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Collaborative filtering generates recommendations by exploiting user-item

similarities based on rating data, which often contains numerous unrated items.

To predict scores for unrated items, matrix factorization techniques such as

nonnegative matrix factorization (NMF) are often employed. Nonnegative/binary

matrix factorization (NBMF), which is an extension of NMF, approximates a

nonnegative matrix as the product of nonnegative and binary matrices. While

previous studies have applied NBMF primarily to dense data such as images, this

paper proposes a modified NBMF algorithm tailored for collaborative filtering

with sparse data. In the modified method, unrated entries in the rating matrix

are masked, enhancing prediction accuracy. Furthermore, utilizing a low-latency

Ising machine in NBMF is advantageous in terms of the computation time,

making the proposed method beneficial.

KEYWORDS

Ising machine, low-latency, collaborative filtering, nonnegative/binary matrix
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1 Introduction

Collaborative filtering is often applied in recommendation systems that primarily serve

Internet services, such as e-commerce and video distribution platforms (Herlocker et al.,

2000; Su and Khoshgoftaar, 2009). The essence of collaborative filtering lies in generating

personalized recommendations based on the intrinsic similarities between users and items.

Collaborative filtering relies on training data, in which users assign scores or ratings to

various items. As it is common for users to omit ratings of specific items, leading to missing

data, the central objective of collaborative filtering is to predict the scores for unrated items.

Matrix factorization techniques, particularly nonnegative matrix factorization (NMF) (Lee

and Seung, 1999), are frequently employed. When using NMF for collaborative filtering,

the ranking matrix V , whose entries are nonnegative, is approximated as the product of

two nonnegative matrices W and H, that is, V ≈ WH. The standard approach involves

minimizing the difference between V and WH. In the optimization procedure, each

element of W and H is constrained to be nonnegative. While the multiplicative update

algorithm is the most prevalent approach for NMF (Lee and Seung, 2000), we focus on an

alternative technique known as the nonnegative least-squares approach using the projected

gradient method (PGM) (Lin, 2007). The convergence of the alternative update method for

NMF was proved by Lin (2007). Such an alternative optimization method is essential for

solving nonnegative/binary matrix factorization (NBMF), which is an extension of NMF.

O’Malley et al. (2018) and Golden and O’Malley (2021) used D-Wave’s quantum annealers
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to solve quadratic binary optimization problems involved in NBMF

and demonstrated a speedup compared with two classical solvers.

In recent years, Ising machines, initially designed to solve

combinatorial optimization problems efficiently, have found new

applications in the field of machine learning, expanding their scope

beyond their original purpose (Kitai et al., 2020;Willsch et al., 2020;

Nath et al., 2021). Isingmachines are special-purpose computers for

solving combinatorial optimization problems. They are realized by

several types of devices, such as quantum annealers (Johnson et al.,

2011), digital processors based on simulated annealing (Yamaoka

et al., 2016; Aramon et al., 2019; Yamamoto et al., 2020), digital

processors based on simulated bifurcation (SB) (Goto et al., 2019;

Hidaka et al., 2023), and coherent Ising machines (Inagaki et al.,

2016; McMahon et al., 2016; Pierangeli et al., 2019). As Ising

machines usually accept problems described by the Ising model

or quadratic unconstrained binary optimization formulation, their

application to machine learning requires hybrid methods that

utilize both an Ising machine and a general-purpose computer

(e.g., a CPU). In NBMF, the matrix elements of H are binary,

whereas those of W are real and nonnegative. Therefore, an Ising

machine is employed to accelerate the update of matrix H, whereas

a general-purpose computer handles the update of matrix W. As

the updates of matrices H and W are repeated alternately, NBMF

inevitably involves a computation time overhead owing to the

communication between the Ising machine and the CPU. The

advantages and disadvantages of NMF and NBMF remain unclear

in terms of solution quality, computation time, and applicability to

sparse problems.

In this paper, we propose a novel approach for applying

NBMF to collaborative filtering and demonstrate the advantages

of utilizing a low-latency Ising machine to execute the proposed

method. Previous studies have employed NBMF for image analysis

that deals with dense data matrices, where the majority of matrix

elements have nonzero values (O’Malley et al., 2018; Asaoka and

Kudo, 2020, 2023). By contrast, collaborative filtering involves

sparse data matrices, with most elements remaining undetermined.

We propose a modified NBMF algorithm that masks undetermined

elements within the data matrix to improve the prediction

accuracy. In addition, we compare NBMF with NMF in terms

of solution quality and computation time, and investigate the

dependency of these characteristics on the sparsity and size of

the problem. To accelerate the NBMF algorithm, we used an SB-

based machine implemented with a field-programmable gate array

(FPGA) (Goto et al., 2021; Hidaka et al., 2023) that supports up

to 2,048 spins and has full spin-to-spin connectivity (no need

for minor embedding techniques required for local-connectivity

Ising machines). Incorporating an SB-based machine to update the

binary matrix elements yields a substantial reduction in the overall

computational time required for NBMF compared with NMF.

Furthermore, the low-latency characteristic of the SB-based

machine is advantageous for executing the iterative method using

a general-purpose computer (a CPU) and an Ising machine,

alternatively, reducing the communication time between them.

It is also possible to use a cloud-hosted Ising machine for

executing the proposed method. While a high-performance

cloud-hosted Ising machine can significantly reduce computation

time, the communication time of accessing it may negate

the benefits. Therefore, utilizing the low-latency system is

crucial. This study presents the first empirical evidence that

NBMF, when implemented with a low-latency Ising machine,

surpasses NMF in terms of both solution quality and overall

computational efficiency.

2 Problem formulation

NBMF andNMF decompose a nonnegative n×mmatrixV into

an n× kmatrixW and a k×mmatrix H:

V ≈ WH, (1)

where W is a nonnegative real matrix. While H is a binary matrix

in which each element is 0 or 1 for NBMF, it is a nonnegative real

matrix for NMF. We assume that n > k and m > k, which implies

that NBMF and NMF provide low-rank matrix approximations of

V . The rank constraint is helpful to prevent overfitting. Moreover,

NBMF can be more resilient to overfitting due to the binary nature

of matrix H.

In the context of collaborative filtering, V is a rating matrix,

where the (i, j) element vij represents user i’s rating of item

j. In matrix W, each row corresponds to a user, while each

column represents a basis vector associated with user preferences.

In other words, W consists of k basis vectors, with each

dimension being n. Meanwhile, each column of H represents the

coefficient vector related to the corresponding item. In NBMF,

this coefficient vector indicates the combination of the selected

basis vectors for the corresponding item. In general, the rating

matrix contains numerous unrated entries. Matrix factorization

techniques optimize W and H so that each rated entry in V is

well approximated by the corresponding element of WH. Then,

each unrated entry in V is estimated by the corresponding element

ofWH.

The comparison between NMF and other collaborative filtering

techniques has already been extensively studied (Lee et al., 2014;

Singh et al., 2024). Compared to user-based and item-based

collaborative filtering techniques, matrix factorization techniques

demonstrated better performance in recommendation systems

on multi-criteria datasets (Singh et al., 2024). In particular,

NMF is scalable to large datasets and can capture individual

user preferences. However, there has been no direct comparison

between NMF and NBMF. This paper focuses on comparing the

two methods.

3 Methods

3.1 Algorithm

The approach to conducting matrix factorization involves

minimizing ‖V − WH‖F , where the Frobenius norm is defined

as ‖A‖F =
√

∑

i,j A
2
ij, and Aij is the (i, j) element of A. To

achieve minimization, NBMF employs an iterative alternative

update procedure as follows:

W = arg min
X∈Rn×k

+

(

‖V − XH‖2F + λ1‖X‖
2
F

)

, (2)

H = arg min
X∈{0,1}k×m

(

‖V −WX‖2F + λ2‖X‖
2
F

)

, (3)
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FIGURE 1

Overall flow of NBMF. Matrix Ṽ is an approximation of matrix V.

where X is a matrix that corresponds toW andH in Equations 2, 3,

respectively. Hyperparameters λ1 and λ2 are positive.

Matrix W is updated row-by-row. The objective function for

the row vector x⊤ ofW is given by

fW(x) =
1

2
‖v −H⊤x‖2 +

λ1

2
‖x‖2, (4)

where v⊤ is the corresponding row vector in matrix V . We applied

the PGM to minimize the objective function for each row vector,

as detailed in Section 3.2. The PGM was executed using a general-

purpose computer. In contrast, matrix H is updated column-by-

column. The objective function for optimizing the column vector q

(∈ {0, 1}k) of H is given by

fH(q) =
1

2
‖u−Wq‖2 +

λ2

2
‖q‖2, (5)

where u is the corresponding column vector in matrix V . To

minimize the objective function for each column, we employed an

SB-based Ising machine, as Equation 5 can be reformulated in the

Ising model form (see Section 3.4 for details).

The overall flow of NBMF is illustrated in Figure 1. The process

of updating matrix W, followed by the update of matrix H, was

repeated for 10 iterations in this paper.

In this study, we compared NBMF with NMF. In NMF,

Equations 2, 3 are also used; however, X ∈ {0, 1}k×m in Equation 3

is substituted by X ∈ R
k×m
+ . Furthermore, each column vector

q in Equation 5 is nonnegative. Equations 4, 5 were minimized

using the PGM in NMF, and the computation was executed on a

general-purpose processor (a CPU).

3.2 Projected gradient method

The PGM (Lin, 2007) for updating matrix W minimizes

Equation 4, and the gradient is given by

∇fW = −H(v − H⊤x)+ λ1x. (6)

The update rule for x is given by

xt+1 = P[xt − γt∇fW(xt)], (7)

where the projection is defined as

P[xi] =















0 (xi ≤ 0),

xi (0 < xi < xmax),

xmax (xmax ≤ xi).

(8)

In this study, we set xmax = 1 as the upper bound of xi.

The learning rate γt was adjusted at each step t to satisfy the

following inequality:

fW(xt+1)− fW(xt) ≤ σ∇fW(xt)⊤(xt+1 − xt), (9)

where σ = 0.01 in our experiments. Initially, we assigned γt−1 to

γt (γ0 = 1). If γt satisfies Equation 9, it is repeatedly divided by

β , where we set β = 0.1 in our experiments, while the inequality

holds. If γt does not satisfy Equation 9, it is repeatedly multiplied

by β until the inequality is satisfied. Following this adjustment, we

calculated xt+1 using Equation 7. This procedure is repeated until

‖xt+1 − xt‖≪ ǫ, where ǫ = 10−7 in our experiments.

3.3 Masking procedure

Given that the rating matrix is typically sparse, the handling

of unrated entries has a significant impact on the performance

of collaborative filtering. A straightforward approach is to assign

a rating of zero to unrated entries, which is a simple and

practical choice. Another method for handling unrated entries is to

introduce amaskmatrix of the same size as matrixV after assigning

them a zero rating. The elements of the mask matrixM are defined

as follows:

Mij =

{

1 (Vij 6= 0),

0 (Vij = 0).
(10)

For collaborative filtering, we propose a modified NBMF method

in which the masked matrix is decomposed as

M ◦ V ≈ M ◦ (WH), (11)

where ◦ denotes the Hadamard product (M ◦ V)ij = MijVij.

In the modified NBMF algorithm, the objective function for

updating matrixW, as defined by Equation 4, is replaced with

fW(x) =
1

2
‖ṽ − H̃⊤x‖2 +

λ1

2
‖x‖2. (12)
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FIGURE 2

SB-based Ising machine. (a) System configuration. (b) Packing of multiple small Ising problems as a large Ising problem.

TABLE 1 Dataset sizes (the numbers of users and items) and filling rates

used in this study.

Dataset Users Items Filling rate

MovieLens 6,040 3,706 4.47%

Netflix 432,229 1,406 1.15%

Yahoo 2,677 126,478 0.30%

CiaoDVD 21,019 71,633 0.11%

The original sizes of the Netflix and Yahoo datasets are significantly larger: the Netflix dataset

includes 480,189 users, and the Yahoo dataset includes 1.8 million users.

When updating the ith row, the jth element consists of ṽj = MijVij

and (H̃⊤x)j =
∑

l MijHljxl. Similarly, the objective function for

updating matrix H, as expressed in Equation 5, is replaced by

fH(q) =
1

2
‖ũ− W̃q‖2 +

λ2

2
‖q‖2. (13)

When updating the jth column, the ith element consists of ũi =

MijVij and (W̃q)i =
∑

l MijWilql.

3.4 Ising formulation

The Ising machine (the SB-based machine in this study) seeks

spin configurations that minimize the energy of the Ising model

defined by

E = −
1

2

∑

i,j

Jijsisj +
∑

i

hisj. (14)

Here, si = ±1 represents the ith spin, Jij is the coupling coefficient

between the ith and jth spins, and hi is the local field on the ith spin.

For minimizing Equation 5, Jij and hi are given as follows:

Jij =

{

− 1
2

∑

r WriWrj (i 6= j),

0 (i = j),
(15)

hi =
1

2





∑

r

Wri





∑

j

Wrj − 2ur



 + λ2



 . (16)

For minimizing Equation 13 to update the jth row of M ◦ (WH),

Wrl in Equations 15, 16 are replaced with (W̃)rl = MrjWrl.

3.5 Simulated-bifurcation-based Ising
machine

The SB algorithm, which is based on the adiabatic evolution in

classical nonlinear systems that exhibit bifurcation, was introduced

to accelerate combinatorial optimization (Goto et al., 2019;

Tatsumura et al., 2020; Goto et al., 2021). The SB algorithm has

several variants, including adiabatic, ballistic, and discrete SB. In

this study, we employed the ballistic SB method, whose update rule

is described below (Goto et al., 2021):

yi(tk+1) = yi(tk) (17)

+







−[a0 − a(tk)]xi(tk)− ηhi + c0
∑

j

Jijxj(tk)







1t ,

(18)

xi(tk+1) = xi(tk)+ a0yi(tk+1)1t , (19)

where xi and yi are real numbers corresponding to the ith spin; a0,

c0, and η are positive constants; and a(t) is a control parameter

that increases from zero to a0. The time increment is 1t ; thus,

tk+1 = tk + 1t . After updating xi at each time step, if |xi| > 1,

we replace xi with sgn(xi) = ±1 and set yi = 0.

In our experiments, we employed a device with the FPGA

implementation of the SB algorithm (SB-based Ising machine) to

minimize Equations 5, 13. The SB-based Ising machine (Figure 2)

can solve fully-connected 2,048-spin Ising problems (the machine

size M is 2,048), featuring a computational precision of 32-bit

floating points and a system clock frequency of 259 MHz. As

shown in Figure 2a, the FPGA (Intel Stratix 10 SX 2800 FPGA) on

the board (Intel FPGA PAC D5005 accelerator card) is connected

to a CPU (Intel Core i9-9900K, 3.60 GHz) via a PCIe bus (Gen

3×16, peak bandwidth of 15.75 GB/s). The NBMF process is

executed using a CPU; however, the Ising problems described in

Equations 15, 16 are transferred/solved (offloaded) to/using the SB-

based Ising machine. The computation times shown in Section 4
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FIGURE 3

RMSE and computation time at each epoch, averaged over five trials, for (a) MovieLens, (b) Netflix, (c) Yahoo, and (d) CiaoDVD datasets. The error

bars denote the standard deviation.

include the processing times of the CPU and FPGA and the data

transfer times (overhead times) between them. The NMF process

was executed only on the CPU (no data transfer time). The column

update problems involved in updating matrixH (Equation 5), each

formulated as an Ising problem of size k (Equations 15, 16), are

independent and thus can be processed simultaneously. By packing

the multiple-column update problems as a large Ising problem, as

shown in Figure 2b (placing the small J matrices on the diagonal

line with zero padding to the remaining off-diagonal components),

we solve ⌊M/k⌋ column update problems simultaneously using the

SB-based Isingmachine with sizeM, where ⌊A⌋ is the floor function

of A ∈ R.

3.6 Data preparation

In this study, we used the MovieLens 1M dataset (Harper and

Konstan, 2015); Netflix Prize data1; Yahoo! Music user ratings of

songs with artist, album, and genre meta information2; and the

CiaoDVD dataset (Guo et al., 2014). These datasets were sparse,

as shown in Table 1. The numbers of users and items presented

in Table 1 are the dataset sizes imported for the calculation in this

1 Netflix Prize data, https://www.kaggle.com/datasets/netflix-inc/netflix-

prize-data.

2 VerizonMediaWebscope, Yahoo! Music User Ratings of Songs with Artist,

Album, and Genre Meta Information, v. 1.0, https://library.mcmaster.ca/data/

yahoo-webscope-program-datasets.

study. The filling rate, which is the proportion of rated entries,

differs among the datasets. To compare the results of these datasets,

we extracted data from them to create a rating matrix with a

specified filling rate.

The method for extracting data at a specified filling rate is as

follows. First, we sorted the columns in descending order by the

percentage of filled elements in each column and then sorted the

rows similarly. Next, we selected an n × m matrix whose (1, 1)

element coincides with the first-row and first-column element of

the sorted table, and calculated the filling rate of the matrix. By

shifting the (1, 1)-element location by one row and one column in

the sorted table, we repeated the calculation of the filling rate. The

n × m matrix with the closest filling rate to the desired filling rate

was selected as the rating matrix.

3.7 Parameter settings and evaluation

By extracting data from each dataset, we constructed a rating

matrix in which 20% of the elements were rated unless otherwise

specified. The numbers of users (rows) and items (columns) in

the rating matrix are n = 250 and m = 500, respectively, and

the number of features is set to half the number of users, that

is, k = n/2, unless otherwise specified. For the learning process,

which involved the execution of NBMF/NMF, we concealed 20% of

the rated elements together with the unrated ones. To evaluate the

performance, we used the root mean squared error (RMSE) of the
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FIGURE 4

Filling rate dependence of RMSE for (a) MovieLens, (b) Netflix, (c) Yahoo, and (d) CiaoDVD datasets. Training data with filling rates of more than 45%,

25%, and 20% could not be extracted for (b–d), respectively. The data were averaged over five trials, with error bars denoting the standard deviation.

rated elements:

√

√

√

√

1

|D|

∑

(i,j)∈D

(vij − rij)2, (20)

where D is the set of rated elements, and |D| is the number of

rated elements. vij is user i’s rating for item j, and rij denotes the

corresponding predicted rating.

We set the hyperparameters in Equations 2, 3 as λ1 = 10−2

and λ2 = 10−5, which were tuned for the MovieLens dataset using

a grid search. Parameters in Equations 9, 17 were also tuned for the

case of the MovieLens dataset. Although the optimal values may

depend on the dataset and matrix size, we used the fixed values

for simplicity.

In our experiments, we applied NBMF and NMF to the same

rating matrix. To ensure a comprehensive evaluation, we divided

the rated elements into five distinct sets and performed five trials,

masking one set at a time. The average was calculated for five trials

unless otherwise specified.

4 Results and discussion

Figure 3 shows a comparison of RMSE and computation time

of NBMF and NMF for 10 epochs. Each epoch involves updating

matrixW followed by updatingmatrixH. The data points represent

the averages of RMSE and computation time at each epoch, with

some error bars too small to be observed. Figure 3 shows that

the RMSE decays more rapidly in NBMF than in NMF for all

datasets. Although the difference in the RMSE at each epoch

between NBMF and NMF was negligible, the difference among

the datasets was remarkable. The difference among the datasets

originates from the frequency distribution of the ratings in each

dataset. As elaborated later, when the distribution was sharp and

the variance was small, the RMSE tended to be small. In contrast,

when the variance in the frequency was large, the RMSE was

relatively large.

The filling rate of a rating matrix, which is the proportion

of rated elements, influences collaborative filtering. However, the

filling rate dependence of the RMSE varied across the datasets, as

shown in Figure 4. Here, the RMSE was calculated after 10 epochs

and averaged over five trials.

NMF is expected to produce lower RMSE values than NBMF

due to its higher resolution. However, in Figure 4, case (a)

demonstrates that the RMSE values for both NBMF and NMF were

similar when the filling rate was around 20%. Furthermore, in case

(d), the RMSE for NBMF was smaller than that for NMF at the

filling rate of ∼20%. This inconsistent behavior suggests that the

datasets have significant differences in their features.

Figure 5 shows the advantages of the masking procedure.

The masking data for each dataset were the same as those used

for NBMF in Figure 3. Notably, the RMSE without the masking

procedure was about more than three times larger than the RMSE

with the masking procedure for all datasets. Furthermore, the

difference in computation time between the two procedures was

minimal. These findings indicate that the masking procedure
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FIGURE 5

RMSE and computation time at each epoch with and without the masking procedure for NBMF for (a) MovieLens, (b) Netflix, (c) Yahoo, and (d)

CiaoDVD datasets. The data were averaged over five trials, with error bars denoting the standard deviation.

FIGURE 6

Frequency distributions of ratings expressed as percentages for (a) MovieLens, (b) Netflix, (c) Yahoo, and (d) CiaoDVD datasets.

provides apparent benefits in collaborative filtering, despite aminor

drawback in terms of computation time.

The results indicate that the RMSE reflects specific properties of

the data. Here, we focus on the frequency distribution of ratings, as

illustrated in Figure 6. The distribution represents the percentage

of ratings (1, 2, 3, 4, and 5) among the rated elements in a rating

matrix, with a filling rate of 20%. The distributions in (a) and (b)

showed a broad peak, and the corresponding RMSE had a similar
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FIGURE 7

Computation time for 10 epochs in NBMF and NMF methods for the (a) MovieLens, (b) Netflix, (c) Yahoo, and (d) CiaoDVD datasets. The blue and

green bars represent the total times spent on updating matrices W and H, respectively.

FIGURE 8

RMSE as a function of the ratio of the number of features k to that of users n for (a) MovieLens, (b) Netflix, (c) Yahoo, and (d) CiaoDVD datasets. The

data were averaged over five trials, with error bars denoting the standard deviation.
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value at 10 epochs in Figures 3a, b. However, the distribution in

(c) showed two peaks at 1 and 5, resulting in significant variance.

The corresponding RMSE at 10 epochs in Figure 3c was larger

than those of the other three data. By contrast, the distribution

in (d) had a steep peak at 4, indicating that more than 80% of

the rated elements had a value of 4. The corresponding RMSE at

10 epochs in Figure 3d was significantly smaller than those of the

other three data. This observation indicates that a distribution with

a sharp peak and small variance typically results in a smaller RMSE.

However, a distribution with a broader peak and larger variance

often results in a larger RMSE.

The computation time for NBMF was significantly shorter than

that for NMF under the same problem setup, as shown in Figure 7,

for all the datasets. The total time required to update matrixW over

10 epochs was the same for both NMF and NBMF. However, the

time required to update matrix H in NMF was approximately six

times longer than that in NBMF. This discrepancy suggests that the

use of an SB-based machine accelerates the computation to update

H. Additional time is required to minimize Equation 13 during the

update of H. Executing minimization using the SB-based machine

involves transforming the objective function into the Ising model

form, as explained in Section 3.4. Using the SB-based machine

causes the communication time between the CPU and the FPGA,

although it is a small fraction of the total time. Nevertheless, the

overall computation time for NBMF, including these additional

factors, was shorter than that for NMF.

Throughout this study, the ratio of the number of features to

the number of users was fixed at k/n = 0.5. In general, the RMSE

tends to decrease as the ratio increases. However, the computation

time increases with the ratio because the matrix sizes of H and W

increase. Therefore, a moderate value needs to be selected for this

ratio. As shown in Figure 8, the rate of improvement in the RMSE

was slow for ratios of 0.5 or greater across all datasets. Considering

this result, we chose k/n = 0.5 as an appropriate value for this ratio.

Our results support the computational advantages of NBMF.

However, several limitations exist. Notably, the performance of

NBMF is susceptible to the characteristics of datasets. NMF,

which operates on continuous variables, shows comparable or

superior accuracy in certain instances compared to NBMF. This

higher accuracy is due to the greater resolution of continuous

representations compared to binary ones. Furthermore, it is

necessary to employ a low-latency system to realize the advantage

of computation time. Even with a high-performance Ising

machine, communication overhead between the CPU and the Ising

machine can significantly impact overall performance. Therefore,

utilizing a low-latency Ising machine is crucial for efficiently

executing NBMF.

5 Conclusions

In summary, we proposed a novel approach that employs

NBMF with masking for collaborative filtering, and our findings

demonstrate a substantial improvement in estimation performance

as a result of the masking procedure. Moreover, our results

highlighted the computational advantage of employing an SB-

based machine in NBMF. NBMF with masking can be applied in

collaborative filtering across various datasets. This study reveals the

potential of NBMF by utilizing an Ising machine for a wide range

of applications.

The efficacy of hybrid concepts using both a general-purpose

processor and an Ising machine can extend to other algorithms,

indicating significant potential for further research in this area.

Similar hybrid algorithms will become increasingly active in the

future as low-latency Ising machines become more advanced

and popular.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

YT: Formal analysis, Investigation, Writing – review & editing.

YI: Formal analysis, Writing – review & editing, Investigation. YH:

Investigation, Writing – review & editing, Software. KT: Software,

Investigation,Writing – review& editing. KK: Supervision,Writing

– original draft, Funding acquisition, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was partially

supported by JSPS KAKENHI (grant numbers JP23H04499 and

JP25H01522) and Murata Science and Education Foundation.

Conflict of interest

KT was an inventor on a Japanese patent application related

to this work filed by the Toshiba Corporation (no. P2019-

164742, filed 10 September 2019). This study was conducted

as collaborative research between Ochanomizu University and

Toshiba Corporation.

YH and KT were employed at the Toshiba Corporation.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2025.1599704
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Terui et al. 10.3389/fdata.2025.1599704

References

Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.
G., et al. (2019). Physics-inspired optimization for quadratic unconstrained problems
using a digital annealer. Front. Phys. 7:48. doi: 10.3389/fphy.2019.00048

Asaoka, H., and Kudo, K. (2020). Image analysis based on nonnegative/binary
matrix factorization. J. Phy. Soc. Jpn. 89:085001. doi: 10.7566/JPSJ.89.
085001

Asaoka, H., and Kudo, K. (2023). Nonnegative/binary matrix factorization
for image classification using quantum annealing. Sci. Rep. 13:16527.
doi: 10.1038/s41598-023-43729-z

Golden, J., and O’Malley, D. (2021). Reverse annealing for nonnegative/binary
matrix factorization. PLoS ONE 16:e0244026. doi: 10.1371/journal.pone.0244026

Goto, H., Endo, K., Suzuki, M., Sakai, Y., Kanao, T., Hamakawa, Y., et al. (2021).
High-performance combinatorial optimization based on classical mechanics. Sci. Adv.
7:eabe7953. doi: 10.1126/sciadv.abe7953

Goto, H., Tatsumura, K., and Dixon, A. R. (2019). Combinatorial optimization
by simulating adiabatic bifurcations in nonlinear Hamiltonian systems. Sci. Adv.
5:eaav2372. doi: 10.1126/sciadv.aav2372

Guo, G., Zhang, J., Thalmann, D., and Yorke-Smith, N. (2014). “ETAF: an
extended trust antecedents framework for trust prediction," in Proceedings of the
2014 International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) (Beijing IEEE). doi: 10.1109/ASONAM.2014.6921639

Harper, F. M., and Konstan, J. A. (2015). The movielens datasets: history and
context. ACM Trans. Interact. Intell. Syst. 5:19. doi: 10.1145/2827872

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). “Explaining collaborative
filtering recommendations," in Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, CSCW ’00 (New York, NY: Association for Computing
Machinery), 241–250. doi: 10.1145/358916.358995

Hidaka, R., Hamakawa, Y., Nakayama, J., and Tatsumura, K. (2023). Correlation-
diversified portfolio construction by finding maximum independent set in large-
scale market graph. IEEE Access 11, 142979–142991. doi: 10.1109/ACCESS.2023.
3341422

Inagaki, T., Haribara, Y., Igarashi, K., Sonobe, T., Tamate, S., Honjo, T., et al. (2016).
A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606.
doi: 10.1126/science.aah4243

Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson,
N., et al. (2011). Quantum annealing with manufactured spins. Nature 473, 194–198.
doi: 10.1038/nature10012

Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J., et al. (2020). Designing
metamaterials with quantum annealing and factorization machines. Phys. Rev. Res.
2:013319. doi: 10.1103/PhysRevResearch.2.013319

Lee, D. D., and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature 401, 788–791. doi: 10.1038/44565

Lee, D. D., and Seung, H. S. (2000). “Algorithms for non-negative matrix
factorization," in Proceedings of the 13th International Conference on Neural
Information Processing Systems, NIPS’00 (Cambridge, MA: MIT Press), 535–541.

Lee, J., Bengio, S., Kim, S., Lebanon, G., and Singer, Y. (2014). “Local collaborative
ranking," in Proceedings of the 23rd International Conference on World Wide
Web, WWW ’14 (New York, NY: Association for Computing Machinery), 85–96.
doi: 10.1145/2566486.2567970

Lin, C. J. (2007). Projected gradient methods for nonnegative matrix factorization.
Neural Comput. 19, 2756–2779. doi: 10.1162/neco.2007.19.10.2756

McMahon, P. L., Marandi, A., Haribara, Y., Hamerly, R., Langrock, C., Tamate, S.,
et al. (2016). A fully programmable 100-spin coherent Ising machine with all-to-all
connections. Science 354, 614–617. doi: 10.1126/science.aah5178

Nath, R. K., Thapliyal, H., and Humble, T. S. (2021). A review of machine learning
classification using quantum annealing for real-world applications. SN Comput. Sci.
2:365. doi: 10.1007/s42979-021-00751-0

O’Malley, D., Vesselinov, V. V., Alexandrov, B. S., and Alexandrov, L. B. (2018).
Nonnegative/binary matrix factorization with a D-Wave quantum annealer. PLoS ONE
13:e0206653. doi: 10.1371/journal.pone.0206653

Pierangeli, D., Marcucci, G., and Conti, C. (2019). Large-scale photonic
Ising machine by spatial light modulation. Phys. Rev. Lett. 122:213902.
doi: 10.1103/PhysRevLett.122.213902

Singh, R., Dwivedi, P., and Kant, V. (2024). Comparative analysis of collaborative
filtering techniques for the multi-criteria recommender systems.Multimed. Tools Appl.
83, 64551–64571. doi: 10.1007/s11042-024-18164-5

Su, X., and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering
techniques. Adv. Artif. Intell. 2009:e421425. doi: 10.1155/2009/421425

Tatsumura, K., Hidaka, R., Yamasaki,M., Sakai, Y., andGoto, H. (2020). “A currency
arbitrage machine based on the simulated bifurcation algorithm for ultrafast detection
of optimal opportunity," in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS) (Seville: IEEE), 1–5. doi: 10.1109/ISCAS45731.2020.9181114

Willsch, D., Willsch, M., De Raedt, H., and Michielsen, K. (2020). Support vector
machines on the D-wave quantum annealer. Comput. Phys. Commun. 248:107006.
doi: 10.1016/j.cpc.2019.107006

Yamamoto, K., Ando, K., Mertig, N., Takemoto, T., Yamaoka, M., Teramoto, H.,
et al. (2020). “Statica: a 512-spin 0.25M-weight full-digital annealing processor
with a near-memory all-spin-updates-at-once architecture for combinatorial
optimization with complete spin-spin interactions," in 2020 IEEE International
Solid-State Circuits Conference - (ISSCC) (San Francisco, CA: IEEE), 138–140.
doi: 10.1109/ISSCC19947.2020.9062965

Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno,
H., et al. (2016). A 20k-spin Ising chip to solve combinatorial optimization
problems with CMOS annealing. IEEE J. Solid-State Circ. 51, 303–309.
doi: 10.1109/JSSC.2015.2498601

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2025.1599704
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.7566/JPSJ.89.085001
https://doi.org/10.1038/s41598-023-43729-z
https://doi.org/10.1371/journal.pone.0244026
https://doi.org/10.1126/sciadv.abe7953
https://doi.org/10.1126/sciadv.aav2372
https://doi.org/10.1109/ASONAM.2014.6921639
https://doi.org/10.1145/2827872
https://doi.org/10.1145/358916.358995
https://doi.org/10.1109/ACCESS.2023.3341422
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1038/44565
https://doi.org/10.1145/2566486.2567970
https://doi.org/10.1162/neco.2007.19.10.2756
https://doi.org/10.1126/science.aah5178
https://doi.org/10.1007/s42979-021-00751-0
https://doi.org/10.1371/journal.pone.0206653
https://doi.org/10.1103/PhysRevLett.122.213902
https://doi.org/10.1007/s11042-024-18164-5
https://doi.org/10.1155/2009/421425
https://doi.org/10.1109/ISCAS45731.2020.9181114
https://doi.org/10.1016/j.cpc.2019.107006
https://doi.org/10.1109/ISSCC19947.2020.9062965
https://doi.org/10.1109/JSSC.2015.2498601
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Collaborative filtering based on nonnegative/binary matrix factorization
	1 Introduction
	2 Problem formulation
	3 Methods
	3.1 Algorithm
	3.2 Projected gradient method
	3.3 Masking procedure
	3.4 Ising formulation
	3.5 Simulated-bifurcation-based Ising machine
	3.6 Data preparation
	3.7 Parameter settings and evaluation

	4 Results and discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


