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Periodic pattern mining, a branch of data mining, is expanding to provide insight

into the occurrence behavior of large volumes of data. Recently, a variety

of industries, including fraud detection, telecommunications, retail marketing,

research, and medical have found applications for rare association rule mining,

which uncovers unusual or unexpected combinations. A limited amount of

literature demonstrated how periodicity is essential in mining low-support

rare patterns. In addition, attention must be placed on temporal datasets

that analyze crucial information about the timing of pattern occurrences and

stream datasets to manage high-speed streaming data. Several algorithms

have been developed that e�ectively track the cyclic behavior of patterns

and identify the patterns that display complete or partial periodic behavior

in temporal datasets. Numerous frameworks have been created to examine

the periodic behavior of streaming data. Nevertheless, such a method that

focuses on the temporal information in the data stream and extracts rare

partial periodic patterns has yet to be proposed. With a focus on identifying

rare partial periodic patterns from temporal data streams, this paper proposes

two novel sliding window-based single scan approaches called R3PStreamSW-

Growth and R3PStreamSW-BitVectorMiner. The findings showed that when

a dense dataset Accidents is considered, for di�erent threshold variations

R3P-StreamSWBitVectorMiner outperformed R3PStreamSW-Growth by about

93%. Similarly, when the sparse dataset T10I4D100K is taken into account,

R3P-StreamSWBitVectorMiner exhibits a 90% boost in performance. This

demonstrates that on a range of synthetic, real-world, sparse, and dense datasets

for di�erent thresholds, R3P-StreamSWBitVectorMiner is significantly faster than

R3PStreamSW-Growth.

KEYWORDS

partial periodicmining, rarepartial periodic patternmining, rareperiodic patternmining,

stream periodic pattern mining, tree-based streammining, list-based streammining
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1 Introduction

In this data-centric era, various applications use frequent
pattern mining (FPM). This data mining technique discovers
frequently co-occurring patterns based on user-specified thresholds
in static as well as stream data. Streaming data are unbounded
in quantity and change very fast. Sensor data, Stock tickers,
Telecommunication call data, Credit card transactions and Internet
packet streams are all considered online data that have to be
processed as fast as possible because of their rapid arrival. The swift
rise of these novel application fields has made it more challenging
to perform sophisticated analysis and data mining across massive,
rapidly emerging data streams to identify engrossing trends,
patterns, and outliers. Compared to static mining algorithms, the
models designed to handle the stream data have to consider the
following essential concerns: (i) The stream data have to be scanned
once and need not be backtracked. (ii) Stream data have to be
processed as fast as possible by considering memory limitations.
(iii) Because of dynamic behavior, frequent patterns may become
gradually infrequent and vice versa. Considering these issues,
several frequent stream mining algorithms have been designed to
successfully extract frequent patterns from streaming data. Data
stream processing models are divided into Landmark, Sliding and
Damped window models. An excerpt of the data stream is called
a window (Cheng et al., 2008; Borah and Nath, 2017a). The
landmark window model performs data extraction by considering
the data within the landmark and the current time andmaintaining
summary data (Manku andMotwani, 2002; Lee and Lee, 2005). The
sliding window model focuses on the current window part of the
stream data. It processes new transactions by sliding the window
and deletes the older transactions (Tanbeer et al., 2010, 2017; Li and
Lee, 2009; Tanbeer et al., 2009; Lee et al., 2014). The time fading or
damped window model considers the order of appearance of data
and depending on this, allocates various weights to the data. Older
transactions will have less weightage, whereas the recent data will
have higher weights (Tsai, 2009; Hung et al., 2015). Applications
that manage stream-oriented data typically value research focusing
on recent data. In this direction, the sliding window model is a
technique that restricts the stream data to a current window.

On the other side, Rare Pattern Mining (RPM) successfully
uncovers the hidden, uncommon or unexpected behavior that
FPM fails to extract. When the medicine field is considered, rare
responses which may show adverse reactions are sometimes more
interesting than the expected, common responses to medications
(Koh and Ravana, 2016). Further, several algorithms (Huang et al.,
2015, 2014; Koh and Ravana, 2016) are designed which are capable
of mining rare patterns from stream data as well. However, these
pattern mining techniques have concentrated on the support
metrics.

Periodic Frequent Pattern Mining (PFPM) then arose as
a significant area that demonstrated the value of considering
occurrence behavior also known as periodicity or regularity into
account during the pattern mining process. PFPM found its usage
in an extensive range of applications, such as the study of gene
and medical data (khaleel et al., 2015; Glynn, 2006), online user
behavior (Yi et al., 2018), mobility intention (Fong et al., 2011),
and so forth. The algorithms designed in this area are able to

extract periodic frequent patterns from static datasets. Additionally,
several algorithms (Tanbeer et al., 2010, 2017; Mesama and
Amphawan, 2018; Rashid et al., 2013) have been designed to focus
on the occurrence behavior of frequently occurring patterns in the
stream data.

Initial PFPM models have shown strict behavior on the cyclic

repetitions of the patterns by eliminating those patterns even when
a single periodicity does not confirm the threshold measure under
consideration. However, real-life applications show a requirement
for relaxation in the strictness measure during the extraction
of periodic patterns. For example, heavy traffic is observed on

weekends rather than weekdays. In the retail market, “bread” and
“butter” is purchased regularly. Meanwhile, “jam” and “rice” may
be purchased monthly. Partial Periodic Pattern Mining (PPPM),
relaxed the strictness measure of periodicity by permitting users
to choose the minimal cyclic repetitions allowed when extracting
a partial periodic pattern. In addition, recent research (Upadhya
et al., 2023; Kiran et al., 2017b, 2022b; Ravikumar et al., 2022,
2021) has also shown the need of taking temporal information
into account. For instance, compared to other timings, traffic
congestion can be worse between 9 a.m. to 10 a.m. and 5 p.m. to
6 p.m. Temporal datasets possess characteristics such as: (i) The
timestamp information from the incoming database is used to sort
temporal datasets. (ii) There is a possibility for inconsistent timing
between subsequent transactions. (iii) Several transactions may
arrive simultaneously. Additionally, merging these transactions
could result in the loss of the actual support data and the creation of
misleading associations (Upadhya et al., 2023; Kiran et al., 2022b).

“Periodic Rare Pattern Mining” (PRPM) has been growing
as a promising area with a focus on discovering unusual or
unexpected combinations that are overlooked by PFPM algorithms.
Sometimes, rare patterns occur in the entire transaction dataset,
they may be periodic and significant. Few models have been
developed to extract these patterns (Fournier-Viger et al., 2020;
Jyothi et al., 2023). However, dealing with the timestamp data
will enhance the knowledge extracted. For example, Kiran et al.
(2022b) considered a case study of the raw traffic congestion data
by combining the road segments that had congestion above 300
meters, which were gathered by sensors connected to Japan’s spatial
locations. It produced a collection of highly crowded road segments
where people frequently encountered traffic jams. Conversely, at
certain times, heavy traffic may be observed during festival days.
Festivals occur throughout the year despite their sporadic nature.
Accordingly, it is important to extract the timestamp information.
In contrast to periodic frequent patterns, these patterns have
low support counts and greater periodicities. This information
on highly congested roads could assist traffic control rooms
in directing traffic, recommending police patrols, and warning
pedestrians on the roads for those who frequently encounter
traffic congestion on festival days. In addition, to forecast on-
road congestion segments, several statistical and machine learning
models (Nguyen et al., 2019) have been designed. The proposed
model could be used to analyze the data generated by these
prediction models to identify sets of extremely congested road
segments during festival days. Most PFPM algorithms fail to
record the occurrence of these patterns. With this motivation, the
following major contributions are proposed in this paper:
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• 3P-Growth is a novel model designed by Kiran et al. (2022b,
2017a), where partial periodic patterns are extracted from
temporal static data using a pattern-growth approach. Here
3P-Tree plays a major role in capturing temporal information.
The tree is created by scanning the database twice, which is
inappropriate for mining stream data. In this direction, 3P-
Growth is enhanced and a novel sliding window-based single
scan algorithm named R3PStreamSW-Growth is presented,
which successfully captures Rare Partial Periodic Patterns
(R3Ps) from temporal stream data. The major components
of this algorithm are R3PStream-List, R3PStream-Tree and
R3PStream-Queue.

• Concerning the generation of partial periodic one-length
patterns from the current timestamp window, a R3PStream-

List structure is maintained. Subsequently, it is refreshed,
which helps in pruning the aperiodic one-length patterns and
further reduction of the extensive search space.

• A highly efficient R3PStreamSW-Tree is built that successfully
gathers timestamped data from the current window stream.
Older transactions are deleted when the window slides, and
a fresh set of stream data is added to the R3PStreamSW-

Tree. A Queue structure called R3PStream-Queue accelerates
window sliding by directing the traversal to the nodes of
R3PStreamSW-Tree that hold timestamp data.

• During the mining phase, R3PStreamSW-Growth employs
a divide-and-conquer strategy, which generates a massive
number of conditional pattern trees. This recursive process
affects the mining performance. To overcome this, our
previous work R3P-BitVectorMiner (Upadhya et al., 2023) is
enhanced and a novel depth-first search framework named
R3P-StreamSWBitVectorMiner is proposed to extract entire
R3Ps from the temporal stream data. The current window
stream data are transformed into bit-vector and stored in
an efficient data structure named R3PStreamSWTSList which
helps in pruning non-periodic itemsets.

• Periodic (or cyclic) refers to a temporal stream pattern that
satisfiesmaxPer, a user-given periodicity measure. Further, the
necessary count of cyclic repetitions is supervised by using two
distinct support thresholds,minFreqPS andminRarePS. In this
case, minRarePS helps to eliminate the rare patterns that are
noisy itemsets that are associated by chance.

• In addition, to maintain the sliding window, window
size—TSWindowSize and batch size—TSBatchSize values are
accepted by the user. Further, mineBSize, a user-specified
value, decides after how many batches of sliding window
process the mining happens.

• Several synthetic as well as real-life datasets are considered
for experimentation. Additionally, several analyses using wide
range of periodicities and support thresholds are presented.
Research shows that R3P-StreamSWBitVectorMiner is highly
time and space efficient compared to R3PStreamSW-Growth.

The rest of the paper is arranged as follows: Section 2
presents the literature work carried out in the area of PFPM and
RPM. Necessary definitions required to enhance the proposed
methods are given in Section 3. Section 4 exhibits various modules
and discussions of R3PStreamSW-Growth. Various modules

of R3P-StreamSWBitVectorMiner depicted in Section 5. Result
analysis and experimental evaluation by considering different
datasets are depicted in Section 6. The conclusion and future
directions are presented in Section 7.

2 Related work

2.1 Periodic frequent pattern mining
(PFPM)

PFPM focuses on how periodically the patterns occur. Here
the literature work is conducted on static and stream data which
includes temporal information along with periodicity.

2.1.1 Related work considering periodicity
measure in static/stream data

Tanbeer et al. (2008) first presented Regular Pattern Tree in
which the support information maintained in every node of FP-
Tree (Han et al., 2000) was replaced with the transaction id (tid)
information in only the leaf node. The tid information aided in
the calculation of pattern regularity and was controlled by the
threshold maxPer. Further, Regular Pattern Tree was enhanced to
study the regularity of patterns from the data stream (Tanbeer
et al., 2010) and body sensor networks (Tanbeer et al., 2017). As
these models discarded all the patterns having even one single
periodicity larger than maxPer threshold several models started
replacing maxPer with other periodic measures. By using variance
as the periodicity measure, Rashid et al. found frequent patterns
regularly occurring in the static (Rashid et al., 2012) as well as
wireless sensor networks (Rashid et al., 2013). Kiran et al. (2016);
Kiran and Kitsuregawa (2014); Venkatesh et al. (2018) handled
“rare item problem” by taking unique support as well as periodicity
thresholds for each item to extract frequent and rare patterns
occurring regularly in a set of transactions. Instead of taking a
single periodicity measure, Fournier-Viger et al. (2017) designed
Periodic Frequent Pattern Miner,which makes use of a combination
of minimum, average and maximum regularity thresholds to
extract regular frequent itemsets from the static data. Lability is a
novel measure introduced by Fournier-Viger et al. (2019) which
successfully mined periodic patterns that are stable in the database.
As setting the appropriate occurrence frequency measure is a
difficult task, numerous algorithms found a solution by taking a
simple parameter k to find regularly present top-k frequent patterns
in the database. To mine top-k frequent stable periodic patterns
Fournier-Viger et al. (2021) designed a model named TSPIN. It
built a stable periodic-frequent tree and followed a pattern-growth
method to extract the patterns. To mine frequently occurring top-k
regular patterns, a single scan algorithm focused on partition and
estimation methods was developed by Amphawan et al. (2012). A
sliding window technique, TFRIM-DS is a contribution of Mesama
and Amphawan (2018). This single-scan algorithm successfully
mines top-k patterns with highest support and regularly occurring
itemsets in the current data stream window. To cope with the
huge redundant patterns generated, Amphawan and Lenca (2015)
developed a single scan algorithm named TFRC-Mine to produce
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longer non redundant top-k frequent closed itemsets occurring
regularly in the dataset. Closed Regular Patterns in Data Streams

is a contribution of Marriboyina and Reddy (2013) which works
in vertical data format using a sliding window model. In the
initial phase, it extracts regular patterns and in the next phase,
it mines closed regular patterns. Jammalamadaka and Budaraju
(2025) considered a medical data stream and identified all negative
associations by groping the medications given to patients using
a window model. With optimum frequency and regularity, they
reduced the number of negative associations from 0.73 to 0.43 when
a 1,000 set of items is considered formining. This helps doctors save
patients from the devastating effects. Ishita et al. (2022) designed
RHusp, RIncHusp and RStreamHusp to mine regular high-utility
sequential patterns from static, incremental as well as evolving
stream data respectively. To uncover regular high-utility itemsets
in incremental database systems, Incremental Periodic High-Utility
Itemset Miner (IPHM) (Huang et al., 2024) employs a novel
incremental utility-list structure. This approach identifies recurrent
consumer buying patterns that are typical in everyday situations.

Most of the above methods impose a strict measure on the
occurrence behavior and discard a large number of patterns
immediately when a single periodicity fails to satisfy the periodicity
value considered. To relax this, PPPM algorithms are designed
which uses a measure to control the minimum count of cyclic
repetitions required. A periodic-ratio threshold is used by GPF-

growth, which is a contribution of Kiran et al. (2017c). This
threshold takes care of the proportion of cyclic repetitions of
regular itemsets in static databases. Further, to find frequent
patterns involving both rare and frequent periodicity, “Extended
Periodic-Frequent pattern-growth” a pattern-growth approach is
designed by Venkatesh et al. (2016) Here the “rare item problem” is
solved by utilizing all-confidence as well as periodic-all-confidence
measures.

2.1.2 Related work considering temporal
information

The algorithms dealing with timestamp information must
handle multiple arrival of transactions at a common timestamp
and non-uniform occurrence of transactions. 3P-Growth is a
contribution of Kiran et al. (2022b, 2017a) which successfully dealt
with temporal datasets. Instead of maintaining tid information,
timestamp information is kept track using 3P-list and 3P-tree

data structures. A pattern growth approach enumerates entire
PPPs existing throughout the dataset by utilizing the temporal
information. A relative periodic-support measure is utilized by
Kiran et al. (2017b) to enumerate PPPs from the dataset exhibiting
non-uniform periodic nature. Further, to extract PPPs in non-
uniform temporal databases, with a combination of both rare as
well as frequent patterns, Kiran et al. (2022a) proposedG3P-growth.
Here, temporal information is captured in “G3P-tree” and this
compact tree is recursively mined to extract PPPs using relative
periodic support measure. To discover periodically correlated
patterns that are frequent, Venkatesh et al. (2018) came up with
a model named “Extended Periodic-Correlated pattern-growth”.
As these algorithms dealt with row temporal databases, there
are few algorithms designed that consider columnar datasets

with timestamp information. To extract frequent patterns that
are periodic, a run-time and memory-efficient method named
“Frequent-Equivalence CLass Transformation” is designed by
Ravikumar et al. (2021). An enhancement of ECLAT algorithm
named 3P-ECLAT is developed by Ravikumar et al. (2022); Pamalla
et al. (2023). At first, TS-list is utilized to keep the timestamp
information of one length PPPs. Next, entire PPPs are extracted by
performing an intersection operation on the itemsets present in TS-
list in a depth-first search manner. To extract maximal PPPs and
stable periodic frequent patterns from timestamp dataset, Likhita et
al. presented max3P-Growth (Likitha et al., 2021) and SPP-ECLAT

(Dao et al., 2023) respectively. Further, setting minSup threshold
measure is a time consuming task, to overcome it, Likhitha et al.
(2023) contributed “Top-k Periodic-Frequent Pattern Miner”. The
model finds k frequent itemsets with lowest periodicities in a
dataset with timestamp information. Even though the regularity
can be found using PFPM techniques, the study is focused only on
frequent patterns. Conversely, the periodicity of rare itemsets is not
emphasized in the majority of current PFPM techniques.

2.2 Rare itemset mining

2.2.1 Related work in static/stream data without
considering periodicity measure

The RPM algorithms can be categorized as Apriori based and
Tree based. There are several Apriori based approaches (Adda et al.,
2012; Troiano et al., 2009; Troiano and Scibelli, 2014) designed to
extract rare itemsets which traverse the itemset lattice in a top-down
manner. Initially, longest or k-itemset is constructed. Subsequently,
in every level its subsets are found by pruning frequent and
noisy itemsets in the dataset. “NII-Miner”, is the initial tree-based
contribution of Lu et al. (2020) which uses a top-down depth-
first strategy to mine uncommon itemsets. The ARIMA algorithm,
designed by Szathmary et al. (2010)mines all rare itemsets in a static
dataset. To deal with the spurious low support threshold patterns,
Bouasker and Ben Yahia (2015); Bouasker et al. (2012) designed
CORI algorithm. In the initial phase, the equivalent vertical bit-
wise representation of the input database happens and then all set of
correlated rare itemsets are enumerated in a bottom-up method by
performing simple logical operations. Minimizing the search space
is amajor challenge that RPM algorithms have to face. In this regard
few algorithms mined sub-range of rare itemsets in a bottom-up
strategy by selecting the transactions having minimum one rare
item. Tsang et al. (2011) initially built a tree structure named
“Rare Pattern Tree” (RP-Tree). Next, a pattern-growth approach is
applied to mine the rare itemsets between thresholds minFrepSup

and minRareSup. Based on the concept of RP-Tree Huang et al.
(2015) constructed Streaming Rare Pattern Tree to deal with stream
data. A single scan algorithm is built which discovers all the rare
itemsets using a sliding window approach with different window
and block sizes. Similarly, “Hyper-Linked Rare Pattern Mining” is
a novel work of Borah and Nath (2017b). A memory-based queue
structure comprising hyper-linked pattern is utilized tomine subset
of rare itemsets. To handle both rare as well as frequent itemsets
Borah and Nath (2018) and Rai et al. (2022) constructed Single

Scan Pattern Tree and BIN-Tree respectively. Huang et al. (2014)
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developed “Rare Pattern Drift Detector” which detects drifts in the
rare itemsets selected between two threshold values minFreqSupp

andminRareSupp. The associations in a stream data for a particular
item during a specific time is tracked by a novel measure called
M. However, the occurrence behavior is overlooked in these RPM
methods.

2.2.2 Related work with periodicity threshold
measure

Studying periodic nature of rare itemsets further extracts the
significant information in numerous applications. Fournier-Viger
et al. (2020) designed MRCPPS, a novel framework that extracts
rare correlated itemsets that exists throughout various sequences.
In combination with support threshold, standard deviation of
periods plays a major role in periodicity measure. In addition,
the extraction process of periodic rare correlated itemsets also
produces a lot of spurious patterns and these patterns are
pruned using the bond measure. Our novel work, PRCPMiner

(Jyothi et al., 2023) is able to enumerate periodic rare itemsets
that are correlated in static datatset. Here CORI algorithm is
modified to deal with periodic behavior. This is achieved by
using periodicity threshold in combination with support and
bond thresholds. In order to enumerate periodic rare itemsets
from the static database, we enhanced NII-Miner and proposed
PRPNegTidTreeMiner algorithm. Here NegTidTree is built which
serves the dual purpose of finding periodicity information along
with support measure. The literature presents very few frameworks
have focused on studying the periodic nature of rare itemsets.
However, these algorithms have not concentrated on the temporal
information. In this regard, PRCPMiner is enhanced to design “3P-

BitVectorMiner” (Upadhya et al., 2023). The model successfully
considers timestamp information and examines the occurrence
behavior of partial patterns. Further, “RFPP-BitVectorMiner” and
“‘R3P-BitVectorMiner” were presented to extract rare full periodic
and partial periodic respectively. Literature shows there is no
algorithm designed to extract rare partial periodic patterns from
the stream data. With this motivation, to deal with the temporal
stream data tree-based and list-based sliding window frameworks
are presented in this paper.

3 Stream rare partial periodic pattern
model

In an application domain, let ψ = {d1, d2,...., dn} be a complete
collection of items that represent unit of information. Let a
temporal transaction ti = (Tid, TS, I) where transaction identifier
is represented by a distinct value Tid, time stamp is presented
by TS. I ⊆ ψ is named an itemset (or a pattern). An itemset I
comprising of x unique items, where 1≤ x≤ n is framed as x -
pattern. A temporal data stream TDS over ψ is an infinite group
of ordered transactions i.e., TDS = [t1, t2,.....,tp). A window TSW

consists of group of all the transactions between jth and kth arrival
where 1≤j≤k≤p. The set of transactions between jth and kth arrival
forms the size of the window which is defined as size (TSW) and
is equal to (k - j). Let the lower and higher values of time stamp

TABLE 1 Sample temporal stream dataset—TDS.

TID Time stamp Items

I
W
in
do

w

T1 1 m, n, o

T2 3 q, r, s

II
W
in
do

w

T3 3 m, n, o, r

T4 4 m, n, o, r, s

T5 5 m, p, s

T6 6 m, n, o, p, r

T7 7 m, r, s

in TSW be represented, respectively, by tswmin and tswmax. The
sample temporal stream dataset represented in Table 1 shows that
there may be a delay among two consecutive time stamps and
two transactions may occur at the same time. Hence, (tswmax -
tswmin + 1) might not represent |TSW|. If a transaction ti = (Tid,
TS, I) occurs in current window TSW, the time stamp value of
an itemset P ∈ I can be expressed as tswP. Let TSWP be equal to
{tswP

i ,tsw
P
j ,.....,tsw

P
q }, where i≤j≤q presents the ordered time stamp

values in which P occurs in current window TSW. Support count of
P is expressed as SupTSW (P)= |TSWP| and represents the group
of transactions in which P appears in current window TSW. Let
TSBatchSize be the count of transactions slided every time from the
current window TSW.

Example 1: Table 1 presents temporal transactions in a data
stream TDS. Let the window size TSWindowSize and batch size
TSBatchSize be 5 and 2 respectively. The data itemset ψ = {m, n,
o, p, q, r, s} comprises 7 unique items. The first transaction t1 =
(T1, 1, mno) where T1 and 1 presents Tid and time stamp values
respectively and {m, n, o} is a 3-pattern set. In the first time stamp
window tswmin and tswmax ranges from 1 to 5. Consider the first
window, where the itemset {mo} exist in transactions having time
stamp values 1, 3 and 4. This leads to TSWmo = {1,3,4} and SupTSW
(mo) = |TSWmo| which results in 3.

Definition 3.1. (Periodicity of pattern P in current time stamp
window TSW) Consider a window TSW, where (tswP

i ,tsw
P
j )

represents a pair of continuous time stamps in TSWP. The time
difference among (tswP

j - tswP
i ) is known as an inter-arrival time,

and it is expressed as iatwP. Assuming that the set of inter-arrival
times for P in current window TSW is denoted by IATWP =
{iatwP

1 ,iatw
P
2 ,.....,iatw

P
s } where s = (SupTSW (P) - 1). In the current

window TSW, when the inter-arrival time of P is no more than the
user-specified maximum periodicity threshold i.e. iatwP

i ≤maxPer,

then it is regarded as periodic in the current window.

Definition 3.2. (Periodic support count of pattern P in current time
stamp window TSW) Let list of all inter-arrival times of an itemset

P that are periodic in current window TSW be denoted as ̂IATWP.

Therefore, ̂IATWP⊆IATWP such that ∃iatwP
i ∈IATW

P and iatwP
i ≤

maxPer, then iatwP
i ∈

̂IATWP. The periodic support of P in current

window TSW denoted as PSTSW (P) and it is equal to |̂IATWP|.
While selecting the pattern in the current window, the importance
is given to both inter-arrival time as well as support count.
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Example 2: The beginning time stamp values of an itemset
{mo} are 1 and 3 resulting in iatwmo

1 = 2 (3-1) which is considered
as its first inter-arrival time. Similarly, the further inter-arrival
times are calculated in the first window which results in IATWmo

= {2,1}. If the user entered maxPer threshold is assumed as
2, then the ̂IATWmo ={1,2} resulting PSTSW (mo) = 2 in the
first window.

Here two different support thresholds minFreqPS and
minRarePS thresholds are used along with maxPer threshold
to control the number of cyclic repetitions. The minRarePS

threshold assist in discarding the uncommon patterns that
are associated by chance and are considered to be noisy
itemsets. Based on the strictness of periodicity measure
rare periodic patterns can be classified as full and partial
periodic patterns.

Definition 3.3. (Rare full periodic pattern Q in current time stamp
window TSW) Given the user-specified minimum period support
thresholds minFreqPS and minRarePS, a pattern Q is said be rare
full periodic pattern (RFPP) in current time stamp window TSW,
if ((PS (Q) <minFreqPS ∧ PS (Q) ≥ minRarePS) ∧ (PS (Q) =
Sup (Q) - 1)).

The Rare full periodic patternmeasure is too strict and a pattern
is discarded even when one inter-arrival time is also exceeding the
maxPer threshold. As rare patterns show the tendency to behave
non-periodic in certain time-period there is a need to propose a
relaxed measure.

Definition 3.4. (Rare partial periodic pattern Q in current time
stamp window TSW) Given the user-specified minimum period
support thresholds minFreqPS and minRarePS, a pattern Q is
said be Rare Partial Periodic Pattern (R3P) in current time stamp
window TSW, if ((PS (Q) <minFreqPS) ∧ (PS (Q) ≥minRarePS)).

Problem Definition: When a temporal data stream TDS, a
periodicity measure maxPer and support measures minFreqPS

and minRarePS are given as input, the process of finding all
rare partial periodic itemsets in current time stamp window
TSW is to output the entire collection of itemsets satisfying
the condition specified in Definition 3.4 in current time stamp
window TSW.

4 Rare partial periodic pattern stream
mining based on sliding window
pattern growth:
R3PStreamSW-Growth—A tree-based
framework

The tree-based state-of-the-art algorithm 3P-Growth (Kiran
et al., 2022b, 2017a) is a two-scan algorithm designed to mine
PPPs from temporal static data. However, the requirement of
multiple scans is a limitation for mining the stream data. Here, 3P-
Growth is enhanced and a new framework called R3PStreamSW-
Growth is designed to mine the stream data. The proposed
single scan, a pattern-growth method, which is based on a
sliding window model, is suitable to discover an entire set of

R3Ps over the stream data. This section initially discusses the
structure and construction of three components of R3PStreamSW-
Growth, namely R3PStreamSW-List, R3PStreamSW-Tree and
R3PStreamSW-Queue respectively. Next, the task of inserting
the current batch of transactions by removing the old set
of transactions is discussed. This process keeps the sliding
window always in ready to mine state. Lastly, how the three
components collectively aid in mining R3Ps from the stream data
is described.

4.1 Structure of di�erent components of
R3PStreamSW-Growth

4.1.1 Structure of R3PStreamSW-Tree
R3PStreamSW-Tree consists of a “NULL” root-node and a

group of item-prefix sub-trees, which are stored as branches of
the root-node. A unique transaction of current timestamp window
TSW is presented by every path of the item-prefix sub-tree, and
similar to RPS-Tree (Tanbeer et al., 2010), the common paths
are shared. ILabel field of each child node c presents a unique
item of the current window transaction. The main purpose of
R3PStreamSW-Tree is to keep track of the timestamp information.
Therefore, instead of storing the transaction-id like RPS-tree, here,
the timestamp information is preserved only in the leaf node.
The nodes of an R3PStreamSW-tree, except the root node, can
be divided into two types, namely tail nodes and ordinary nodes
presented by a dotted ellipse and a solid ellipse, respectively, as
depicted in Figure 1f. The ordinary nodes maintain two fields
ILabel, which preserves the item information, and NodeLink,
which points to the next node in a R3PStreamSW-Tree with
matching ILabel. The tail nodes maintain an additional field
TSWList represented in the form [tsw1,tsw2,....,tswn] serve the
aim of discovering timestamp information. If transaction tx =
{i1,i2,....,iTail}, then ILabel field of tail node represents the item iTail.
Whereas, the TSWList field denotes all the timestamp information
of the transactions in the current window in which iTail is the tail
node.

Lemma 4.1. A leaf node in a R3PStreamSW-Tree inherits the
properties of an ordinary node and not vice versa.

Proof In a R3PStreamSW-Tree, the item information and
NodeLink pointers are preserved by an ordinary node. Additionally,
it maintains children and parents pointers, which help during
the mining process. On the other hand, a leaf node additionally
preserves timestamp information along with all this information.
As a result, the tail node inherits an ordinary node’s properties; yet,
an ordinary node does not represent all of the data that the tail node
represents.

4.1.2 Structure of R3PStreamSW-List
R3PStreamSW-List maintains four fields related to an item

i in the current window TSW: support of item i–SupTSW (i),
PSTSW (i)–presents periodic support of item i and previous
timestamp of item i–TLast (i). Along with the R3PStreamSW-Tree,
R3PStreamSW-List structure is simultaneously created, which
helps in the computation of periodic support of itemsets.
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FIGURE 1

R3PStreamSW-List and R3PStreamSW-Tree. (a) After scanning T1. (b) After scanning T2. (c) After scanning T3. (d) After scanning T4. (e) After scanning

T5-Final R3PStreamSW-List and R3PStreamSW-Tree created for first window of Table 1. (f) Structure of R3PStreamSW-Tree.

4.1.3 Structure of R3PStreamSW-Queue
In order to make the R3PStreamSW-Tree ready-to-mine, the

current window information is captured in the R3PStreamSW-
Tree. As the new batch of streams arrives, the oldest batch
of streams is deleted to make room for new transactions. To
accomplish this task, R3PStreamSW-Growth uses a queue structure
named R3PStreamSW-Queue. R3PStreamSW-Queue is a linear
data structure that points to the leaf nodes of R3PStreamSW-Tree
that hold the timestamp information.

4.2 Construction phase of
R3PStreamSW-Growth

The construction phase of R3PStreamSW-Growth is a two-
step process, and is mentioned in Algorithm 1. At first, the initial
window is created, which captures the first set of high-speed stream
data. Next, the window sliding phase is accomplished, which is
responsible for deleting the old batch of stream data followed by
capturing the new set of data streams in the window. These two
phases collectively keep the R3PStreamSW-Tree in a ready-to-
mine state. R3PStreamSW-Growth accepts stream data TDS along
with periodicity thresholdmaxPer and periodic support thresholds
minFreqPS and minRarePS. In order to maintain the sliding
window, window size– TSWindowSize and batch size–TSBatchSize
values are accepted by the user. R3PStreamSW-Growth algorithm
initially asks the user to select any canonical order (CO) such as
alphabetical order or specific order based on dataset properties and
the R3PStreamSW-Tree is built using this order.

4.2.1 Initial window creation phase of
R3PStreamSW-Growth

Algorithm 2 presents the initial window creation process.
During the phase, R3PStreamSW-Tree captures TSWindowSize

number of stream transactions in a single scan. As shown in line 1,

Input: TDS - stream data, minFreqPS and minRarePS - periodic
support thresholds, window size - TSWindowSize, batch size -
TSBatchSize, mine batch size -mineBSize, canonical order - CO
Output: Entire set of PRPs from stream data

Initial-Window-creation (TDS, maxPer,

TSWindowSize, CO)

Intialize c ← 1

while exists TDS do

Sliding-phase-of-R3PStreamSW-Growth

if mineBSize = c then

Mining-phase-R3PStreamSW-Growth

(R3PStreamSW-Tree, maxPer, minFreqPS, minRarePS)

end if

Increment c

end while

Algorithm 1. Construction and mining phase of R3PStreamSW-Growth.

initially, the root-node of the R3PStreamSW-Tree is created with
the label “NULL”. The transaction id, tidcur , is assumed to have
continuous values starting from 1. Line 3 ensures TSWindowSize

number of transactions are captured into the R3PStreamSW-
Tree and accordingly, the R3PStreamSW-List and R3PStreamSW-
Queue are simultaneously created. The sort order CO specified by
the user is maintained for every transaction, as depicted in line 4.
Lines 5 to 17 present how periodic support of every item in the
transaction of the current window is updated in R3PStreamSW-
List. If the item “i” is appearing for the first time in a window, then
“i” is added into R3PStreamSW-List. The support SupTSW (i) and
periodic support PSTSW (i) of i are initialized to a value “1” and “0”,
respectively. Otherwise, the support SupTSW (i) of i is incremented
by 1. Further, the current inter-arrival time of i is computed by
the difference between the previous tiwmestamp of item i–TLast (i)
and the timestamp of the current transaction tswcur . If the resultant
inter-arrival time satisfies the maxPer threshold, then the periodic
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Input: TDS - stream data, maxPer - maximum periodicity
threshold, window size - TSWindowSize, canonical order - CO
Output: Three components of R3PStreamSW-Growth

1: A root-node R with ILabel “NULL” is created for

R3PStreamSW-Tree

2: for each transaction t ∈ TDS with transaction id

tidcur and timestamp tswcur do

3: if tidcur 6= TSWindowSize then

4: Sort t in order of CO

5: for each item i ∈ t do

6: if item i does not exist in R3PStreamSW-List then

7: Add item i to the R3PStreamSW-List

8: Initialize SupTSW (i) to 1

9: Initialize PSTSW (i) to 0

10: else

11: Increment SupTSW (i) by 1

12: if tswcur - TLast (i) ≤maxPer then

13: Increment PSTSW (i) by 1

14: end if

15: end if

16: Set TLast (i) = tswcur

17: end for each

18: Let p represents the first item of T and remaining items are

represented by P.

19: Call Insert-Tree ([p|P], R, tswcur)

20: end if

21: end for each

22: Procedure Insert-Tree

23: Input: [p|P], curNode - Current node of R3PStreamSW-Tree, tswcur -

current timestamp

24: Output: R3PStreamSW-Tree

25: if curNode has a child C such that curNode.ILabel = p then

26: Select C as N

27: else Create a new node N as child of curNode with N.ILabel = p. Set

N.NodeLink to point to node with same item name.

28: end if

29: Remove p from [p|P]

30: if P is nonempty then call Insert-Tree (N, P)

31: else Add tswcur to N.TSWList

32: Rear end of the R3PStreamSW-Queue is updated to point to the leaf

node N

33: end if

34: end procedure

Algorithm 2. Initial-window-creation.

support PSTSW (i) of item i is incremented. Before considering
the next item, TLast (i) is updated with tswcur , which helps in the
computation of the next inter-arrival time.

4.2.2 Insertion of a transaction into
R3PStreamSW-Tree

Once R3PStreamSW-List is updated with all the items of
the current transaction, then the Insert-Tree procedure is called
to insert the current transaction into R3PStreamSW-Tree. The

items are inserted into R3PStreamSW-Tree similar to 3P-tree. If
R3PStreamSW-Tree contains a similar path for transaction t, then
the path is shared by adding the remaining path (if any) of t at the
end. On the other hand, if R3PStreamSW-Tree has no common
path, then transaction t is added as a new path. The current
timestamp information tswcur is added to the TSWList of the tail
node N. Simultaneously, the R3PStreamSW-Queue is modified
such that the new leaf node N is pointed by the rear end. Further,
in a similar manner, TSWindowSize sized stream transactions are
captured into the R3PStreamSW-Tree.

With respect to the sample data stream given in Table 1,
Figure 1 depict how the stream transactions are captured into
R3PStreamSW-List and R3PStreamSW-Tree with TSWindowSize

considered as 5. Here, lexicographic order is used to build the
R3PStreamSW-Tree. Let minFreqPS and minRarePS be considered
as 3 and 2 respectively. Initially, the itemsets of the first stream
transaction m, n, and o are inserted into the R3PStreamSW-
List. The SupTSW of all the inserted items are initialized with
a value “1”. As the items are appearing for the first time, the
PSTSW values of these items are set to “0”. The TLast of all the
inserted items are set with the current timestamp value “1”. Once
the R3PStreamSW-List updation is completed, then the current
transaction is inserted into the R3PStreamSW-Tree as shown in
Figure 1a. As there is no common path in the R3PStreamSW-Tree,
a new path is created with the node m becoming a child node
for the root. Then nodes n and o are added to this path. As node
o is the tail node, the timestamp information “1” is added to its
TSWList. Now, the R3PStreamSW-Queue is updated, and a new
pointer is added from the rear end, which is pointing to the current
tail node o. Figure 1b shows the scanning and insertion process
of transaction “T2”. Similar to the first transaction, the items q, r
and s are inserted into R3PStreamSW-List. Further, a new path is
constructed in the R3PStreamSW-Tree and the current timestamp
information “3” is added to the tail-node s. The R3PStreamSW-
Queue is modified as a new pointer is added which is pointing to
the current tail node s. Figure 1c shows how the periodic support
is changed for the items m, n, o and r after scanning the third
transaction. The TLast of item m is “1” and the current timestamp
information “3”, hence the inter-arrival time resulted as “2”. This
value satisfies the maxPer threshold and accordingly PSTSW (m)

is incremented. In a similar fashion, the periodic support PSTSW
value of the items is incremented if the inter-arrival time satisfies
maxPer threshold. Next, as there is a common path for transaction
“T3”, the path is shared in the R3PStreamSW-Tree as shown in
Figure 1c. Since the item r does not exist in the path, it is attached
at the end, and the timestamp information “3” is added to the
TSWList. Now, the R3PStreamSW-Queue is modified, and a new
pointer is added, which is pointing to the current tail node r.
It can be noted that R3PStreamSW-Queue successfully maintains
the duplicate timestamp information. This helps in the window
sliding phase to delete the duplicate occurrences in the order of
their insertion. Figure 1d shows the updated R3PStreamSW-List
and R3PStreamSW-Tree after insertion of “T4”. Figure 1e shows
the resultant R3PStreamSW-List and R3PStreamSW-Tree after
capturing the initial window TSWindowSize i.e., five transactions
in the stream data. Similar to FP-Tree, different pointers are
maintained in R3PStreamSW-Tree, and for clarity, it is not
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shown in Figure 1. The resultant R3PStreamSW-Tree shown in
Figure 1e represents the compact and complete initial window
stream timestamp information TSW using which entire R3Ps
of the current window can be extracted. The completeness of
R3PStreamSW-Tree can be defined with the following property and
lemma. Let for every transaction t in the stream timestamp window
TSW, all the items in t are represented as item (t) which present
complete projection of t.

Property 6: In current timestamp window TSW, item (t) of
each transaction t is maintained only once in the R3PStreamSW-
Tree. Further, iTail representing the tail node of this path stores the
timestamp tswcur only once.

Lemma 4.2. For current timestamp window TSW of the stream
dataset TDS, item (t) of each transaction t can be extracted from
R3PStreamSW-Tree.

Proof According to Property 6, item (t) of every transaction t

in current timestamp window TSW is mapped to R3PStreamSW-
Tree at best by a single path and any path starting from the root
up to the leaf node iTail holds the complete projection of exactly x
transactions, where x is the total count of timestamp information
maintained in TSWList field of iTail.

The total size contribution of all transactions in current
timestamp window TSW can be at best by

∑

t∈TSW

|Size(t)|.

As there are multiple paths that are shared in the
R3PStreamSW-Tree, therefore the size of R3PStreamSW-Tree is
much smaller than

∑

t∈TSW

|Size(t)|.

4.2.3 Sliding window phase of
R3PStreamSW-Growth

R3PStreamSW-Growth efficiently incorporates sliding window
phase by (i) Removing the oldest TSBatchSize number of
transactions from R3PStreamSW-Tree (ii) Scanning the recent
TSBatchSize number of transactions from the stream and inserting
the transactions into R3PStreamSW-Tree (iii) Updating the
support and periodic support information by refreshing the
R3PStreamSW-List according to the updated R3PStreamSW-Tree.
Here, R3PStreamSW-Queue plays an important role which holds
the pointers to every tail node in the R3PStreamSW-Tree and
avoids traversing the entire R3PStreamSW-Tree during the window
sliding phase.

4.2.3.1 Removal of oldest transactions from

R3PStreamSW-Tree

To efficiently handle the removal of the oldest batch of
transactions, an alternative approach without incurring the expense
of tree traversal is used and is given in Algorithm 3. The algorithm
starts with traversing the tail nodes pointed by R3PStreamSW-
Queue and then going up to the root node of the tree, satisfying
the conditions as shown in Algorithm 3. Instead of navigating
the entire R3PStreamSW-Tree, only the tail nodes of the expired

Input: R3PStreamSW-Queue - Queue with tail node pointers,
R3PStreamSWTree - Tree for the current window, batch size -
TSBatchSize

Output:Modified three components of R3PStreamSW-Growth

1: Let C initialized to zero

2: while C6=TSBatchSize do

3: Consider the curNode which is next tail node

traversed through pointer in R3PStreamSW-Queue

4: Delete the curNode from R3PStreamSW-Queue and

point to the next node

5: Increment C by 1

6: parentNode = curNode.parent

7: if curNode.children = NULL ∧ TSWList of curNode

has single timestamp then

8: Delete the curNode

9: curNode = parentNode

10: parentNode = curNode.parent

11: while parentNode 6= NULL ∧ curNode.children

= NULL ∧ TSWList of curNode is empty do

12: Delete the curNode

13: curNode = parentNode

14: parentNode = curNode.parent

15: end while

16: else

17: if curNode.children = NULL ∧ TSWList of

curNode has more than single timestamp then

18: Delete the current timestamp value from

the curNode

19: end if

20: end if

21: end while

Algorithm 3. Removal-of-oldest-bach.

transactions are reached by traversing from the front end of the
R3PStreamSW-Queue. Further, TSWList of these tail nodes are
solely modified to reflect the deletion of transactions as depicted
in line 18 of Algorithm 3. The process involves the deletion of time
stamps from the TSWList of each tail node. During this deletion
process, if a tail-node’s TSWList becomes empty, then the removal
process of both the tail-node and its path leading up to the root
node happens, as shown in Algorithm 3 from lines 7 to 15. Further,
the nodes are deleted in the tree following the parent node if the
parent node does not have any other child apart from the current
traversal path. This approach ensures that only the transactions
that have expired are removed from the tree. R3PStreamSW-
Queue is updated by removing the tail node pointers of the
deleted batch of transactions, as shown in line 4 of Algorithm 3.
The deletion process ends when TSBatchSize number of expired
transactions have been traversed. Finally, both R3PStreamSW-Tree
and R3PStreamSW-Queue are ready for insertion of a new batch of
stream data.

Figure 2a depicts the deletion of the oldest transaction with
the timestamp value “1”. As the first tail-node with item “o” is
also shared by another path, only the timestamp information is
deleted from its TSWList. Further, even though there are multiple
transactions with timestamp ‘3’, R3PStreamSW-Queue points to
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FIGURE 2

Resultant R3PStreamSW-Tree: (a) After deletion of T1. (b) After deletion of T2. (c) After insertion of T3. (d) After insertion of T4. (e) Resultant

R3PStreamSW-List after the first window sliding phase.

node with ILabel “s”, which is the oldest transaction. After the
timestamp information is removed from the TSWList of node “s”,
the node itself is deleted as it is not shared by any other path and
its TSWList is also empty. Further, as shown in Figure 2b, the entire
path is removed as there are nomultiple paths for any other node in
that path. As batch size TSBatchSize is considered as 2, the removal
process of expired transactions in the stream is completed, and now
the R3PStreamSW-Tree is ready for the insertion phase.

4.2.3.2 Insertion of a new batch of transactions into

R3PStreamSW-Tree

The process of inserting a new set of TSBatchSize number of
transactions into the R3PStreamSW-Tree is shown in Figures 2c,
d. The tree creation process and R3PStreamSW-Queue updation
process is similar to that followed in the initial window tree
creation phase.

4.2.3.3 Refreshing the R3PStreamSW-List

During the window sliding phase, it is possible that periodic
patterns can become aperiodic and vice versa. Therefore,
the R3PStreamSW-List also needs to be updated according
to the timestamp information represented by the resultant
R3PStreamSW-Tree shown in Figure 2d. This is called refreshing
the R3PStreamSW-List and is presented in Figure 2e. It can be seen
in Figure 2e that the item q is removed as its support is “0”.

4.3 Mining phase of R3PStreamSW-Growth

As R3PStreamSW-Tree is a novel tree structure which captures
the complete timestamp information of sliding window TSW in
a single scan, similar to 3P-Growth, a pattern-growth bottom-
up approach is used to mine entire set of R3Ps. As shown in
Algorithm 1, the value ofmineBSize is accepted, which decides after
how many batches of sliding window process the mining happens.
The following important property and lemma are defined to mine
the R3PStreamSW-Tree recursively:

Property 7: Every tail node in a R3PStreamSW-Tree maintains
the timestamp information of all the nodes in the path (from tail
node up toward the root node) in its TSWList.

Lemma 4.3. Let R3PStreamSW-Tree contains a path V =
{i1,i2,....,iTail}, then the TSWList field denotes all the timestamp
information of the transactions in the current window TSW in
which iTail is the tail node. If the timestamp information from
TSWList is pushed up to node iTail−1, then iTail−1 represents the
timestamp information of the path V’ = {i1,i2,....,iTail−1} for same
set of transactions in the TSWList without losing any timestamp
information.

Proof: The TSWList of tail node iTail maintains the timestamp
information of V’ for the same set of transactions. Hence, the same
timestamp information for the path V’ is maintained by iTail−1
without losing any timestamp information.

The mining algorithm is presented in Algorithm 4. The
extraction of the R3PStreamSW-Tree is a three-step process: (i)
Initially, each partial periodic item is labeled as the starting
suffix pattern. (ii) Following that, a conditional pattern base
is established. This base will comprise collections of prefix
paths within the R3PStreamSW-Tree that co-occurred with the
above suffix patterns. (iii) The subsequent phase involved in
the construction of a conditional R3PStreamSW-Tree called
CTSWTree derived from this conditional pattern base by removing
all non-periodic items. This tree is created to facilitate recursive
mining. (iv) Ultimately, the generated suffix patterns obtained from
the conditional R3PStreamSW-Tree are joined with the original
patterns. This amalgamation process resulted in the generation
of R3Ps as the final output of the mining process. The operation
of Algorithm 4 proceeds as follows: For each partial periodic
item present in the R3PStreamSW-List, the conditional pattern
base, often referred to as the prefix tree, is constructed. At first,
the bottom-most item “s” is considered. The prefix sub-paths
associated with node “s” are collected and organized into a tree
structure called R3PStreamPTs, which served as the foundation
for constructing the prefix tree specific to “s”. Since “s” occupied
the lowest position in the R3PStreamSW-List, every node within
the R3PStreamSW-Tree labeled as “s” has to be a terminal node.
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In accordance with Property 7, timestamp lists TSWList of each
node belonging to “s” are explicitly mapped onto all items along
the corresponding path within a temporary array TSW as shown

Input: R3PStreamSWTree - tree for the current window,
µ, maxPer - maximum periodicity threshold, minFreqPS,
minRarePS - periodic support thresholds
Output: Set of R3Ps extracted for current window

1: for each Xi in R3PStreamSW-List do

2: Let � = Xi ∪ µ. Collect all of the Xi’s TSWList

into a temporary array, TSW (�), and determine

PSTSW (�) by calling calculatePSTSW (TSW (�))

3: if (PSTSW (P) <minFreqPS∧ PSTSW (P)≥minRarePS) then

4: Traverse the node-link Xi to construct�’s conditional pattern base

then�’s conditional R3PStreamSW-Tree, CTSWTree (�)

5: if CTSWTree (�) 6= NULL then call Mining-phase-

R3PStreamSW-Growth (CTSWTree�,�)

6: Prune Xi from the R3PStreamSW-Tree and push the Xi’s

TSWList to its parent nodes

7: end if

8: end if

9: end for each

10: Procedure calculatePSTSW

11: Input: TSW (�), array of timestamps containing� in TDS

12: Output: PSTSW (�)

13: Set PSTSW (�) = 0, z = 0

14: while TSW (�) 6= NULL do

15: if TSW (�)[z+1] - TSW (�)[z] ≥maxPer then

16: Increment PSTSW (�) by 1

17: end if

18: end while

19: Return PSTSW (�)

20: End Procedure

Algorithm 4. Mining-phase-R3PStreamSW-Growth.

in line 2 of Algorithm 4, with one array for each item, facilitating
the creation of R3PStreamPTs. This temporary array significantly
simplified the computation of period support for every item in
R3PStreamPTs. For instance, when item “X” within R3PStreamPTs

met the condition (PSTSW (P) <minFreqPS ∧ PSTSW (P) ≥
minRarePS), a conditional tree is built for it and proceeded
recursively to extract it in search of partial periodic patterns, as
detailed from lines 3 to 5 of Algorithm 4. The timestamp lists
TSWList were propagated upwards to their respective parent nodes
within R3PStreamPTs. This step facilitated prefix tree construction
for the subsequent item in the R3PStreamSW-List. During mining,
the periodic item may be easily determined by performing an O
(1) look-up at the R3PStreamSW-List, even though the items are
not arranged in the R3PStreamSW-Tree according to the support
count. The resultant R3PStreamSW-Tree created after each step
of the mining phase is shown in Figure 3. A similar approach is
repeated for all the items in the R3PStreamSW-List.

5 Rare partial periodic pattern stream
sliding window bit vector miner:
R3P-StreamSWBitVectorMiner—A
list-based framework

During the mining phase, R3PStreamSW-Growth employs a
divide-and-conquer strategy, which generates a massive number of
conditional pattern trees. This recursive process affects the mining
performance. To overcome this, R3P-BitVectorMiner (Upadhya
et al., 2023) is enhanced and a novel depth-first search framework
named R3P-StreamSWBitVectorMiner is proposed to extract entire
R3Ps from a temporal stream data. Here, the number of cyclic
repetitions is counted and based upon the user-specified periodic
support measures called minFreqPS and minRarePS the R3Ps are
selected. The overall process of R3P-StreamSWBitVectorMiner is
presented in Algorithm 5. The framework is divided into three
phases: (i) Initial window creation phase (ii) Sliding window phase

FIGURE 3

Resultant R3PStreamSW-Tree created during mining of second window of Table 1. (a) Initial R3PStreamSW-Tree representing second window. (b)

Pushing timestamps of TSWList to parent nodes. (c) Prefix tree for su�x item “s”. (d) Conditional tree for su�x item “s”. (e) R3Ps generated for su�x

item “s”.
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Input: TDS - stream data, maxPer - maximum periodicity
threshold, minFreqPS, minRarePS - periodic support thresholds,
window size - TSWindowSize, batch size - TSBatchSize, mine batch
size -mineBSize, canonical order - CO
Output: Entire set of R3Ps from the current window

Initial-Window-creation (TDS, TSWindowSize,

maxPer)

Intialize c ← 1

while exists TDS do

Sliding-phase-of-R3P-StreamSWBitVectorMiner

if mineBSize = c then

Mining-phase-R3P-StreamSWBitVectorMiner

(R3PStreamSWTSList, maxPer, minFreqPS,

minRarePS)

end if

Increment c

end while

Algorithm 5. R3P-StreamSWBitVectorMiner.

where old batch of transactions are removed for giving place to
new batch of transactions (iii) Mining R3Ps from current stream
window.

5.1 Initial window creation phase of
R3P-StreamSWBitVectorMiner

In this section, TSWindowSize number of initial transactions
are captured as presented in Algorithm 6 and it is similar to 3P-
BitVectorMiner. The transactions are converted into a bit-vector
form and are maintained in a R3PStreamSWTSList structure,
which is similar to 3PTSList. Each bit in the bit-vector represents
consecutive temporal transactions where the presence of an item
is indicated by “1” and absence by “0”. As every transaction
is transformed into a bit-vector form, the R3PStreamSWTSList
structure is updated for all the items appearing in the transactions.
Along with the modification of the bit-vector, the periodic support
values are updated in the R3PStreamSWTSList as shown in
Algorithm 6. As shown in line 3 of Algorithm 6, the current
time stamp information tscur is stored in an array TSStreamList

and it is used as common time stamp information for all the
items. Lines 9 to 10 of Algorithm 6 show how the time stamp
value can be acquired by extracting the information from the
TSStreamList array for the required bit of bitVector (i). As observed
in line 11 of Algorithm 6, the current periodicity is computed
by subtracting the current time stamp from the previous time
stamp obtained from array TSStreamList. The periodic support
PSTSW value of the current item i is incremented by one if the
resultant periodicity value is not greater than maxPer threshold.
Table 1 presents temporal transactions in a data stream TDS. Let
the window size TSWindowSize and batch size TSBatchSize be 5
and 2 respectively. The sequence of bit-vector representation after
scanning of various transactions in the initial window creation of
R3P-StreamSWBitVectorMiner is shown in Figure 4.

1: for each transaction T ∈ TDS with transaction id

tidcur and time stamp tscur do

2: if tidcur ≤ TSWindowSize then

3: Set TSStreamList[tidcur]← tscur

4: for each item i ∈ T do

5: if bitVector (i) does not exist then

6: Initialize bitVector (i) and PSTSW (i) to 0

7: end if

8: Set tidcur bit of bitVector (i) as 1

9: Let lastSetTid represent the tid of last bit set of bitVector (i)

10: Set prevTS← TSStreamList[lastSetTid]

11: Compute current periodicity curPrd by subtracting the

prevTS with tscur.

12: if curPrd ≤maxPer then

13: Increment periodic support PSTSW (i) by 1

14: end if

15: end for each

16: end if

17: end for each

Algorithm 6. Initial-Window-creation (TDS - stream data, TSWindowSize -

window size,maxPer - maximum periodicity threshold).

5.2 Sliding window phase of
R3P-StreamSWBitVectorMiner

Once TSWindowSize transactions are scanned, the current
window becomes full. Further, the sliding window phase begins
where the initial removal of the oldest batch of transactions
happens. The removal process is carried out by performing
a left shift bit-wise operation on the items present in the
R3PStreamSWTSList. The left shiting operation removes
TSBatchSize number of transactions from R3PStreamSWTSList
as shown in Line 2 of Algorithm 7. Further, the same number of
TSBatchSize recent transactions are scanned from input stream
TDS and are inserted into the R3PStreamSWTSList. The insertion
process is similar to the initial-window-creation process. As the
TSBatchSize is 2, the resultant window after removing the oldest
two transactions is shown in Figure 5a. Next, transaction with
tid= 6 is inserted as shown in Figure 5b, and the resultant window
after the sliding phase is shown in Figure 5c.

5.3 Mining phase of
R3P-StreamSWBitVectorMiner

During the mining phase, initially all non-periodic and noisy
one-length itemsets from R3PStreamSWTSList are removed.
Further, Constructing R3PStreamSWTSTree and recursively
traversing R3PStreamSWTSTree in Depth First Search (DFS)
method to extract complete set of R3Ps by discarding non-periodic
and noisy patterns is similar to the process of mining phase of
3P-BitVectorMiner (Upadhya et al., 2023). Let minFreqPS and
minRarePS be considered as 3 and 2 respectively. The resultant
R3PStreamSWTSTree after the DFS traversal of all items from
the first window is presented in Figure 6. By Definition 3.4 all the
pattern “i” with (PSTSW (i) = 2) represented in white color are
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FIGURE 4

R3PStreamSWTSList: (a) After scanning tid = 1. (b) After scanning tid = 2. (c) After scanning tid = 3. (d) After scanning all transactions first window

with TSWindowSize 5.

1: for each item i in current window having bitVector

(i) do

2: Left shift the bit set of bitVector (i) by

TSBatchSize bits

3: Update the periodic support PSTSW (i)

4: end for each

Algorithm 7. Remove-Oldest-Batch-R3P-StreamSWBitVectorMiner

(R3PStream SWTSList - List Structure, maxPer - maximum periodicity

threshold, batch size - TSBatchSize).

selected as output R3Ps. Whereas, the pattern “i” with (PSTSW (i)

<2) represented in light gray color are treated as noisy itemsets.
The path of the noisy itemsets are not continued further which
reduce the search space during mining process. Moreover, the dark
gray-represents pattern “i” with (PSTSW (i) ≥ 3) is a frequent
pattern. Even though the frequent patterns are not shown as
output, the mining process continues in these paths since their
supersets can be rare partial periodic patterns. Figure 7 shows the
final resultant R3PStreamSWTSTree following the DFS traversal of
all items from second window.

6 Experimental analysis

6.1 Experimental setup

The proposed frameworks, R3PStreamSW-Growth and R3P-
StreamSWBitVectorMiner, extract the periodic patterns using
maxPer threshold value. Further, only the rare patterns from the
vast search space are retained with the help of minFreqPS and
minRarePS thresholds. To accomplish the stream data mining,
TSWindowSize, a value representing different window sizes is
used with TSBatchSize and mineBSize. The values for TSBatchSize
and mineBSize indicate every time TSBatchSize transactions are
taken into account during the window sliding phase, and the
mining process occurs following a mineBSize number of sliding
phase repetitions. The experiments are conducted in three ways
to show the influence of variation in (i) minRarePS threshold
value (ii) minFreqPS threshold value (iii) maxPer threshold
value. In comparison with frequent periodic patterns, periodic

rare patterns are patterns having larger periodicity and low
support, various experiments are carried out by setting the
threshold values accordingly. The proposed algorithm is evaluated
on a system equipped with an Intel (R) Core (TM) i5-7400
CPU with 8GB of RAM operating at 3.00 GHz and running
Windows 10 Enterprise. The algorithms are implemented on the
Java platform.

6.2 Datasets used

The synthetic and real datasets with different transaction
sizes used for the experimentation are shown in Table 2. These
datasets are downloaded from the repository https://github.com/
udayRage/pykit_old/tree/master/Datasets which are frequently
used in temporal mining algorithms. Retail dataset has 88k
transactions, while Accidents dataset comprises 340k transactions.
T10I4D100K is a sparse synthetic dataset produced by the
IBM data generator. A tiny real-world Chess dataset consists of
3,000 transactions.

6.3 Runtime comparison

The runtime performance of the algorithms is determined
by carrying out various experiments, taking into consideration
numerous datasets for varied minimum support and maximum
periodicity threshold values. In addition, the execution time is
observed by varying the window and batch size of input stream
data.

In Figure 8, maxPer threshold, minFreqPS, TSBatchSize

and mineBSize values are kept constant while the runtime
performance is observed for different minRarePS values. Whereas,
Figure 9 represents the corresponding R3Ps generated for
this execution setup. On the other side, Figure 10 represent
variations of minFreqPS values while the maxPer threshold,
minRarePS, TSBatchSize and mineBSize values are kept constant.
Figure 11 represents the corresponding R3Ps generated for this
execution setup. On the contrary, Figure 12 depict execution
time performance for different maxPer threshold values by
keeping minFreqPS threshold, minRarePS threshold, TSBatchSize
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FIGURE 5

R3PStreamSWList: (a) After removal of TSBatchSize number of transactions. (b) After scanning tid = 6. (c) After scanning tid = 7.

FIGURE 6

Resultant R3Ps after mining first window.

and mineBSize values constant. Whereas, Figure 13 represents
the corresponding R3Ps mined for this execution setup. Here,
the X-axis represents different TSWindowSize values. Whereas
the Y-axis shows the runtime in milliseconds (Msec)/Seconds
(Sec) in these figures. For the Accidents dataset, TSWindowSize

is varied between 1K to 5K with a 1K difference while the
TSBatchSize and mineBSize values are kept constant as 100 and
600 respectively. While for the Chess dataset, the TSBatchSize

and mineBSize values are taken as 10 and 50 respectively and
TSWindowSize is varied between 0.5K to 2.5K with a difference
of 0.5K. In the case of sparse datasets T10I4D100K and Retail,
the TSBatchSize and mineBSize values are taken as 100 and 600
respectively and TSWindowSize is varied between 4K to 20K with a
difference of 4K.

6.3.1 Runtime performance when minFreqPS and
maxPer kept constant while varying minRarePS

The execution time performance of Accidents, Chess,

T10I4D100K and Retail datasets are shown in Figures 8a–d
respectively. The performance improvement is noted by
keeping maxPer threshold and minFreqPS threshold constant
and varying minRarePS for two different thresholds for
each dataset as presented in Table 3. It is observed that, R3P-
StreamSWBitVectorMiner outperforms R3PStreamSW-Growth in
all the cases as shown in Table 3. Figures 9a–d presents the resultant
R3Ps produced observing these execution setups. Figure 9b shows
that despite Chess being a small dense dataset, a vast amount of
R3Ps are generated. R3P-StreamSWBitVectorMiner was unable
to finish execution because it needed a lot of memory to generate
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FIGURE 7

Resultant R3Ps after mining second window.

TABLE 2 Statistics of datasets.

S. No Database Type Nature Transaction length Database size

Min. Avg. Max. (In Count)

1 Accidents Real Dense 18 33.8 51 3,40,183

2 T10I4D100K Synthetic Sparse 1 10 29 1,00,000

3 Retail Real Sparse 2 12 77 88,162

4 Chess Real Dense 37 37 37 3,196

the subsequent R3Ps. As a result, in all the experimentation
the number of items in a transaction is lowered to 25 for
Chess dataset.

6.3.2 Runtime performance when minRarePS and
maxPer set constant and varying minFreqPS
threshold value

The execution time performance of Accidents, T10I4D100K

and Retail datasets are shown in Figures 10a–d respectively.
The performance improvement is noted by keeping minRarePS

threshold and maxPer threshold constant and varying minFreqPS

for two different thresholds for each dataset as presented in Table 4.
It is noted that, R3P-StreamSWBitVectorMiner outperforms
R3PStreamSW-Growth in all the cases as shown in Table 4.
Figures 11a–d presents the resultant R3Ps produced observing
these execution setups.

6.3.3 Runtime performance when minFreqPS and
minRarePS kept constant while varying maxPer
threshold value

The execution time performance of Accidents, T10I4D100K

and Retail datasets are shown in Figures 12a–d respectively.
The performance improvement is noted by keeping minRarePS

threshold and minFreqPS threshold constant and varying maxPer

for two different thresholds for each dataset as presented in Table 5.
It is observed that, R3P-StreamSWBitVectorMiner outperforms
R3PStreamSW-Growth in all the cases as shown in Table 5.
Figures 13a–d presents the resultant R3Ps produced observing
these execution setups.

Influence of minRarePS, minFreqPS and maxPer threshold

values: The following key points are observed from the
experiments: (i) In Figure 9, as shown, it is evident that the
minRarePS variation has a negative effect on the number of
generated R3Ps. In particular, at a low threshold, the decrease in
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FIGURE 8

Runtime comparison for minRarePS variations. (a) Accidents, maxPer = 30%, minFreqPS = 0.8%. (b) Chess, maxPer = 30%, minFreqPS = 0.8%. (c)

T10I4D100K, maxPer = 70%, minFreqPS = 0.5%. (d) Retail, maxPer = 70%, minFreqPS = 0.5%.

FIGURE 9

Number of R3Ps generated for minRarePS variations. (a) Accidents, maxPer = 30%, minFreqPS = 0.8%. (b) Chess, maxPer = 30%, minFreqPS = 0.8%.

(c) T10I4D100K, maxPer = 70%, minFreqPS = 0.5%. (d) Retail, maxPer = 70%, minFreqPS = 0.5%.

minRarePS, accelerates the conversion of noisy itemsets to rare
1-itemsets. As the rare 1-itemsets rise, so does the number of
R3Ps generated for low minRarePS threshold values. Moreover,
the execution time increases as the number of R3Ps increases
as illustrated in Figure 8. (ii) Conversely, as Figure 11 illustrates,

the number of R3Ps rises as minFreqPS threshold value rises.
The variation of minFreqPS has shown a favorable outcome. As
a result, when the minFreqPS threshold value is increased, the
time taken also increases very slightly. This is because periodic-1
itemsets are not eliminated immediately even when they exceed
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FIGURE 10

Runtime comparison for minFreqPS variations. (a) Accidents, maxPer = 30%, minRarePS = 7%. (b) Chess, maxPer = 30%, minRarePS = 7%. (c)

T10I4D100K, maxPer = 70%, minRarePS = 0.1%. (d) Retail, maxPer = 70%, minRarePS = 0.1%.

FIGURE 11

Number of R3Ps generated for minFreqPS variations. (a) Accidents, maxPer = 30%, minRarePS = 7%. (b) Chess, maxPer = 30%, minRarePS = 7%. (c)

T10I4D100K, maxPer = 70%, minRarePS = 0.1%. (d) Retail, maxPer = 70%, minRarePS = 0.1%.

the minFreqPS threshold value because there is a possibility that
their supersets will become PRPs. (iii) As seen in Figure 13,
similar observations are made when maxPer threshold inceases.
An increase in maxPer threshold causes aperiodic 1-itemsets to
become periodic 1-itemsets, resulting in the generation of more

number of R3Ps. As seen in Figure 12, there is a slight increase
in execution time required with this increase in the number of
R3Ps . (iv) It is also noted that, in comparison to both maxPer and
minFreqPS, the minRarePS’s alteration has a greater impact on the
execution time.
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FIGURE 12

Runtime comparison for maxPer variations. (a) Accidents, minRarePS = 7%, minFreqPS = 8%. (b) Chess, minRarePS = 7%, minFreqPS = 8%. (c)

T10I4D100K, minRarePS = 0.1%, minFreqPS = 0.5%. (d) Retail, minRarePS = 0.1%, minFreqPS = 0.5%.

FIGURE 13

Number of R3Ps generated for maxPer variations. (a) Accidents, minRarePS = 7%, minFreqPS = 8%. (b) Chess, minRarePS = 7%, minFreqPS = 8%. (c)

T10I4D100K, minRarePS = 0.1%, minFreqPS = 0.5%. (d) Retail, minRarePS = 0.1%, minFreqPS = 0.5%.

Influence of window size TSWindowSize variations: As seen
in Figures 9, 11, 13, the number of one length periodic itemsets that
are present during a certain window determines how many R3Ps

are generated in the corresponding window. Consequently, when
one-length periodic itemsets increase, so does the number of R3Ps
in the current window, and vice versa.
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TABLE 3 Runtime e�ciency comparison of R3P-StreamSWBitVectorMiner forminRarePS variations.

Datasets maxPer (%) minFreqPS (%) minRarePS (%) R3PStreamSW-Growth (%)

Accidents 30 8
7 93

7.5 94

Chess 30 8
6 87

7 91

T10I4D100K 70 0.5
0.1 90

0.3 90

Retail 70 0.5
0.1 84

0.3 91

TABLE 4 Runtime e�ciency comparison of R3P-StreamSWBitVectorMiner for minFreqPS variations.

Datasets maxPer (%) minRarePS (%) minFreqPS (%) R3PStreamSW-Growth (%)

Accidents 30 7
8 93

9 93

Chess 30 7
8 91

9 91

T10I4D100K 70 0.1
0.5 90

10 90

Retail 70 0.1
0.5 84

10 83

TABLE 5 Runtime e�ciency comparison of R3P-StreamSWBitVectorMiner for maxPer variations.

Datasets minRarePS (%) minFreqPS (%) maxPer (%) R3PStreamSW-Growth (%)

Accidents 7 8
30 93

50 93

Chess 7 8
30 91

35 91

T10I4D100K 0.1 0.5
50 90

70 90

Retail 0.1 0.5
50 83

70 84

6.4 Memory consumption

Section 6.3.1 represents a runtime comparison of proposed
rare partial periodic mining frameworks noted by keeping
maxPer threshold and minFreqPS threshold constant and varying
minRarePS for two different thresholds for each dataset. For the
same execution setup, the memory consumed by both proposed
frameworks is observed, and it is presented in Figure 14. It is
observed that, when R3PStreamSW-Growth is considered, memory
utilization rises as the window size increases. It is also observed
that R3P-StreamSWBitVectorMiner consumes lesser space in case
of Accidents, Chess and T10I4D100K by 3%, 4%, 30%, 40%, 30%
and 30% for two different variations of minRarePS thresholds
compared to R3PStreamSW-Growth respectively. The reason

behind this is that the transformation of aperiodic-1 items into
periodic-1 items or non-rare-1 items into rare-1 itemsets increases
memory requirements. Furthermore, as R3PStreamSW-Growth
is pattern-growth based, the memory demand increases as the
number of conditional pattern-bases and conditional pattern-
tree rises. Whereas, it can be observed from Figure 14 that,
R3P-StreamSWBitVectorMiner memory requirement is almost
constant even when the window size is increased. The reason
behind this is, the bit-vector representation consumes almost
the same amount of memory irrespective of fluctuation in
the count of R3Ps. Compared to R3PStreamSW-Growth, R3P-
StreamSWBitVectorMiner consumes lesser memory in all the cases
except Retail dataset for low minRarePS. Even though there is
not much difference in the number of temporal transactions of
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FIGURE 14

Memory utilization by R3PStreamSW-Growth and R3P-SreamSWBitVectorMiner for minRarePS variations. (a) Accidents, maxPer = 30%, minRarePS =

8%. (b) Chess, maxPer = 30%, minRarePS = 8%. (c) T10I4D100K, maxPer = 70%, minRarePS = 0.5%. (d) Retail, maxPer = 70%, minRarePS = 0.5%.

Retail and T10I4D100K, the number of R3Ps produced is much
less in the case of Retail compared to T10I4D100K for same
thresholds considered as shown in Figures 9c, d. This indicates in
the case of Retail, there are huge aperiodic and noise itemsets.
As Retail is a large dataset showing high sparse nature, the
bit-vector representation may consume more space to represent
each item in the case of R3P-StreamSWBitVectorMiner compared
to R3PStreamSW-Growth, where the pattern-growth approach
helps to remove the noise itemsets faster.

6.5 Theoritical znalysis

This section gives the time complexity of R3P-
StreamSWBitVectorMiner and R3PStreamSW-Growth
algorithms.

Time complexity analysis of R3PStreamSW-Growth: Three
components are built in this model: R3PStreamSW-Queue,
R3PStreamSW-List, and R3PStreamSW-Tree. The following are
the different operations carried out by the R3PStreamSW-Growth
algorithm:

(i) By accepting the TSWindowSize transactions from the
stream data, the R3PStreamSW-Tree is built in a single scan
during the initial window construction phase. Consider ψ

items to be interesting (periodic) and assume they appear
in all TSWindowSize stream transactions. The construction of
R3PStreamSW-List, 3PStreamSW-Tree and R3PStreamSW-Queue
are done simultaneously in a single scan by sorting the stream
transactions in a pre-defined order. Adding an item at the rear
end of the queue has a time complexity of O (1). The time
complexity of initial window tree construction is in O (2 (ψ ×
TSWindowSize)). (ii) Further, in the window sliding phase, initially,
TSBatchSize number of oldest transactions in the window are

removed and new set of TSBatchSize number of transactions are
added into the R3PStreamSW-Tree. The insertion and deletion
has a time complexity of O (2 (ψ × TSBatchSize)). Deleting an
item at the front end of the queue has a time complexity of
O (1). In addition, at the end of the window sliding phase the
R3PStreamSW-List is updated which has a time complexity of O (ψ
× TSBatchSize). (iii) To extract R3Ps, the prefix tree is recursively
mined in a dfs fashion during the mining phase of R3PStreamSW-
Growth. The collection of possible itemsets generated is R = 2ψ−
1. Finally, to generate the conditional pattern base, R3PStreamSW-
List and prefix-tree of α for every considered itemset α that extends
an itemset β , R3PStreamSW-Growth traverses the node-links of
the R3PStreamSW-List of β . As these structures of β are only
visited once, this construction is completed in linear time. The
mining has a time complexity of O (ψ × TSBatchSize × R).
Hence the R3PStreamSW-Growth’s overall time complexity is O
(ψ × TSWindowSize× R).

Time complexity analysis of R3P-StreamSWBitVectorMiner

(i) After scanning the stream data, all of the one-length items
are first saved in bit-vector form in the R3PStreamSWTSList.
The construction of a R3PStreamSWTSList has a worst-case time
complexity of O (ψ × TSWindowSize). (ii) Moreover, during
the window sliding phase, the TSBatchSize oldest transactions in
the window are first eliminated, and a new set of TSBatchSize

transactions are added to the R3PStreamSWTSList. To remove the
oldest transactions, R3P-StreamSWBitVectorMiner carries out the
bitwise left shift operation TSBatchSize times, which is an O (1)
operation. The time complexity associated with inserting a new
batch of TSBatchSize number of transactions with support count
updates is O (ψ × TSBatchSize). (iii) In order to produce the larger
length itemsets, the mining operation applies the logical AND
operation on the two current itemsets. Each item is represented
by TSWindowSize number of bits. The logical AND operation
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has an O (1) time complexity, regardless of the number of bits
involved. Furthermore, the period support calculation considers
every bit of each item that requires a maximum TSWindowSize

number of operations. This algorithm uses the DFS method on
the itemset lattice. The collection of possible itemsets generated
is R = 2ψ− 1. Consequently, the time required to generate all
possible interesting itemsets is O (R × TSWindowSize). Therefore,
the total time complexity of R3P-StreamSWBitVectorMiner is O (R
× TSWindowSize).

7 Conclusion

In this paper, novel tree-based framework R3PStreamSW-

Growth and list-based framework R3P-StreamSWBitVectorMiner,
innovative sliding window-based techniques are introduced to
capture rare partial periodic patterns from temporal stream data.
Two distinct support thresholds minRarePS and minFreqPS are
employed in addition to maxPer threshold measure to regulate
the number of cyclic repetitions and eliminate noisy patterns. In
order to maintain the sliding window, the user accepts window
size - TSWindowSize and batch size - TSBatchSize values. In
addition, mineBSize, a user-specified value, decides the time
at which mining is performed after how many batches of the
sliding window process. R3PStreamSW-Growth maintains a
R3PStreamSW-List structure in which the current timestamp
window’s partial periodic one-length patterns are preserved.
This helps to reduce the ample search space by removing
one-length aperiodic patterns. Furthermore, to capture all time-
stamped data from the current window stream, a single scan
R3PStreamSW-Tree is built. In addition, a queue structure called
R3PStreamSW-Queue points to the nodes of R3PStreamSW-Tree

with timestamp data, thus speeding up traversal during window
sliding phase. As new stream data are added and older transactions
are eliminated when window slides, R3PStreamSW-Tree is
always in a ready-to-mine condition. During the mining phase,
R3PStreamSW-Growth employs a divide-and-conquer strategy,
which generates a massive number of conditional pattern trees
which effects mining performance. To overcome this, a list-based
framework, R3P-StreamSWBitVectorMiner is proposed to extract
rare partial periodic patterns from the temporal stream data. The
current window stream data are transformed into bit-vector and
stored in an efficient data structure named R3PStreamSWTSList

which helps in pruning non-periodic itemsets. The findings
showed that when a dense dataset Accidents is considered for
minRarePS, minFreqPS and maxPer threshold variations, R3P-
StreamSWBitVectorMiner outperformed R3PStreamSW-Growth

by about 93%. Similarly, when the sparse dataset T10I4D100K

is taken into account, R3P-StreamSWBitVectorMiner exhibits a
90% boost in performance. This demonstrated that on a range
of synthetic, real-world, sparse, and dense datasets for different
thresholds, R3P-StreamSWBitVectorMiner is significantly faster
than R3PStreamSW-Growth. In addition, it is also observed that
R3P-StreamSWBitVectorMiner is memory-efficient compared
to R3PStreamSW-Growth in most of the cases. In contrast, it is
observed that for a highly sparse large dataset, where the number
of aperiodic and noise items are more, R3P-StreamSWGrowth

consumes lesser memory. As R3P-StreamSWBitVectorMiner

represents the transaction ids in bit-vector form, compressing the
tidset may increase space efficiency.

The proposed frameworks are restricted to extract rare partial
periodic patterns from temporal stream data based on the maxPer

threshold value. To overcome this limitation, as a future work
alternative periodic support metrics can be applied as per the
user requirements. In addition, the proposed frameworks may
be employed to extract rare periodic patterns by considering
suitable real-world applications such as e-business, cybersecurity,
healthcare, and network traffic data. Similarly, the proposedmodels
could be integrated with existing machine learning prediction
models to extract significant information. The proposed methods
mine rare partial periodic patterns considering the temporal
stream data. However, an in-depth study may be carried out to
find the significant associations that exist among the rare partial
periodic patterns generated. Further, the proposed frameworks
can be enhanced to mine high-utility itemsets from stream data.
Additionally, the proposed methods can be extended to consider
multivariate time series datasets.
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