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Introduction: The decision regarding the supply of emergency equipments

for power emergencies requires timeliness, e�ciency, and accuracy. The

multi-agent supply relationship graph, based on complex data fusion, enables

the comprehensive exploration of interconnections among key entities in power

emergency supplies.

Methods: This approach enhances decision-making e�ciency and quality

by uncovering multiple relationships between main bodies involved. The

present study focuses on the decision-making process for power emergency

equipments supply and aims to enhance its professionalization. To achieve

this goal, multi-modal data regarding power emergency equipments supply

is collected from both internal and external power enterprises. Subsequently,

a decision support knowledge base is established, along with a four-

dimensional relationship graph that integrates events, time, equipments,

and suppliers based on the knowledge graph. This enables the mining of

multidimensional relationships pertaining to the main body. Finally, supported

by the graph, the platform can o�er intelligent assistance in decision-making,

supplier recommendation, optimization of emergency equipment scheduling

for electric power supply, and provides e�ective information and guidance for

decision-making in electric power emergency equipment supply.

Results: After conducting a comparative analysis, the decision support system

based on the knowledge graph proposed in this study demonstrates superior

e�ectiveness and precision. By integrating the four-dimensional relationship

graph with data mining algorithms, precise decision support can be provided

for power emergency response. After verification through case studies, the

model developed in this study was utilized to recommend suppliers of power

emergency equipment, and the recommendation results demonstrated a closer

alignment with actual procurement outcomes.

Conclusion and recommendation: This system proposed by this study delivers

multidimensional knowledge guidance and optimized decision pathways for

emergency supply management.
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electric power emergency supplies, relationship diagram, supply decision, intelligent

optimization, conceptual design
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1 Introduction

Effective management of electric power emergencies is

critical for preventing, mitigating, and minimizing the impact

of unforeseen disruptions. In recent years, frequent natural

disasters have triggered widespread power outages, severely

affecting both livelihoods and industrial production. Rapid

restoration of power supply during emergencies is essential to

minimize socioeconomic disruptions. Moreover, given the inherent

unpredictability of large-scale power outages, a robust emergency

equipment dispatching and response system is indispensable

for effective crisis management. Such a system enables data-

driven decision-making for emergency resource allocation, thereby

reducing losses during power crises. The integration of digital

technologies and big data analytics enables knowledge-based

decision-making for power emergency supply management,

providing scientifically grounded, rational, and efficient allocation

strategies. Furthermore, this approach significantly reduces costs

and improves energy efficiency, positioning it as the future standard

for power emergency supply decision-making.

A knowledge graph (KG) is an intelligent knowledge base

integrating principles from knowledge engineering, artificial

intelligence, and traditional databases. KGs organize heterogeneous

data while supporting intelligent information management,

exploration, and mining (Wang et al., 2020). Furthermore,

KGs facilitate intelligent search, question-answering systems,

recommendation mechanisms, and decision-making support

(Sawant et al., 2019; Li et al., 2021). These capabilities have seen

growing adoption across finance, public security, healthcare, and

other sectors (Zhu et al., 2024). The power industry has similarly

adopted KG technologies for specialized applications including grid

scheduling, marketing, operations, and equipment inspection (Sun

et al., 2023; Zhao et al., 2015). KG construction typically involves

four core processes: knowledge extraction, representation learning,

knowledge mining, and knowledge reasoning/fusion (Wu et al.,

2018).

Artificial intelligence technology facilitates knowledge graph

construction by extracting nodes and relationships from extensive

power system data, integrating complex information into a

unified structure that enhances management efficiency (Wu et al.,

2024). The processed data enables the establishment of power

industry standards and offers practical guidance for engineering

applications. KGs enable synchronization and coordination across

power system subsystems by establishing relationships among

system entities. Time-series-based dynamic knowledge graphs

support real-time updates of nodes and relationships, enabling

adaptation to both system upgrades and external environmental

changes (Ji et al., 2021).

Platform-based organizations have gainedwidespread adoption

across industries, enabling intelligent service integration, cross-

departmental data sharing, and comprehensive service support.

The platform model has become predominant in business, with

Amazon and Alibaba representing prominent examples. O’Reilly

extended the platform concept to government governance through

the “government as a platform” paradigm, accelerating public

administration digital transformation.

As demonstrated, KGs enable data-driven decision-making

by systematically analyzing entity relationships, improving

both operational efficiency and analytical accuracy through

existing data resources. However, existing research lacks a

comprehensive theoretical framework for integrating entity-

relationship graphs with AI technologies using platform-based

approaches. In practice, emergency power resource allocation

requires consideration of multiple complex factors: resource

inventories, multi-agent supply networks, socioeconomic

conditions, and environmental variables. Systematically

enhancing knowledge graphs is essential to bridge the

supply-demand gap for emergency power resources. Thus,

developing a multi-agent supply-relationship knowledge

graph system for power distribution decision-making is

critically important.

This study addresses these theoretical and practical challenges

through two key research objectives:

(1) Developing an integrated theoretical framework combining

inter-agent network relationships with platform organization

theory, enhanced by multi-agent power supply relationship

knowledge services to expand both domains’ theoretical and

applied boundaries.

(2) Creating a four-dimensional knowledge graph (events-time-

equipments-suppliers) and corresponding decision-support

platform to optimize intelligent power equipment supply

decisions through multi-agent relationship modeling.

2 Literature review

2.1 The application of KG in electric power

Network structures effectively model complex relationships

and serve as fundamental components in computational social

science research (Lazer et al., 2020). Recent research has

successfully applied network analysis across multiple domains,

including finance (Kejriwal, 2021), crisis informatics (Sadri et al.,

2021), and biotechnology (Szklarczyk et al., 2021). Specific network

algorithms, particularly link prediction and community detection

methods, have enabled advanced applications like collaborative

forecasting and group pattern mining (Kumar et al., 2020; Jin et al.,

2023; Ju and Cao, 2025).

KGs are built upon structured semantic knowledge bases that

represent entities as nodes and relationships as edges in graph

structures (Yan et al., 2018). The KG represents entities and

relations as triplets, specifically in the form of “entity-relation-

entity”, while the characteristics of entities are represented using

the format of “attribute-attribute value” (Hogan et al., 2021).

The construction process of a KG involves four essential steps:

knowledge extraction, learning of knowledge representation,

mining of knowledge, and reasoning and fusion of knowledge.

The extraction of terms can be facilitated through the utilization

of dictionaries, rules, statistics, and machine learning techniques

(Etzioni et al., 2008). Relationship and concept extraction utilizes

both linguistic and statistical methods (Zhou et al., 2014; Fu et al.,

2020). Representation learning transforms real-world knowledge

into computational representations (Viloria and Lezama, 2019).

Traditional representation learning models include TransE,

TransR, TransD, TransG, and TransH (Cesar et al., 2019). Recent
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advances have introduced new models including MGTransE

(Warren et al., 2019) and KG2E (Lei et al., 2020). Knowledge

mining identifies novel entity relationships to enrich the KG

(Zhang et al., 2021). This phase utilizes link prediction, neural

networks, and decision trees to infer implicit relationships. The

goal is to discover potential future collaborative relationships.

Finally, KGs require continuous updating to reflect evolving

entities and relationships. Key updating algorithms include

NBFNET (Zhu et al., 2021), PALT (Shen et al., 2022), KGLM (Youn

and Tagkopoulos, 2022), and LP-BERT (Li et al., 2023).

An event relationship graph represents event logic

through nodes (events) and directed edges (causal/consequent

relationships), forming a cyclic structure that captures event

development patterns and evolutionary mechanisms. As an

extension of KGs, event graphs specifically model dynamic event

causality and underlying mechanisms. Neural networks and

pre-trained models now dominate event extraction tasks (Du and

Cardie, 2020; Ma et al., 2022), outperforming traditional pattern

matching and machine learning approaches. Relational recognition

identifies and classifies textual relationship pairs, employing either

rule-based knowledge bases (Kosari et al., 2024) or deep learning

methods for implicit semantic relationship extraction (Che et al.,

2021).

Relational recognition aims to identify relationship pairs in text

and classify their semantic types. KGs enable semantic search and

intelligent question answering by inferring implicit relationships

from existing entity connections. This approach improves both

search accuracy and result predictability. Furthermore, it supports

abnormal behavior detection (Hatirnaz et al., 2020), managerial

relationship analysis (Chen et al., 2020), and news article clustering

(Kallipolitis et al., 2012). Intelligent Q&A systems enhance online

customer service through advanced AI capabilities. Multi-modal

Q&A systems have attracted considerable research attention. These

systems have been applied in diverse domains including education

(Yang et al., 2021), healthcare (Peng et al., 2025), voice interfaces

(Kumar et al., 2017), tourism (Do et al., 2021), traditional medicine

(Yu et al., 2017; Xiong et al., 2021), and finance (Ma et al.,

2021).

KGs utilize existing node relationships to predict future

connections. Consequently, they have become increasingly

sophisticated with AI advancements, finding wide application

in power forecasting, scheduling, and related domains. Current

applications demonstrate significant efficacy in: power load

forecasting (Yin and Xie, 2021; Sheng et al., 2021), fault diagnosis

(Zera and Ayati, 2021), system optimization (Xi et al., 2021),

resource scheduling (Ong et al., 2021), and maintenance detection

(Liu et al., 2022).

2.2 Power emergency equipments supply
decision-making

Emergency power equipment distribution utilizes demand

forecasting and storage facility locations to enable precise

dispatching, ensuring supply-demand matching throughout

the process and effectively reducing the impact of power

outages. Non-standardized emergency power equipments storage

complicates reserve quantity determination and increases response

time requirements.

Effective reserve quota management ensures adequate

power grid emergency equipment reserves, while analyzing key

influencing factors is essential for quota optimization (Huang,

2019). Scholars have applied the DEMATEL method to quantify

interrelationships among indicators and classify power emergency

equipments by identifying key influencing factors (Zhang et al.,

2024). For reserve warehouse location, researchers have developed

the fuzzy evaluation model for site selection, multi-objective

path optimization model (Wan et al., 2023), and the mobile

storage configuration model (Jiang et al., 2021). For equipment

distribution, Mojtaba et al. (2016) developed a dynamic model

maximizing disaster site utility under supply-demand, time, and

transportation constraints. Zhuang and Zhang (2023) utilized

the SEIR model to predict emergency equipment demand during

public health crises and also created an optimization model

minimizing both shortage impacts and distribution distances.

2.3 Limitations of current research

Current research on knowledge graphs, relationship graphs,

and power emergency supply decision-making has developed

effective optimization methods and produced significant findings

in supply strategies. However, scholars have largely overlooked the

relationship between graph construction and electric emergency

supply management. Optimizing power emergency supplies

requires intelligent, data-driven decision-making with scientific

rigor and timeliness. Rational allocation and scientific planning are

essential for multi-agent supply chain coordination. Relationship

graphs effectively model entity relationships and demonstrate

strong event reasoning capabilities. Current knowledge and

reasoning graphs fail to adequately model the complex time-

event-supplier-equipment relationships in power emergency

supply scenarios. They also lack comprehensive decision-support

capabilities for emergency supply management. Therefore, a multi-

agent supply relationship graph system would provide significant

theoretical and practical benefits for power emergency decision-

making. This approach would both expand knowledge graph

applications and optimize power emergency supply decisions.

3 Methods

Following platform organization principles, developing a

decision knowledge service system involves three core tasks:

(1) Role integration within the system; (2) Platform module

design using reusable knowledge bases and algorithm libraries; (3)

Coordinated resource integration among stakeholders including

equipment suppliers, power departments, technical personnel,

and management entities. This internet-connected, multi-terminal

platform enables efficient emergency equipment management and

intelligent decision support.

This study follows a three-platform framework construction

process: (1) Role and function identification, (2) function library

construction, and (3) platform construction, as shown in Figure 1.
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FIGURE 1

The method of platform construction.

3.1 Roles and functional identification

Big data-driven role identification for power emergency

equipment decision-support platforms, augmented by process

expertise, improves operational accuracy. Domain policy

documents provide comprehensive guidelines that govern all roles

and behaviors within the power emergency ecosystem. Keyword

extraction from these policy documents identifies role-specific

functions, clarifying the platform’s operational responsibilities.

First, we collected power emergency equipment supply policies

from the Chinese government’s official website to build the

text corpus. Second, we used Python’s Jieba library for Chinese

word segmentation, followed by stop-word removal and TF-IDF

analysis to identify term importance. Finally, we ranked roles and

functions by TF-IDF values, selecting the top five most significant

contributors for platform development.

3.2 Function library construction

3.2.1 Database construction
Following role identification, we acquire data and construct

preliminary databases through two primary approaches: (1)

Role-specific internal data including workflows and equipment

metadata; (2) Open data including patents and standards

which involve structured, semi-structured, and unstructured data

formats. Comprehensive data collection is essential for optimal

platform functionality.

3.2.2 Relational graph construction
3.2.2.1 Entity/characteristic extraction

Entity/characteristic extraction identifies and extracts relevant

terms from power emergency-related unstructured data. We

employ a Hidden Markov Model (HMM) for corpus classification.

In HMM-based segmentation, each observed word corresponds

to a hidden state. The state set G = {B, M, E, S} represents:

B-beginning, M-middle, E-end, and S-single character words.

We augmented segmentation accuracy using a domain-specific

power emergency terminology dictionary. Segmented words

matching the domain dictionary become knowledge graph

entity/characteristic nodes.

3.2.2.2 Coreference resolution

The term “coreference resolution” refers to the process

of identifying and linking entity/characteristic that have the

same meaning but are expressed differently within the power

emergency equipments corpus. The specific steps are as follows:

(1) Tokenization using Python’s Jieba package and POS tagging;

(2) The word2vec algorithm is employed to vectorize each term

within the set of parts of speech. The vector dimension is set to

50, and the part of speech set after vectorization is Vword = (v1, v2,

v3, L, v50). (3) Similarity calculation via Formula 1 (higher values

indicate stronger semantic similarity). Coreference established at

cosθ ≥ 0.88 threshold.

cosθ =
x1 · y1 + x2 · y2 + x3 · y3 + L+ x50 · y50

||

√

x21 + x22+x23 + L+ x250|| · ||
√

y21 + y22+y23 + L+ y250||

(1)

3.2.2.3 Relationship extraction

Relation extraction identifies relationships between entities

in power emergency equipment corpora. We employ BERT for

domain-specific relationship extraction due to its effectiveness

with power systems’ unique attributes. Figure 2 illustrates the

relationship extraction pipeline.

3.2.2.4 4-dimensional relationship construction

Traditional knowledge graphs represent facts as triplets (v1, r,

v2), where v1 and v2 are entities connected by relation r. However,
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FIGURE 2

Relationship extraction process.

power emergency supply decisions require more comprehensive

relationship representations than single triplets provide. They

demand multi-dimensional relationship characterization.

We propose a four-dimensional graph architecture for

power emergency supply decision support, incorporating: (1)

knowledge domains, (2) top-level designs, (3) spatiotemporal

sequences, and (4) equipment responses, enabling efficient

knowledge reasoning.

As shown in Figure 3, our four-dimensional relationship graph

is formally defined as Gr= (S, G, I, T, R), where:

S: supplier dimension (entity and attributes)

G: equipment dimension (required resources and attributes)

I: event dimension (emergency characteristics)

T: temporal dimension (event timeline)

R: relationship set (inter-dimensional connections)

R= {R (S, G), R (S, I), R (S, T), R (G, I), R (G, T), R (I, T), R (G,

I, T), R (S, I, T), R (S, G, T), R (S, G, I)},

The relation set R contains logical reasoning relationships such

as conditional, compositional, and causal relations.

Figure 3a depicts event-time-equipment relationships centered

on emergency equipment suppliers. It shows temporal event

patterns and corresponding equipment supplies. Figure 3b

illustrates, with suppliers as the focal nodes, the provider-

equipment correlations during power emergency events.

Figure 3c analyzes supplier-equipment-time responses to

emergency events. Figure 3d visualizes event-supplier-

equipment temporal interactions at discrete time points.

Each graph’s vertices represent pairwise entity correlations.

These 4D relationships enable historical and cross-event

comparative analyses. Reasoning techniques applied to these

models yield scientific decision support for emergency supply

management.

3.3 Function clarity and platform
construction

Platform functions are determined through combined function

keyword extraction and expert consultation, guiding appropriate

data mining technique selection. These functional requirements

were then implemented using the relational graph structure.

The platform architecture provides accessible, encapsulated

function packages, maintaining core platform principles while

ensuring scalability. The final architecture incorporates specialized

functionalities for power emergency equipment decision support.

4 Conceptual design of a
decision-knowledge service model

4.1 Data sources

We collected 23 highly relevant policy documents (2014-

present) from Chinese government portals, selected through

role-function analysis. For relational graph construction, we

utilized emergency equipment management data from State

Grid’s Jinhua branch. This dataset reflects years of accumulated

emergency response experience. We anonymized data by replacing

organizational identifiers with numerical codes. Preprocessing

included: (1) missing value imputation, (2) duplicate removal,

and (3) noise filtration. The dataset contains both structured

and unstructured records: (1) Structured: equipment inventories,

demand logs (standardized formats); and (2) Unstructured:

incident reports (variable formats requiring complex processing).

4.2 Role identification and function
identification

Applying the Section 3.1 methodology, we extracted keywords,

computed TF-IDF values, and generated separate rankings for role

and function keywords. Table 1 presents these keyword rankings.

4.3 Function library construction

Constructing the power emergency supplies knowledge

base requires four key processes: (1) information acquisition,
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FIGURE 3

Construction logic for the four-dimensional relationship graph of power emergency supply.

TABLE 1 Roles and functions of knowledge service platform.

Role keywords TF-IDF Function
keywords

TF-IDF

State Grid 0.0946 Supply 0.1121

Electricity user 0.0766 The plan 0.0997

Supplier 0.0631 Protection 0.0981

Company of

equipments

0.0541 Scheduling 0.0659

Power substation 0.0482 Early warning 0.0535

(2) knowledge extraction, (3) knowledge fusion, and (4)

knowledge updating. Figure 4 details this knowledge base

construction workflow.

4.3.1 Acquisition and classification of knowledge
sources

Building a reliable knowledge service platform for power

emergency supplies requires verifiable, objective data sources.

These sources form the foundation for modeling supply-

chain relationships in power emergency systems. The platform

must integrate multi-format data including structured, semi-

structured, and unstructured statistics, texts, and charts. The

knowledge base must span multiple administrative levels, from

international standards to local enterprise data, to adequately

support emergency power supply needs. Power emergency supply

information sources divide into internal (professional) and external

categories. Internal sources include both subsidiary-level and

cross-departmental headquarters data. External sources consist

of supplier-provided data and publicly available information.

Data integration leverages internal expertise while incorporating

diverse external sources. Figure 5 details this knowledge source

classification framework.

4.3.1.1 Internal information

Internal data originates from power companies, comprising

emergency event records, equipment inventories, supplier

databases, and related operational data. Company intranets

host additional headquarters documents including standards,

notices, and minutes, along with provincial and subsidiary

company equipments. Structured/semi-structured internal data

includes technical specifications, feasibility studies, project

acceptance reports, and internal media releases. These datasets

require classification, organization, thematic tagging, and

keyword/phrase extraction.

4.3.1.2 External information

External data collection integrates multiple sources, including

public online data and supplier submissions. Web-based sources

provide economic indicators, policy documents, industry trends,

and corporate performance metrics. Regulatory agencies’ websites
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FIGURE 4

The construction process of the knowledge base for power emergency supplies supply.

serve as primary sources for official industry development

news. Energy corporations’ websites offer operational updates

through news releases and official statements. Power companies

additionally publish industry-specific research reports through

official channels. These include expert policy analyses and industry

development interpretations. Scientific research data provides

theoretical foundations for optimizing emergency power supply

decisions. This research data originates from global academic

platforms. Patent data is acquired from Derwent Innovation

Index. Supplier data interfaces provide access to: business

registrations, equipment specifications, storage capacities, and

transportation logistics.

4.3.2 Label definition
Entity labeling in the knowledge base enables efficient

resource management while supporting entity relationship

mapping and knowledge mining. Labels are metadata-defined,

describing entity/attribute characteristics. This framework

supports resource discovery, retrieval, management, and

tracking. Our template-based metadata extraction analyzes

power emergency resources from: (1) academic databases

(e.g., CNKI), (2) government documents, and (3) energy

company publications. Key metadata attributes encompass

topics, keywords, publishers, timestamps, and usage metrics.

The labeling system allows customizable field-specific

collection, intelligent label-entity matching, and autonomous

semantic expansion.

4.3.3 Construction logic of entity relationship
graph
4.3.3.1 Ontology and relationship construction

Figure 6 illustrates the fact ontology construction process

through data-to-model layer mapping. This transformation
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FIGURE 5

Data source and classification.

converts knowledge databases into structured graphs while

supporting unified knowledge management.

The emergency power supply knowledge base integrates

multidisciplinary data from diverse sources. Its hybrid

methodology combines data-driven bottom-up processing

and knowledge-driven top-down structuring. The bottom-up

approach analyzes structural patterns to incrementally build

ontologies from heterogeneous external data. The top-down

method leverages existing power system knowledge to enhance KG

robustness for complex scenarios.

While structured data imports directly into databases,

unstructured data frequently contains input errors and semantic

ambiguities from manual processing. Data cleansing ensures

unstructured data accuracy. We first apply a Hidden Markov

Model (HMM) for semantic analysis, then combine it with

domain-specific terminology to perform word segmentation.

Next, we filter irrelevant corpus using a power emergency

equipment dictionary. Finally, we detect and remove

anomalies in the emergency equipments data. Figure 7 details

this workflow.

4.3.4 Relationship extraction and visualization of
relationship graph

Using the Section 3.2.2 relation extraction method, we establish

inter-entity relationships. This extraction yields multidimensional

relationships (Figure 4) between identified entities. We implement

these relationships in Neo4j, producing the relationship graph

shown in Figure 8.

4.4 Platform architecture design

The Power Emergency Equipments Decision-Support Platform

is designed to meet operational requirements of emergency

power supply management. By leveraging comprehensive supply

chain data, it delivers intelligent decision-support capabilities for

emergency response scenarios. Shown as Figure 9.

4.4.1 Data layer
The data layer performs core data acquisition and

preprocessing functions. Data sources, which contains

predominantly semi-structured and unstructured documents

and minimal structured data, include both internal

emergency records and external inputs from suppliers,

policies, patents, and literature. This layer acquires/stores

raw data and analyzes structured formats (Excel, JSON,

etc.) through import, parsing, and structured storage

operations. Then semi-/unstructured data preprocessing

includes text cleansing (noise removal, term normalization)

and object standardization.
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FIGURE 6

Power emergency equipment supply ontology and relationship construction.

4.4.2 Fusion layer
The fusion layer critically enables power emergency knowledge

base construction. A multi-agent relationship map integrates

fragmented data to support knowledge base development. This

layer performs NLP, knowledge extraction, and integration

functions. NLP focuses on text annotation through segmentation,

semantic analysis, POS tagging, corpus classification, and topic

modeling. These techniques enable deep knowledge understanding.

Neo4j stores entities, attributes, and relationships within the

fusion layer, which supports ontology fact creation, many-to-many

relationship mapping and robust knowledge base development

with advanced reasoning capabilities.

4.4.3 Inference layer
The inference layer supplies algorithmic models for upper-

level applications, including representation learning, relational

inference, graph search, path computation and contextual

inference. Representation learning converts inputs into

discriminative features to interpret user intent. Relational

inference deduces logically connected knowledge points from user

queries. Graph search accurately matches queries to knowledge

base elements. Path computation generates adaptive learning

trajectories by optimizing knowledge sequences. Contextual

inference analyzes trending topics and provides predictive insights.

4.4.4 Application layer
As the platform’s output module, the application layer enables

user interaction and real-world implementation through supplier

recommendation/valuation, intelligent supply chain management,

decision support with path planning and emergency technology

forecasting. Beyond operational decision-making, it provides

research insights for power emergency management. Role-based

access control with tiered portals and confidentiality protocols

ensures enterprise-grade security.
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FIGURE 7

Workflow of data processing and graph construction.

FIGURE 8

Relationship graph of electric power emergency equipments.

4.4.5 Result feedback
The platform incorporates a feedbackmechanism that evaluates

prediction accuracy during user interactions and overall system

performance. Specific metrics assess supplier recommendation

quality and emergency resolution efficacy. Feedback analysis drives

continuous improvement through data/algorithm optimization,

relationship graph reasoning updates and supply-demand pattern

discovery - enabling precise decision support.
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FIGURE 9

Functional architecture of the power emergency equipments supply decision support service platform.

4.5 Validation of the decision knowledge
service model

4.5.1 Validation of model validity through
recommendations for power emergency
equipment suppliers

Our multi-agent power supply relationship platform

provides intelligent support for emergency decisions,

supplier recommendations and equipment scheduling

optimization. Given system complexity, we focus validation

on representative supplier recommendations. The evaluation

using historical power emergency events. By extracting event

keywords via text mining and identifying the most relevant

knowledge base matches via case similarity analysis, this yields

optimal equipment/supplier recommendations. We validate

superiority by comparing our multi-agent approach with

conventional knowledge graph methods. Results demonstrate our

method’s advantages.

We analyzed five representative power emergency events

(2024–2025; see Appendix for details). To prevent bias, we first

excluded these events’ data from similarity assessments. For

each event description, we conducted platform-compatible word

segmentation and vectorization. Table 2 displays representative

word vectors from Case 1.
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TABLE 2 Keyword vectors for case studies (case 1, partial data).

Keywords Feature vector

Blizzard [8.3786594e-03−5.2053598e-04−9.4238138e-03 4.7852471e-03−6.0076267e-03 6.5374356e-03 5.4355143e-03−4.8469724e-03

2.5291601e-03 5.2344715e-03−3.6079709e-03−1.6198035e-03 . . . . . . ]

December [0.00595575 0.00378833 0.00177153 0.00062343 0.00883377 0.00482771−0.0077223 0.00798897−0.00535822−0.0008678

−0.00930842−0.00937253−0.00380538 0.00535653 0.00163865−0.00082083−0.00587822 0.00564618 . . . . . . ]

Power [−0.00223986 0.00754375−0.00309575 0.00352622 0.00015496 0.00145419−0.0003963−0.00851374 0.0088014 0.00691093

−0.00956929−0.00714341 0.00212362 0.00022632−0.00280066 0.00870843−0.0087514−0.00285309 . . . . . . ]

Imaging [5.4290597e-03 6.8533416e-03 6.1071278e-03−9.5195500e-03 9.6691269e-03−8.0433693e-03 6.9033791e-04 8.7057626e-05 7.1318117e-03

−8.8781007e-03 3.1964756e-03−6.1212792e-03 . . . . . . ]

Cut [9.6368423e-04 8.6120395e-03−4.0091206e-03 2.9682850e-03 3.2174194e-03−6.5832688e-03 9.1116382e-03 5.5184015e-03 4.8041744e-03

−1.6249869e-03 9.6991528e-03 3.9087841e-03 . . . . . . ]

TABLE 3 Recommended optimal equipment and suppliers for case study (to be procured).

Cases Emergency equipment Optimal equipment supplier

1 Engine powered winch PJM-9: Hangzhou Yongchuang Machinery Co., Ltd

Grinding rope PMS-25: Jiangsu Langshan Steel Wire Rope Co., Ltd

Glare flashlight PQG-7: Shenzhen Fenix Lighting Technology Co., Ltd

2 Pay-off rack PFX-1: Jiangsu Rutong Petro-Machinery Co., Ltd.

Armor clamp PJJ-35: Zhejiang Jinlihua Electric Co., Ltd

3 Electric generator PFF-1: Weichai Power Co., Ltd

Emergency light PYJ-1: Ocean’s King Lighting Science & Technology Co., Ltd.

Emergency water pump PYS-23: Shanghai Jindun Fire-fighting Security Equipment Co., Ltd.

4 Insulation resistance tester PJY-2: Sieyuan Electric Co., Ltd.

Multimeter PWY-16: Xi’an Shengli Instrument Co., Ltd.

5 Infrared thermometer PWY-16: Xi’an Shengli Instrument Co., Ltd.

Deicing robot PCB-10: State Grid Intelligence Technology Co., Ltd.

We computed case-to-knowledge base similarity scores

using vector distance metrics. The highest-scoring match

yielded the optimal equipment supplier. Table 3 presents the

recommended supplier (with database-derived identifiers).

These recommendations help purchasers overcome emergency

equipment procurement challenges and which proves particularly

valuable for unprecedented events.

4.5.2 Comparison of model advantages
Current research predominantly employs knowledge graphs

as foundational frameworks for decision-support systems.

We accordingly evaluate our model’s effectiveness through

comparative analysis with established knowledge graph approaches

proposed by Sun et al. (2023), highlighting our methodological

advantages. For all five case events, we compared each model’s

recommended supplier counts against actual procurement

data. Table 4 presents these comparative results. Our model’s

recommendations demonstrate significantly closer alignment with

actual procurement outcomes than the baseline knowledge graph

approach. These results validate our model’s superior efficacy.

5 Summary

This study constructs a 4D relationship graph modeling

power emergency supply chains by employing knowledge

engineering and AI techniques to aggregate internal and external

emergency supply data from the power industry, tailored

to demand patterns. This framework reveals implicit time-

event-supplier-equipment correlations, enabling intelligent

emergency supply decisions. Our multi-agent supply

network emphasizes critical supply chain interdependencies.

The system adapts to stakeholder-specific needs, enables

holistic data analysis, and enhances both data utility and

emergency decision-making.

Leveraging digital technologies (data processing, mining,

and algorithmic modeling), we develop a conceptual

framework for power emergency supply decision support.

The four-tier architecture (data, fusion, reasoning,

application) enables a complete data-to-knowledge-to-service

pipeline. This system delivers multidimensional knowledge

guidance and optimized decision pathways for emergency

supply management.
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TABLE 4 Comparison of di�erent models with actual procurement data.

Case Emergency
equipment

Optimal equipment supplier
(supplier number)

Knowledge graph model
recommendation (supplier

number)

Supplier of actual
procurement

1 Engine powered winch PJM-9 PJM-2 PJM-9

Grinding rope PMS-25 PMS-33 PMS-24

Glare flashlight PQG-7 PQG-15 PQG-7

2 Pay-off rack PFX-1 PFX-13 PFX-1

Armor Clamp PJJ-35 PJJ-1 PJJ-2

3 Electric generator PFF-1 PFF-23 PFF-1

Emergency light PYJ-1 PYJ-6 PYJ-1

Emergency water pump PYS-23 PYS-23 PYS-23

4 Insulation resistance

tester

PJY-2 PJY-9 PJY-4

Multimeter PWY-16 PWY-12 PWY-16

5 Infrared thermometer PWY-16 PWY-7 PWY-16

Deicing robot PCB-10 PCB-45 PCB-2

6 Research limitations and future
directions

While this conceptual framework establishes foundational

planning, several limitations require attention. First, internal

data (event records, policies) demonstrate high reliability, but

external supplier data necessitates advanced validation techniques

to ensure accuracy. Second, internal data interoperability and

sharing protocols require refinement. Additionally, external data

acquisition demands improved timeliness and quality control.

Furthermore, knowledge base construction methodologies need

comprehensive development. Finally, the platform requires

modular, scalable architecture for decision-support services. It

is imperative to conduct high-quality learning and training on

extensive samples of knowledge reasoning models, accurately

comprehend the interrelationships between events, and precisely

investigate and assess the evolutionary patterns and developmental

trends of such events. The challenge in enhancing the knowledge

service platform lies in effectively leveraging graph analysis

technology to optimize data resource utilization, enabling

intelligent cognition and reasoning. Additionally, it involves

integrating human-computer interaction to accurately transmit

and provide feedback on reasoning requirements, as well as

consolidating reasoning results for decision-making assistance.
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Appendix

Case Summaries:

Case 1:

On February 27, the Jinhua region was hit by a cold wave,

causing the overhead ground wire of the 220 kV Xizhai 4400

transmission line to detach due to severe ice accumulation,

resulting in a power outage.

Case 2:

On June 25, due to flood discharge from the Xin’anjiang

Reservoir, the water level of the Lan River continued to rise,

reaching the warning level of 28 meters. Five major reservoirs in

Lanxi were near full capacity, and the Jinshantou Reservoir began

discharging water.

Case 3:

As Typhoon In-Fa approached, to ensure power supply

resilience, State Grid Yiwu Power Supply Company canceled all

weekend leave for its employees starting July 24, mobilizing full

efforts for typhoon response. Over 10 emergency repair teams

were formed, with 120 repair personnel, 80 service vehicles, and

15 backup generators deployed. Emergency staff maintained 24/7

readiness to address contingencies.

Case 4:

On the morning of April 7, the Integrated Energy Team

of State Grid Lanxi Power Supply Company received an urgent

repair request from Sanjiang Warehouse. The manager reported

a power failure on a docked vessel at the Nübu Port. The team

promptly responded, conducting a comprehensive inspection of

wiring and sockets using multimeters and insulation resistance

testers to ensure stable power restoration.

Case 5:

On February 5, a renewed cold wave swept through

Zhejiang, triggering a sharp temperature drop and prolonged,

widespread rain and snow. The extreme weather caused severe ice

accumulation on high-altitude transmission lines, posing critical

risks to grid stability. According to State Grid Jinhua Power Supply

Company’s Transmission Monitoring Center, multiple lines in

Jinhua faced hazardous ice buildup.
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