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Introduction: Internet-based economies and societies are drowning in
deceptive attacks. These attacks take many forms, such as fake news, phishing,
and job scams, which we call “domains of deception.” Machine learning and
natural language processing researchers have been attempting to ameliorate
this precarious situation by designing domain-specific detectors. Only a few
recent works have considered domain-independent deception. We collect these
disparate threads of research and investigate domain-independent deception.
Methods: First, we provide a new computational definition of deception and
break down deception into a new taxonomy. Then, we briefly mention the debate
on linguistic cues for deception. We build a new comprehensive real-world
dataset for studying deception. We investigate common linguistic features for
deception using both classical and deep learning models in a variety of situations
including cross-domain experiments.
Results: We find common linguistic cues for deception and give significant
evidence for knowledge transfer across different forms of deception.
Discussion: We list several directions for future work based on our results.

KEYWORDS

automatic/computational deception detection, cross-domain, domain-independent,
email/message scams, fake news, meta-analysis, opinion spam, phishing

1 Introduction

History is replete with famous lies and deceptions. Examples include P. T. Barnum,
Nicolo Machiavelli, Sun Tzu, Operation Mincemeat, and the Trojan Horse (Levine, 2014).
A chronology of deception is included in Levine (2014). More recently, the proliferation of
deceptive attacks such as fake news, phishing, and disinformation is rapidly eroding trust
in Internet-dependent societies. The situation has deteriorated so much that 45% of the US
population believes the 2020 US election was stolen.1

Social media platforms have come under severe scrutiny regarding how they
police content. Facebook and Google are partnering with independent fact-checking
organizations that typically employ manual fact-checkers.

Natural-language processing (NLP) and machine learning (ML) researchers
have joined the fight by designing fake news, phishing, and other kinds of
domain-specific detectors.

Building single-domain detectors may be sub-optimal. Composing them sequentially
requires more time, and composing them in parallel requires more hardware. Moreover,
building single-domain detectors means one can only react to new forms of deception after
they emerge.

1 https://www.surveymonkey.com/curiosity/axios-january-6-revisited
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Our goal here is to spur research on domain-independent
deception. Unfortunately, research in this area is currently
hampered by the lack of computational definitions and taxonomy,
high-quality datasets, and systematic approaches to domain-
independent deception detection. Thus, the results are neither
generalizable nor reliable, leading to much confusion.

Accordingly, we make the following contributions:

• We propose a new computational definition and a new
comprehensive taxonomy of deception. (We use the
unqualified term “deception” for the domain-independent
case. When the goals of the deception are unclear, we refer
to “lies”).

• We examine the debate on linguistic deception detection,
identify works that demonstrate the challenges that must
be overcome to develop domain-independent deception
detectors, and examine them critically.

• We conduct linguistic analysis of several detection datasets for
general cues and find several statistically significant ones.

• We conduct deep learning experiments of deception sets and
study correlations in performance for pairs of datasets.

This article is organized as follows: Section 2 presents a new
definition of deception. Section 3 introduces our new taxonomy.
Section 4 summarizes related work. Sections 5 and 6 describe our
experiments, results, and analysis of domain-independent markers
for deception. Cross-domain detection results are in Section 7.
Finally, Section 8 presents some conclusions and directions for
the future. The appendices provide the list of features tested
and some preliminary significance testing of cues on four public
deception datasets.

2 Definition

We first examine a general definition of deception, taken
from Galasinski (2000), intended to capture a wide variety of
deceptive situations and attacks.

Definition 1 (Preliminary). Deception is an intentional act of
manipulation to gain compliance. Thus, it has at least one source,
one target, and one goal. The source is intentionally manipulating
the target into beliefs, or actions, or both, intended to achieve
the goals.

Since we are interested in automatic verifiability, we would
like to modify this definition of deception and propose one that
is computationally feasible. Because intentions are notoriously
hard to establish, we will use the effect of exposing the
manipulation/goals instead.

Our revised definition is the following:

Definition 2 (Deception). Deception is an act of manipulation
designed to gain compliance such that, exposing the manipulation
or the goal(s) of compliance significantly decreases the chance of
compliance. Thus, it has at least one source, one target, and one
goal. The source is manipulating the target into beliefs, or action,
or both, intended to achieve the goals.

One might argue that the goals of deception should be harmful
to an individual or organization. However, this would necessitate

either a computational definition of harm or a comprehensive list
of potential harms, which could be checked computationally and is,
therefore, a less desirable alternative.

To formalize our definition, we borrow from the language
of Markov decision processes. Let A be an action taken by
an actor, and let C be a desired compliance state. We use
K(A, T) to denote the action A plus the full and truthful
explanation of the actor’s relevant private information to target
T. We formalize (computational) deception using conditional
probabilities as follows:

Definition 3 (Computational Deception—Formalized). An action
A deceives target T if

P(C | K(A, T)) < P(C | A).

Moreover, we can quantify the degree to which A is deceptive
by the amount θ , where 0 ≤ θ ≤ 1.

Definition 4 (Computational Deception—Quantified). An action
A θ-deceives target T if

P(C | K(A, T)) ≤ P(C | A) − θ .

In practice, practitioners can apply this by exposing the
manipulation and/or goals and measuring the change in
compliance rates. For example, a Florida woman recently
sued Kraft alleging that the “ready in 3 1

2 min” on the label of their
microwavable Velveeta Shells & Cheese is deceptive. To determine
whether the claim is, in fact, deceptive, a researcher could present
the product by itself to one group of random consumers and the
product with an explanation that the 3 1

2 min does not include
the time to add water to another group. If there is a statistically
significant decrease in purchases (which is the desired compliance)
for the group with the explanation, then the claim is deceptive.

There is some work on finding out how good humans
are at detecting certain kinds of deceptive attacks. For the
detection capabilities of automatic detectors on specific domains of
deception, one can look at surveys on fake news detection (Sharma
et al., 2019; Zhou et al., 2019, 2020) and phishing detection (Das
et al., 2020).

3 Taxonomy and examples

In this section, we give a new taxonomy for deception and
some examples to illustrate it. Note that this taxonomy is intended
to be comprehensive and capture all nuances of deception, which
means also the legal aspects when the source of the deception is
being charged with a crime for example. Hence, this taxonomy
will take into account the intent of the source in contrast with the
above section.

There have been a few attempts at constructing taxonomies
for fake news, phishing, or other forms of deception. Molina
et al. (2021) give a taxonomy of fake news with four dimensions:
message and linguistic, sources and intentions, structural, and
network. Kapantai et al. (2021) conducted a systematic search for
papers proposing taxonomies for disinformation and synthesized
a taxonomy with three dimensions: factuality, motivation,
and verifiability.
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FIGURE 1

Proposed deception taxonomy—the full manipulation (or stratagem) and motivation subtrees are not shown.

No one, to our knowledge, has given a comprehensive
taxonomy of real-world deception.

3.1 The new taxonomy

We put forward a multi-dimensional taxonomy (Figure 1).
Under our definition, deception explicitly involves four elements:
(1) agents: the sources, and the targets; (2) stratagems for
manipulation; (3) goals; and (4) threat/mechanisms of exposure.
These explicit elements can be further broken down as follows:

1) Agents. Rowe (2006) calls this category “participant,” and he
further elaborates this into: (a) agent, who initiates the action,
(b) beneficiary, who benefits, (c) object, what the action is
done to, and (d) recipient, who receives the action. Rowe also
includes experiencer (“who senses the action”) and instrument
(“what helps accomplish the action”) components in this
category, but we include them in the Channel category below.

1a) Sources. This includes human (individual or group), bot, etc.,
or mixed, in other words, combinations such as a human
assisted by a bot. This Sources category includes initiators and
beneficiaries.

1b) Targets. This includes humans (individual or group),
automatic detectors, or both. For example, spam targets
automatic detectors, and phishing targets humans, but needs
to fool automatic detectors also. This Targets category includes
the objects and the recipients.

2) Stratagems. The stratagem subtree in the taxonomy includes
two sub-taxonomies for persuasion and action, which we
discuss below. We believe that persuasion is fundamental to
deception since its goal is to change the reasoning of the
target(s), with the deception’s end goal of compliance. The
action taxonomy is adapted from Rowe (2006). It includes
space, time, causality, quality, essence, and speech-act theory,

which specifies the external and internal preconditions for the
action. The persuasion taxonomy combines Cialdini (2006)
and Da San Martino et al. (2023).

3) Goals.
3a) Harmless: satire, parody, satisfying participation, as in a

laboratory experiment where participants may be asked to
lie, etc.

3b) Harmful. This includes a wide range of objectives, such as
stealing money or identity information, malware installation,
manipulation of votes, planting fear, sowing confusion,
initiating chaos, gaining an unfair edge in a competition (e.g.,
swaying opinions and preferences on products), persuading
people to take harmful actions, winning competitions/games,
etc. We avoid the terms defensive and offensive since they are
dependent on the perspective of the participants/agents.

4) Exposure.
4a) Facticity. Can we establish whether it is factual or not? For

example, currently, we are unable to establish the truth or
falsity of utterances such as, “There are multiple universes in
existence right now.”

4b) Verifiability. Assuming facticity, how easy or difficult it is
to verify whether it is legitimate or deceptive? Here, we are
interested in machine or automatic verification. If a simple
machine-learning algorithm can detect it with high recall and
precision, we will deem it easy.

In addition, there are four implicit concepts in the taxonomy:
(1) motivations behind the goals; (2) communication channels or
media; (3) modality of deception; and (4) manner or timeliness of
the exchange.

1) Motivation. This is the rationale for the goals. The agents
involved and their characteristics reveal the underlying
motivations, which could be political hegemony (nation-
states), religious domination, revenge (disgruntled employee),
ideological gains, money, control, power, etc.
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2) Channel. This dimension includes two aspects:
2a) Breadth: Whether the targets are a few specific individuals

or detector types or broad classes of people/categories of
detectors.

2b) Media. How the deceptive capsule is conveyed to the
target. Media also includes the experiencer and instrument
components of Rowe (2006).

3) Modality. This dimension refers to the presentation of
deceptive content. It includes:

3a) Unimodal. This includes only one type of modality such as
(a) gestural (i.e., body language is used to deceive), (b) audio
(a.k.a. verbal), (c) textual (e.g., SMS/email), and (d) visual (e.g.,
images or videos).

3b) Multimodal: combinations of different modalities. For
example, audio-visual has both speech and visual components
but lacks face-to-face communication in which gestures could
facilitate deception.

4) Manner/Timeliness.
4a) Interactive/synchronous. A real-time interview or debate is an

interactive scenario.
4b) Non-interactive/asynchronous. An Amazon Mechanical

Turker typing a deceptive opinion or essay is a non-interactive
one. An asynchronous interaction can have multiple stages or
steps some (but not all) of which may be synchronous.

3.1.1 Stratagems
Rowe’s (2006) approach is based on linguistics. He states,

“Each action has associated concepts that help particularize it,
and these are conveyed in language by modifiers, prepositional
phrases, participial phrases, relative clauses, infinitives, and
other constructs.” These associated concepts are called “semantic
cases” (Fillmore, 1968) in analogy to the syntactic cases that occur
in some languages for nouns. Rowe claims that “every deception
action can be categorized by an associated semantic case or set
of cases.” However, there is no canonical list of semantic cases in
linguistics. Rowe prefers the detailed list from Copeck et al. (1992),
which he supplements with two important relationships from
artificial intelligence, the upward type-supertype and upward part-
whole links, and two speech-act conditions from Austin (1975), to
get 32 cases altogether. However, since we include his “participant”
category in the Agents and Channel categories, we have only 26
subcategories in the Stratagems category.

1. Space, which consists of: (a) direction, of the action, (b)
location-at, where something occurred, (c) location-from, where
something started, (d) location-to, where something finished, (e)
location-through, where some action passed through, and (f)
orientation, in some space.

2. Time, which is subdivided into: (a) frequency of occurrence of
repeated action, (b) time-at, time at which something occurred,
(c) time-from, the time at which something started, (d) time-to,
the time at which something ended, and (e) time-through, the
time through which something occurred.

3. Causality, which consists of: (a) cause, (b) contradiction, what
this action opposes if anything, (c) effect, and (d) purpose.

4. Quality, which is sub-divided into: (a) accompaniment, an
additional object associated with the action, (b) content, what is

TABLE 1 Persuasion taxonomy, adapted from Da San Martino et al.
(2023), is a sub-taxonomy in the deception taxonomy.

Category Description

Justification An argument made of two parts: a statement
and a justification

Simplification A statement is made that excessively
simplifies a problem, usually regarding the
cause, the consequence or the existence of
choices

Distraction A statement is made that changes the focus
away from the main topic or argument

Call The text is not an argument but an
encouragement to act or think in a particular
way

Manipulative wording/images Specific language/imagery is used or a
statement is made that is not an argument,
and which contains words/phrases that are
either non-neutral, confusing, exaggerating,
etc., to impact the reader, for instance
emotionally

Attack on reputation An argument whose object is not the topic of
the conversation, but the personality of a
participant, his experience and deeds,
typically to question and/or undermine his
credibility

contained by the action object, (c) manner, the way in which the
action is done, (d) material, the atomic units out of which the
action is composed, (e) measure, the measurement associated
with the action, (f) order, with respect to other actions, and (g)
value, the data transmitted by the action (the software sense of
the term).

5. Essence, which consists of: (a) supertype, a generalization of the
action type, and (b) whole, of which the action is a part.

6. Speech-act theory, which is sub-divided into: (a) an external
precondition on the action and (b) an internal precondition on
the ability of the agent to perform the action.

3.1.2 Persuasion
We summarize the persuasion taxonomy in Table 1. For

this taxonomy, we adapt the SemEval 2023 Persuasion Task’s
categories (Da San Martino et al., 2023), and Cialdini’s (Cialdini,
2006) persuasion principles, which are essentially persuasion
techniques or strategies. The persuasion strategies taxonomy
of Guerini et al. (2007) is orthogonal to this taxonomy since their
definition of persuasion is broader than ours, but we do include
their specific strategies under techniques.

The techniques used for each category are as follows (30 in
total):

• Justification: appeal to popularity, appeal to authority/expert,
appeal to values [or commitment (Cialdini, 2006)], appeal
to fear/prejudice, reciprocity (Cialdini, 2006) [or goal
balance (Guerini et al., 2007)], scarcity (Cialdini, 2006),
reward, appeal to relevant empirical evidence, relevant
statistics, and relevant examples.
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• Simplification: causal oversimplification, false dilemma or no
choice, and consequential oversimplification.

• Distraction: straw man, red herring (includes irrelevant
empirical evidence, statistics or examples), whataboutism, flag
waving, and liking (Cialdini, 2006).

• Call: slogans, social proof (Cialdini, 2006), appeal to time, and
conversation killer.

• Manipulative wording/images: loaded language/images,
repetition, exaggeration or minimization, and
obfuscation—vagueness or confusion.

• Attack on reputation: name calling or labeling, doubt, guilt by
association, appeal to hypocrisy, questioning the reputation.

To the best of our knowledge, we are the first to give detailed
taxonomies for persuasion and strategem in this context and we
are the first to use the following dimensions in a taxonomy of
deception: target, persuasion, goal, dissemination, and timeliness.
We add these to give a comprehensive view of deception, to
aid in domain-independent deception detection, and to clarify
and classify deception in all its different manifestations. Such a
comprehensive taxonomy will provide a solid foundation on which
to build automatic and semi-automatic detection methods and
training programs for the targets of deception.

3.2 Examples

To demonstrate the applicability of this taxonomy, we give
three examples. More discussion of stratagems and examples of
cyber deception can be found in Rowe (2006).

Phishing is when attackers pretend to be from reputable
companies to trick victims into revealing personal information.
The agents are the attackers as initiators and the targets are the
Internet/email users. The harmful goals include information or
malware installation. Establishing facticity is difficult if the attacker
is determined. The medium is the Internet/email. The breadth is
high for phishing and narrower for spear phishing. The modality is
text for phishing and audio for vishing. Images may also be used
in phishing emails. The manner is non-interactive for phishing
and interactive for vishing. Deliberate falsification and persuasion
techniques such as authority, social proof, and reward or loss claims
are employed in the stratagem.

Fake news is manufactured and misleading information
presented as news. Here, the harmful goals include swaying
opinion, sowing unrest, and division. The sources could be
individuals, organizations, or nation-states. The breadth could vary
depending on how deep-pocketed and determined the source(s)
is (are). The modality could be text, audio, images, or video.
The manner is asynchronous. Fake news could employ a range
of techniques in the action component of the stratagem: from
deliberate falsification to evasion and the persuasion component
could include authority, social proof, etc.

Fake reviews are reviews designed to give consumers a false
impression of a product or business. The harmful goal is to
convince consumers to buy their product or avoid a competitor.
The sources could be humans, bots, or their combinations. The
targets are potential customers as well as the platform’s fake review

detector. The breadth is thus a broad range of people. While most
fake reviews use only texts, deliberate attacks could be multi-modal,
adding visuals and/or audio. Falsification and social proof are the
main stratagems. Facticity and verifiability could vary depending
on the stratagems used. The manner is asynchronous.

4 Related work

Deception has a vast social science literature. Hence, we focus
on the most closely related work on computational deception,
which can be categorized into taxonomies, datasets, detection,
and literature reviews. Of the latter, we focus here on reviews of
linguistic deception detection. The DBLP2 query “domain decepti”3

gave 43 matches of which 21 were deemed relevant.

Remark 1. Unfortunately, previous researchers have generally left
the term “domain” undefined. In Glenski et al. (2020), different
social networks, such as Twitter and Reddit, are referred to
as domains. Hence, terms such as “cross-domain deception” in
previous work could mean that the topics of essays or reviews are
varied whereas the goals could stay pretty much the same.

4.1 Taxonomies

Whaley and Aykroyd (2007) gave a taxonomy of perception
in which deception was defined succinctly as “other-induced
misperception.” The full definition given in Whaley and Aykroyd
(2007) is: “Any attempt—by words or actions—intended to distort
another person’s or group’s perception of reality.” In Bell and
Whaley (2017), two groups were introduced as essential for
deception: simulation (overt, showing the false) and dissimulation
(covert, hiding what is real). They introduced three simulation
techniques: mimicking, inventing, and decoying, and three
dissimulation techniques: masking, repackaging, and dazzling.

Dunnigan and Nofi (2001) gave a taxonomy of deception
in the military context. This included concealment, camouflage,
disinformation, lies, displays, ruses, demonstrations, feints,
and insight.

The most comprehensive previous taxonomy of deception, to
our knowledge, is proposed in Rowe (2006). It is inspired by
linguistic case theory and includes 32 cases which are grouped into
seven categories: space (six cases), time (five cases), participant (six
cases), causality (four cases), quality (seven cases), essence (two
cases), speech-act theory (two cases). Analyzing this taxonomy, we
find that, except for the participant category, all the other categories
fit neatly into the stratagems class for deception in our taxonomy.

More recently, a few researchers have proposed
more specialized taxonomies for what they call defensive
deception (Oluoha et al., 2021; Pawlick et al., 2019; Pawlick and
Zhu, 2021). Some folksy and psychological taxonomies are given
in Druckman and Bjork (1992).

2 https://dblp.org

3 Searched on 17 February 2025.
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4.2 Datasets

Several datasets have been collected for studying lies. However,
researchers have not carefully delineated the scope by considering
the goals of the deception. There is also another potentially more
serious issue: Some datasets are constructed by asking participants
to lie in a laboratory setting, where there are no consequences and
no incentive to lie. We will refer to them as Lab Datasets. Others are
constructed by collecting samples of real attacks. We call them Real-
World Datasets. Finally, there are some datasets in which data from
laboratory settings are combined with real-world attack samples.
We call them Mixed Datasets.

Lab Datasets include Zhou et al. (2004), wherein students
were paired and one student in each pair was asked to deceive
the other using messages. In Perez-Rosas (2014), researchers
collected demographic data and 14 short essays (seven truthful and
seven false) on open-ended topics from 512 Amazon Mechanical
Turkers (AMT). They tried to predict demographic information
and facticity. We refer to this as the Open-Lies dataset. In Pérez-
Rosas and Mihalcea (2014), researchers collected short essays on
three topics: abortion, best friend, and the death penalty by people
from four different cultural backgrounds. In Capuozzo et al. (2020),
truthful and deceptive opinions on five topics are collected in two
languages (English and Italian). See Ludwig et al. (2016) for more
such efforts.

Next, we consider real-world datasets, where the goals may
be information, disruption, financial, or psychological. Here, we
have several datasets for fake news detection (Raponi et al.,
2022),4 opinion spam (a.k.a. fake reviews) detection (Ren and Ji,
2019), phishing (Verma et al., 2019), and a company’s reward
program (Ludwig et al., 2016).

Some researchers have mixed data obtained from laboratory
settings with non-laboratory data, such as reviews obtained from
forums. For example, in Hernández-Castañeda et al. (2017),
researchers analyzed three datasets: a two-class, balanced-ratio
dataset of 236 Amazon reviews, a hotel opinion spam dataset
consisting of 400 fabricated opinions from AMT plus 400
reviews from TripAdvisor (likely to be truthful), and 200 essays
from Pérez-Rosas and Mihalcea (2014). In Xarhoulacos et al.
(2021), researchers studied a masking technique on two datasets:
a hotel, restaurant, and doctor opinion spam dataset and the
dataset from Pérez-Rosas and Mihalcea (2014). In Cagnina and
Rosso (2017), in-domain experiments were done with a positive
and negative hotel opinion spam dataset, and cross-domain
experiments were conducted with the hotel, restaurant, and doctor
opinion spam dataset.

A few works have developed domain-independent deception
datasets in our sense, wherein the goals of deception can be
quite different. In Rill-García et al. (2018), researchers used two
datasets: the American English subset consisting of a balanced-
ratio 600 essays and transcriptions of 121 trial videos (60 truthful
and 61 deceptive), which we call Real-Life_Trial. In Vogler and

4 Note that the topics can vary in a heterogeneous application, such as fake

news detection, since some items could be on sport and some on politics or

religion. Moreover, the goals may or may not be different. Hence, we avoid

the term “domain” to refer to applications such as fake news.

Pearl (2020), three datasets were used: positive and negative
hotel reviews, essays on emotionally-charged topics, and personal
interview questions. In Xarhoulacos et al. (2021), multiple fake
news datasets, a COVID-19 dataset, and some micro-blogging
datasets were collected and analyzed. In Shahriar et al. (2021),
researchers collected fake news, Twitter rumors, and spam datasets.
(Spam is essentially advertising. Deception is employed to fool
automatic detectors rather than the human recipient of the spam.
We focus on human targets.) They applied their models trained
on these datasets to a new COVID-19 dataset. In Yeh and Ku
(2021), seven datasets were collected (Diplomacy, Mafiascum,
Open-Domain, LIAR, Box of Lies, MU3D, and Real-Life_Trial)
and analyzed using LIWC categories, without claiming domain
independence or cross-domain analysis. However, their datasets
do involve different goals. LIAR, for instance, includes political
lies with the goal of winning elections, whereas the lies in Real-
Life_Trial have other goals, and Diplomacy/Mafiascum are about
winning online games. In Feng et al. (2012), four datasets were
collected: trip-advisor gold, a balanced hotel reviews dataset of
800 reviews introduced in Ott et al. (2011), trip-advisor heuristic,
another balanced reviews dataset of 800 reviews collected by the
authors, a third 800 review Yelp dataset of uncertain ground-truth
collected by the authors, and the 296 essays on three topics dataset
of Mihalcea and Strapparava (2009). They show that features based
on CFG parse trees along with unigrams performed the best on
these datasets.

Thus, we still lack large, comprehensive datasets for deception
that have a wide variety of deceptive goals.

4.3 Detection

Deception detection in general is a useful and challenging open
problem. There have been many attempts at specific applications
such as phishing and fake news. On phishing alone (query: phish),
there are 2,200+ DBLP results, including over 70 surveys and
reviews. Similarly, there are 1,100+ papers on scams (query: scam,
not all of them are relevant, since many occurrences are part of
acronyms such as SCAMP), 100+ on opinion spam, 200+ on fake
reviews, and 2,600+ on fake news.5

A soft domain transfer method is proposed in Shahriar et al.
(2022). They found that partial training on tweets helped in
phishing and fake news detection. In Panda (2022) and Panda
and Levitan (2023), the authors study deception detection across
languages and modalities. Other works on domain-independent
deception detection have been discussed above under datasets.

4.4 Reviews on linguistic markers

Recently, Gröndahl and Asokan (2019) conducted a survey
of the literature on deception. They defined implicit and explicit
deception, focused on automatic deception detection using input
texts, and then proceeded to review 17 papers on linguistic
deception detection techniques (explicit deception is when the

5 All these DBLP search results are as of 17 February 2025.
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deceiver explicitly mentions the false proposition in the deceptive
communication). These papers covered two forms of deception:
(a) dyadic pairs in the laboratory, where one person sends a short
essay or message to another (some truthful and some lies), and (b)
fake reviews (a.k.a. opinion spam). Based on their analysis of the
literature on laboratory deception experiments and the literature on
opinion spam, they concluded that there is no linguistic or stylistic
trace that works for deception in general. Similarly, the authors
of Vogler and Pearl (2020) assert that extensive psychology research
shows that “a generalized linguistic cue to deception is unlikely
to exist.” We collectively refer to Gröndahl and Asokan (2019),
Fitzpatrick et al. (2015), and Vogler and Pearl (2020); Vrij (2008)
as the Critiques.

As opposed to the critiques, the meta-analyses by DePaulo et al.
(2003) and Hauch (2016) did find small markers of deception in the
studies they examined despite analyzing studies of specific forms or
situations of deception, not general domain-independent datasets.
Similarly, the following papers all point to evidence for cross-
domain deception detection: Rill-García et al. (2018), Shahriar et al.
(2021), Vogler and Pearl (2020), Xarhoulacos et al. (2021), and
Yeh and Ku (2021). These researchers created so-called “domain-
independent datasets,” which consist of two or three kinds of attacks
and developed features and techniques for deception detection
across the collected domains.

We believe that a deeper investigation/analysis of the linguistic
cues for deception debate is needed, for the simple reason that none
of the above works created a comprehensive dataset of different
forms of deceptive attacks and analyzed it.

5 Linguistic cues/analysis

Because of the problems enumerated above, we collect and
analyze datasets for domain-independent linguistic cues to tackle:
(1) the ground truth problem for deception detection and (2)
evidence of linguistic cues for deception across domains.

A ground truth is something that is known to be correct, but
this information is difficult to obtain, so we need models that do
not rely on having too much ground truth data. Our approach is to
focus on using linguistic information from the text. For the second
challenge, we try to find universal linguistic markers for deception
by looking for features that behave similarly across domains. We
hope that an ML model built with these features could generalize
across domains (Gokhman et al., 2012).

5.1 Datasets

We summarize our deception domains and scenarios below.
We focus on real-world datasets.

In the product review domain, we use the Amazon reviews
dataset mentioned above (Garcia, 2019).

In the job scam domain, we identify fraudulent job listings. Our
dataset contains the bodies of 13,735 legitimate and 608 fraudulent
job listings.

In the phishing domain, we distinguish between legitimate
emails and phishing emails. Our dataset contains the bodies of

9,202 legitimate and 6,134 phishing samples. The IWSPA-AP
dataset analyzed above is a subset of this dataset.

In the political statement domain, we determine the truthfulness
of claims made by US political speakers. Our dataset contains 7,167
truthful and 5,669 deceptive statements evaluated by PolitiFact.

In the fake news scenario, we distinguish between legitimate
and fake news. Here, we use the WELFake dataset (Verma et al.,
2021).

We analyzed each dataset for any artifacts of data collection
and cleaned them to remove such artifacts. The cleaning procedures
include two parts: text removal and text cleaning. We then sanitize
the texts using the methods discussed in Zeng et al. (2022). We
remove meta-data in emails and source leaks in news and replace
HTML break tags with new lines. In addition, the authors of Zeng
et al. (2022) found that the provided labels in WELFake (Verma
et al., 2021) are flipped, so we flip its labels as a final cleaning
step. We are making the combined, cleaned dataset available
on Zenodo.6

5.2 Sources for linguistic cues

Function words (FW) are words that express a grammatical
relationship between words in a sentence. Unlike content words,
function words such as “when,” “at,” and “the” are independent
of specific domains. Function words and n-grams are useful
for many text classification tasks, including author gender
classification, authorship attribution (Argamon and Levitan, 2005),
and deception detection (Siagian and Aritsugi, 2020). To gain an
insight into the transfer of knowledge between domains, we utilized
three types of explainable features: function words, part-of-speech
(POS) tags of function words, and engineered linguistic features.
POS tags were used to determine whether a word was a function
or a content word; the content words were then removed. The last
experiment utilized 151 engineered linguistic features (13 + 55 +
86 − 3 duplicates removed by the colinearity check below).

The engineered features are drawn from three sources.
Linguistic Inquiry and Word Count (Boyd et al., 2022), a popular
source of features in the NLP literature, was the source of 86
features. The authorship attribution paper (Fabien et al., 2020) was
the source of 55 features. Thirteen features were collected from two
papers, one on deception (Zhou et al., 2004) and the other on fake
news (Verma et al., 2021), after significance testing using t-tests
with and without the Bonferroni-Holm correction of p-values.

The initial significance testing of 27 linguistic features from
the two papers (Zhou et al., 2004; Verma et al., 2021) on four
public datasets is described in Appendix A. Appendix B describes
an analysis of function word n-grams on the same datasets as
in Appendix A. A complete source-wise list of the 55 features
from Fabien et al. (2020) and 86 features from Boyd et al. (2022) is
in Appendix C. Function words as features for deception have been
studied before, in Siagian and Aritsugi (2020), for example. We also
experimented with the part-of-speech tags of function words.

6 At https://zenodo.org/record/6512468#.ZBVRUhTMLQM.
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TABLE 2 Unified feature table showing common features across subsets of domains.

Subset Function words N FW POS tags N Eng’d linguistic features N

All And, In, Is, Of, On, The 6 CC, CD, DT, IN, MD, PRP, RB, TO, VBP, VBZ 10 per_cap 1

F, J, P, Pr This, You 2 0 0

F, J, P, Ps 0 RP, VB, WDT, WP, WRB 5 0

F, J, Pr, Ps Are 1 0 0

F, P, Pr, Ps 0 VBD 1 0

J, P, Pr, Ps for, to 2 0 Dic, f_b, f_g, per_digit, richness 5

F, J, P at 1 POS, UH 2 cert, f_e_2, function, sen_len 4

F, J, Pr 0 0 Period 1

F, P, Pr 0 0 Paus 1

F, P, Ps 0 EX, VBN 2 0

F, Pr, Ps It, That, Would 3 0 0

J, P, Ps From, Our 2 0 0

J, Pr, Ps As, With 2 0 0

P, Pr, Ps not 1 0 conj, f_f, modi 3

F, J 0 VBG 1 Apostro, Comm 2

F, P all, had 2 0 f_e_0, f_e_1, f_e_3, f_e_7, Sens 5

F, Pr 0 0 Adverb, allPunc, Analytic, f_e_8, focuspast, ipron,
len_text, OtherP, Pronoun, sen_len

10

F, Ps He 1 0 0

J, P 0 ADD 1 f_c, f_o, f_v, f_w, Socrefs 5

J, Pr Be, or 2 0 Allure, Article, Lifestyle 3

J, Ps we 1 0 0

P, Pr Me 1 0 avg_len, f_d, f_i, f_s, f_t, f_y, Selfref 7

P, Ps 0 0 f_1, f_p 2

Pr, Ps They, Was 2 0 Quantity 1

FW, function words; F, fake news; J, job scams; P, phishing; Pr, product reviews; Ps, political statements; Feature sets are inherited downward from supersets to subsets. N is the number of
features.

5.3 Results of feature analysis

We used the Stanza (Qi et al., 2020) POS tagger and OntoNotes
Release 5.0/Penn Treebank (Marcus et al., 1993) tagset in all
experiments involving POS tags. This tagset builds on top of the
original Penn Treebank and adds seven new tags:

ADD—Email, AFX—Affix, HYPH—Hyphen, NFP—
Superfluous punctuation, UH—Interjection, SP—
Space, and XX—Unknown.

Due to the parser’s limitations, several samples of text that had
a length more than one million characters had to be discarded. We
did not remove stop words or further alter the data in any manner.
Function words and their respective POS tags were separately
vectorized as word unigrams using the tf-idf scheme. The raw texts
were processed and vectorized identically and used as a baseline.
The motivation behind it was to (i) understand whether it is
possible to achieve similar results while using only a few non-
domain-specific features that are highly indicative of deception and
(ii) investigate the impact of content words on deception through
the contrast between the baseline and function words.

For each dataset, and for each set of features, we applied three
techniques to select the most relevant features. First, a random
forest algorithm (Breiman, 2001) was used, which allowed us to
rank features by their importance. The least important ones were
removed under the condition that the out-of-bag accuracy on
the validation set either increased or remained the same after
removing the features. Next, we applied scipy’s (Virtanen et al.,
2020) single linkage hierarchical clustering (Gower and Ross, 1969)
with Spearman’s correlation (Spearman, 1904) as the measure of
feature colinearity. Features exhibiting a high degree of colinearity
were removed with their redundancy validated in the same manner
as with the first technique. Finally, taking the remaining features,
we applied Hyperopt’s (Bergstra et al., 2013) feature selection and
the eXtreme Gradient Boosting algorithm (Chen and Guestrin,
2016) with SHAP (Lundberg and Lee, 2017) as a metric of each
feature’s contribution to the overall model performance. Ultimately,
the aforementioned approach produced a subset of the features for
each of the five datasets. A total of 81 linguistic, 28 function word
POS, and 61 function word features were selected; 50/81, 22/28,
and 29/61 were shared with at least one other dataset.
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For our analysis of the potential for knowledge transfer, any
feature unique to a dataset was removed, leaving only those
significant for at least two datasets and therefore being of interest
for understanding of transfer between domains. The relationships
of function words, function words’ POS tags, and engineered
linguistic features across datasets are depicted in Table 2. Several
trends can be noticed from this table. For example, all five datasets
share 6 + 10 + 1 = 17 common features, and the fake news, job
scams, and phishing datasets have a total of 31 features in common.
In addition, the subset {F, J} has 35 common features, and {J, P,
Pr, Ps} has 26 common features. Job scams and phishing together
have 43 common features. Similarly, we see that deceptive attacks
can be differentiated using features such as “to,” personal pronouns,
singular present verb forms, modals, and adverbs (compare with
the quote from Rowe, 2006 in Section 3.1.1). The richness,
possessive ending, and interjection features are significant for fake
news, job scams, and phishing. Fake news and product reviews have
many significant LIWC features.

5.3.1 Linguistic overlap across deceptive domains
The observed overlap in common features across domains

suggests a shared linguistic substrate of deceptive or persuasive
communication. Many of the common function words (e.g.,
you, this, are, and that) are tied to reader-directed or modal
constructions, which have been found to correlate with
manipulative intent (Zhou et al., 2004; DePaulo et al., 2003).

Part-of-speech tags such as PRP, VB, TO, and IN reflect
structural scaffolding typical in persuasive or fraudulent writing.
These tags often co-occur in imperative or passive constructions
that are used to command attention or obscure agency (Ott et al.,
2011). For instance, phishing emails and fake job offers rely
on templates such as “to confirm your account...” or “you are
selected...”, which map to these tags.

Engineered features such as avg_len, sen_len, and
focuspast point to reduced syntactic complexity and temporal
distancing, both recognized as cues in deceptive text (Hancock
et al., 2007). Shorter messages and generic phrasing enable broad
applicability and reduce the chance of contradiction.

Clusters such as {F, J, P} tend to involve transactional
deception (e.g., scams), while overlaps in {Pr, Ps, P} suggest
persuasive manipulation.

Datasets that share a significant number of features are good
candidates for domain adaptation; however, the performance of a
model using a potentially limited set of features shared across tasks
must remain robust. To this end, we combined previously selected
linguistic, function words, and function word POS features that
were shared by two or more datasets. This resulted in a final set
of 91 features. Upon further applying feature selection, the number
of significant features of all three types shared among datasets has
been reduced to 45.

To evaluate the features’ performance, we used a random
forest classifier with five-fold cross-validation. The model
hyperparameters were set to 50 trees with the leaf nodes of five
samples, and 50% of the features were considered on each split.
Gini impurity was used as a criterion of split quality.

The accuracy and F1-scores of the model using each of the
feature sets across the five datasets are shown in Figures 2, 3,
respectively. It is important to note that Job Scams’ data appear
to be heavily imbalanced and the models’ performance on it is not
an ideal indicator of feature quality. Generally, the combined set of
shared features is nearly on par with the baseline, with linguistic,
function word, and function word POS following in the order
given. Notable exceptions are Product Reviews where linguistic and
combined features beat the others, including the baseline, and Fake
News with linguistic features outperforming the rest by a significant
margin. We hypothesize that the relative length and richness of
news articles may be in part responsible for this phenomenon.

6 Deep-learning based experiments

To investigate the possible existence of other deception signals,
we turn to deep learning. If universal deception signals exist, then
a deep-learning model can learn to detect them. To determine
whether this happens, we perform two experiments on the same
five cleaned datasets of the previous section. First, we evaluate the
performance of models trained on multiple domains. Then, we
train models on one domain and evaluate their performance on
other domains.

6.1 Model

Our model architecture consists of a base pre-trained
transformer model, a dropout layer, and a linear layer. As standard
in NLP, we prepend a [CLS] token to the text, pass the text
through the base model, and perform classification on the last-layer
embedding of the [CLS] token.

6.2 Multi-domain experiment

If deep-learning models trained on multiple domains pick up
on universal deception signals, then we should expect performance
on individual domains to be positively correlated among each
other. Conversely, if they only learn domain-specific signals,
then we should expect performance on individual domains to be
negatively correlated with one another.

We train 100 models on the union of our datasets. We
use a random 80/10/10 train/validate/test split for each dataset
with uniformly drawn hyperparameters. We use BERT-base and
RoBERTa-base for our base models, dropout percentages between
0.1 and 0.5, and the AdamW optimizer with learning rates between
0.00001 and 0.0001.

We then evaluate each model on the individual test sets. We
exclude models that failed to converge and models that have an
outlier F1 score using the IQR test and perform pairwise linear
regression on the remaining F1 scores.

We present our results without outliers in Figure 4. All pairs
of tasks except for product reviews and phishing are positively
correlated, with five of them significant at the 0.05 level.
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FIGURE 2

Random Forest F1 scores for the five feature types: linguistic (ling), function words (fw), pos tags of function words (fw-pos), combination of the
three (all), and unigram tf-idf (baseline); F, fake news; J, job scams; P, phishing; Pr, product reviews; Ps, political statements.

Dataset Abbreviations 

FIGURE 3

Random Forest accuracies for the five feature types: linguistic (ling), function words (fw), pos tags of function words (fw-pos), combination of the
three (all), and unigram tf-idf (baseline); F, fake news; J, job scams; P, phishing; Pr, product reviews; Ps, political statements.

6.3 Cross-domain generalization
experiment

If a deep-learning model primarily learns a universal deception
signal, then it should generalize to deception domains that it has
not yet seen. In particular, they should be able to achieve a higher
F1 score than a coin flip classifier, which we can calculate using the
formula CF F1 = q/(0.5 + q), where q is the portion of the dataset
that is deceptive.

On each dataset, we train 100 models with hyperparameters
drawn from uniform distributions. We use BERT-base and
RoBERTa-base for our base models and values between 0.1
and 0.5 for dropout percentage. For our learning rate, we
use a different range for each task to minimize divergence:
[0.00001, 0.00006] for product reviews, [0.00001, 0.000025] for
job scams, [0.00001, 0.00010] for phishing, [0.00001, 0.00004]
for political statements, and [0.00001, 0.00010] for
fake news.
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FIGURE 4

Pairwise F1 score scatter matrix of converged combined models. Outliers are excluded.

TABLE 3 p-values in the cross dataset experiment.

Dataset Product Phishing Job Political Fake
reviews scams statements news

Product reviews 0.00† 1.00 0.00† 1.00 1.00

Phishing 1.00 0.00† 0.00† 1.00 1.00

Job Scams 0.00† 0.98 0.00† 0.00† 0.00†

Political statements 1.00 1.00 0.00 0.00 0.96

Fake news 0.00† 0.00† 0.00† 0.00† 0.00†

Values below 0.01 are considered significant. A dagger indicates that the 0.00 values are correct to two decimal places. The 0.00 values without the dagger have a 0 in at least the third place after
the decimal.

Each model is evaluated on each dataset, ignoring
models that fail to converge. We perform a 1-sample
t-test with the alternative hypothesis “the mean F1
in domain Y of models trained on X is less than or
equal to the coin flip F1 of Y.” We report the resulting

p-values in Table 3. In ten cases, models trained on one
domain manage to beat the coin-flip baseline at a 0.01
significance level, with nine cases beating the coin-flip
baseline at the 10σ (p < 7.62 × 10−24) level. However,
we also find that eight pairs have a p-value of 1.00,
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meaning that they performed worse than the coin-flip
baseline.7

Interestingly, we also find that the fake news models manage to
beat the coin flip on all domains. We suspect that this is due in part
to its larger size but leave this as a direction for future research.

6.4 Discussion

The multi-domain experiment provides strong support for
the existence of universal deception signals. All but one pair are
positively correlated. Five are statistically significant, and the one
negative correlation is not statistically significant. In contrast, the
results of our cross-domain generalization experiment are mixed.
While some pairs beat the coin-flip baseline, others performed
worse than the baseline.

Taken together, these results suggest that both universal and
domain-specific deception signals exist. Models trained on a single
task will learn both universal and task-specific signals, potentially
resulting in poor generalization to other deception domains.
Therefore, training a domain-independent deception detector will
likely require a diverse domain-independent dataset.

7 Cross-domain detection

We also built detectors for deception and conducted the
following experiments (Zeng et al., 2022).

7.1 Single-task baselines

To evaluate the diversity and difficulty of our collected tasks, we
fine-tuned BERT-base (Devlin et al., 2018) classification models on
each of our datasets. As standard in NLP, our model adds a linear
layer that generates the prediction from the final classification
token embedding. We trained using the AdamW optimizer with
a learning rate of 2 × 10−5, a batch size of 16, dropout of 0.1,
and a random 80/10/10 train-val-test split. We trained for five
epochs with early stopping on the validation set on NVIDIA V100
GPUs with automatic mixed precision. We then evaluated our
models against all datasets using a TPU from Google Colab.8 If a
dataset was used to train the model, we used the held-out test set.
Otherwise, we evaluated against the full dataset.

We report the accuracies and F1-scores measured in Tables 4,
5. BERT performed well on the phishing, job scams, and fake news
tasks, with F1 scores greater than 0.98. However, it performed
poorly on product reviews and political statements, with F1 scores
of 0.594 and 0.708, respectively. We suspect that this is due
in part to the lengths of the texts; many product reviews and

7 This negative transfer plus domain shift can be mitigated by a few

modifications that include: (a) masking domain-specific tokens, (b) adapter-

based DANN training (Ganin et al., 2016), (c) calibrated thresholds, and (d)

reducing source dataset size for transfer (Triplett et al., 2025).

8 In our experiments, we noticed slight differences in outputted predictions

evaluating on TPUs vs. on GPUs due to differences in floating-point

representations, but the differences were not statistically significant.

TABLE 4 Accuracies obtained on the cleaned datasets.

CD Cleaned datasets

Prod Phish Job Pols News

Prod 0.708 0.723 0.915 0.555 0.625

Phish 0.521 0.988 0.436 0.537 0.560

Job 0.493 0.396 0.965 0.444 0.442

Pols 0.509 0.505 0.187 0.640 0.609

News 0.503 0.410 0.926 0.536 0.997

Emboldened numbers indicate accuracies measured on a held-out test set.

TABLE 5 F1 scores obtained on the cleaned datasets.

CD Cleaned datasets

Prod Phish Job Pols News

Prod 0.708 0.555 0.955 0.095 0.301

Phish 0.444 0.985 0.594 0.124 0.021

Job 0.647 0.565 0.982 0.608 0.613

Pols 0.437 0.601 0.274 0.594 0.511

News 0.667 0.575 0.962 0.527 0.997

Emboldened numbers indicate F1 scores measured on a held-out test set.

almost all political statements are only one or two sentences long.
Interestingly, we find that product reviews and fake news transfer
well to the Job Scams task, achieving F1 scores greater than 0.950,
but not vice versa.

7.2 Models for the combined dataset

We fine-tuned four models on the union of all our
datasets using the same method, with an 80/10/10 train-val-test
split for each individual dataset, and hyperparameters as our
individual models. For our base models, we used BERT-base and
RoBERTa (Liu et al., 2019) (110 million parameters), and the
larger BERT-large and RoBERTa-large (340 million parameters)
pre-trained models.

Surprisingly, the small base models performed better than the
large models, with RoBERTa performing slightly better. BERT-
base and RoBERTa-base achieved 0.904 and 0.904 F1 scores (the
slight gap disappears on rounding), respectively, while their large
counterparts achieved F1 scores of 0.882 and 0.900. However, when
we break down performance by task (Tables 6, 7), we find that
BERT-base performed better, achieving the highest F1 score in 3/5
tasks and was still close in performance for the other two tasks (to
the winners in the individual task experiment and to the winners
on combined).

7.3 Discussion

Our results show that a single model can recognize multiple
forms of detection. For example, a BERT model has high
accuracy/F1 scores on 3 out of 5 tasks and is still close to individual
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TABLE 6 Combined model accuracies on individual tasks.

Classifier Cleaned datasets

Prod Phish Job Pols News

BERT 0.706 0.973 0.966 0.637 0.991

RoBERTa 0.510 0.394 0.950 0.484 0.450

BERT (L) 0.677 0.974 0.966 0.571 0.983

RoBERTa (L) 0.511 0.420 0.958 0.452 0.442

Emboldened numbers indicate the highest perforomance on each dataset.

TABLE 7 F1 scores of the combined models on individual tasks.

Classifier Cleaned datasets

Prod Phish Job Pols News

BERT 0.706 0.967 0.982 0.582 0.990

RoBERTa 0.660 0.561 0.974 0.589 0.620

BERT (L) 0.648 0.967 0.982 0.257 0.981

RoBERTa (L) 0.677 0.591 0.978 0.618 0.613

Emboldened numbers indicate the highest performance on each dataset.

models on the other two. Another interesting result is that BERT
and BERT(L) trained on the combined dataset beats in accuracy
and F1 the individual BERT trained and tested on job scams dataset.
RoBERTa could do it only for F1 on the Politics dataset.

8 Conclusion and future work

We have provided new definitions for deception based on
explanations and probability theory. We gave a new taxonomy
of deception that clarifies the explicit and implicit elements
of deception.

We have argued against hasty conclusions regarding linguistic
cues for deception detection and especially their generalizability.
The critiques contained in Fitzpatrick et al. (2015), Vogler and
Pearl (2020), and Vrij (2008) may present a valid point, namely
that some linguistic cues might not generalize across the broad
class of attacks. However, over-generalizations should be made with
caution as they discourage future domain-independent deception
research. Moreover, we have presented evidence showing that there
do exist common linguistic cues in deceptive attacks with widely
varying goals and topical content.

Our linguistic analysis of four datasets and cross-dataset
analysis of five different deception datasets shows that there are
linguistic features, some at the surface level and some deeper, that
can be used to build classifiers for more general deception datasets.
With all the new developments in machine learning and NLP, we
believe that research on linguistic deception detection is poised to
take off and could result in significant advances.

We propose three concrete directions for future work: (a)
investigation of the domain pairs that underperform in cross-
domain detection, (b) comparing our BERT/RoBERTa results
with the latest BERT variants, e.g., the nBERT model (Rasool
et al., 2025), and (c) exploring multimodal datasets that integrate

different modalities, e.g., text, images, audio and video, and
different domains of deception.
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