-score, and log. The first

and most important performance metric is Accuracy. The term

accuracy refers to the degree of correctness achieved by a model.

Mathematically, this is expressed using the following equation:

Accuracy = TP + TN

TP + FP + TN + FN
(20)

Where TP denotes true positive values, FP shows False

positives, TN is true negatives, and FN is False negatives. A high

accuracy of a model depicts that the model has high capability

in predicting true cases. It means that the RFA is effectively

identifying the correct outcomes of community health, which

include healthcare access and resource allocation. Figure 10 shows

the accuracy metrics of the proposed study.

The second indicator that demonstrates the performance of the

model is precision. Precision is defined as the percentage of true

positive predictions in a set of positive predictions. It is calculated

using the following equation:

Precision = TP

(TP + FP)
(21)
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TABLE 11 RFA model environment.

Parameter Description Value/method

Number of trees Total number of decision

trees in the Random Forest

100

Max depth Maximum depth of each

decision tree

15

Bootstrap sampling Random samples with

replacement to create

different training subsets

Enabled

Split criteria Criterion to evaluate the split

points in each tree

Gini Index

Feature subset size Number of features randomly

selected for node splitting in

each tree

√
(Number of

Features)

Training data size Proportion of the dataset used

for training the model

80% of the dataset

Testing data size Proportion of the dataset used

for testing the model

20% of the dataset

Cross-validation Number of folds used in

cross-validation to evaluate

model performance

10-fold

cross-validation

Random seed Seed to ensure the

reproducibility of results

Fixed Seed (e.g., 42)

TABLE 12 Total number of instances identified as TP, TN, FP, and FN.

Metric Value

True Positives (TP) 480

True Negatives (TN) 450

False Positives (FP) 30

False Negatives (FN) 40

Total Records 1,000

FIGURE 8

Confusion matrix of the proposed model.

A high value of precision depicts that when the model predicts

a forecast, the model is most probably correct. It shows the model

is performing better in identifying community health-related issues

FIGURE 9

ROC curve for the proposed model.

and persons who are infected. Figure 11 shows a precision analysis

of the different models.

The trend of the graph shows that the model begins and

shows improvement over time compared to the other models.

This is also a sign that the proposed model is more effective

in the accurate prediction of healthcare-related outcomes, with

a precision of approximately 0.90 by the 20th epoch. The third

performance metric is Recall, which is also called sensitivity. It is

used to determine the capability of the models to define the correct

cases. It is calculated mathematically as the ratio of true positives

to the sum of true positives and false negatives, as shown in the

equation below:

Recall = Tp

TP + FN
(22)

A high degree of recall indicates that the model is successful

in identifying the positive cases. This minimizes the chance of

missing cases and confirms that most individuals with a disease are

correctly identified. The recall value measured from the said study

is compared with other models and is demonstrated in Figure 12.

The fourth performance metric is the use of the F1 score. This

metric is used to define the balance that exists between precision

and recall. Mathematically, this can be illustrated as follows.

F1 Score = 2 X
Prec X Recall

Prec + Recall
(23)

This indicator is useful for balancing the trade-off between

precision and recall. Figure 13 shows the F1-score computed for the

accuracy and precision of the different models.

The last performance metric is the Logarithmic Loss (Log-

Loss) function. This is used to measure the performance of a

model whose output is based on a probability value. It defines

the aberration between the total predicted probabilities and the

actual binary outcomes. Mathematically, it is calculated using the
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FIGURE 10

Accuracy of di�erent ML Models in predicting community health.

FIGURE 11

Analysis of community health in terms of precision.

following equation:

Log − Loss = − 1

N

N
∑

i=1

[yi log(pi)+ (1− yi) log(1− pi)] (24)

where n is the number of data points. yi shows the actual label of

the ith data point in such a way that yi ε{0,1} while pi demonstrates

the predicted probability of the ith data point. This is due to more

accurate probability predictions and vice versa. Figure 14 shows the

log-loss function of the RFA model.

The evaluation of the RFA model shows that it has a significant

impact on the prediction of various factors of community health

by constructing and defining thresholds for a collection of decision

trees. The proposed model effectively analyzes and predicts key

health indicators, which include disease prevalence, resource

allocation, and patient outcomes. It can identify patterns and trends

in health data, which leads to more accurate forecasts of disease

outbreaks and better management of healthcare resources. This

predictive capability is also important for implementing timely

interventions and optimizing healthcare strategies. The results of

the simulation study show that the number of epochs is directly

proportional to the degree of correct predictions by the RFAModel.

This is because model training enhances the model’s capability

to predict more accurate results in the forecasting conditions of

community health. The improvement in the quality of the model

affects the prediction capability, which results in better decision-

making and community health outcomes. Figure 15 shows the

impact of the RDA on community health.
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FIGURE 12

Comparison of recall among various prediction models.

FIGURE 13

F1 score analysis in terms of di�erent ML models.

5 Conclusion

This study investigated the impact of MLM, specifically

RFA, on forecasting the conditions of community health by

analyzing various health factors such as disease prevalence,

resource allocation, patient outcomes, and risk prediction. This

study collected data from sources related to community health.

The collected data is then transformed into a uniform format and

preprocessed by removing errors and anomalies. Subsequently, it

was trained using a portion of the dataset. The training process is

divided into different epochs. After training, the model is tested

to forecast the status of community health. The performance

of the proposed model is assessed by comparing it with other

algorithms, such as Decision Trees (DT), Support Vector Machines

(SVM), and Neural Networks (NN). The results show that the

proposed MLM Model performs better than its predecessors in

multiple metrics, which include accuracy, precision, recall, F1-

score, and the log-loss function. This shows the high capability

of RFA to handle complex interactions between features and

its robustness against overfitting. This also shows the potential

of ML techniques to make informed decisions in community

health management and disease prevention. Future studies should

focus on combining RFA with other ML techniques, such as

deep learning models or ensemble methods, which could offer

improved accuracy and robustness in the prediction of community

health status.
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FIGURE 14

Analysis of Log-Loss metric for di�erent models of community health.

FIGURE 15

E�ects of the model on di�erent community health indicators.
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