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Introduction: Glaucoma is a leading cause of irreversible blindness, and its

rising global prevalence has led to a significant increase in glaucoma surgeries.

However, predicting postoperative outcomes remains challenging due to the

complex interplay of patient factors, surgical techniques, and postoperative

care. Artificial intelligence (AI) has emerged as a promising tool for enhancing

predictive accuracy in clinical decision-making.

Methods: This systematic review was conducted to evaluate the current

evidence on the use of AI to predict surgical outcomes in glaucoma patients.

A comprehensive search of Medline, Embase, Web of Science, and Scopus was

performed. Studies were included if they applied AI models to glaucoma surgery

outcome prediction.

Results: Six studies met inclusion criteria, collectively analyzing 4,630 surgeries.

A variety of algorithms were applied, including random forests, support vector

machines, and neural networks. Overall, AI models consistently outperformed

traditional statistical approaches, with the best-performing model achieving an

accuracy of 87.5%. Key predictors of outcomes included demographic factors

(e.g., age), systemic health indicators (e.g., smoking status and body mass index),

and ophthalmic parameters (e.g., baseline intraocular pressure, central corneal

thickness, mitomycin C use).

Discussion: While AI models demonstrated superior performance to traditional

statistical approaches, the lack of external validation and standardized surgical

success definitions limit their clinical applicability. This review highlights both the

promise and the current limitations of artificial intelligence in glaucoma surgery

outcome prediction, emphasizing the need for prospective, multicenter studies,

publicly available datasets, and standardized evaluation metrics to enhance the

generalizability and clinical utility of future models.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/

CRD42024621758, identifier: CRD42024621758.
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Introduction

Glaucoma remains a leading cause of irreversible blindness worldwide, with 60.5

million individuals affected in 2010 and global prevalence expected to reach 111.8 million

by 2040 (Flaxman et al., 2017). As the global burden of disease grows, the number of

glaucoma surgeries continues to rise. In the United States alone, the annual volume of
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glaucoma surgeries significantly increased by 176.7%, rising from

80,151 procedures in 2011 to 221,602 procedures in 2021 (Jayaram

et al., 2024).

Although surgery plays a critical role in glaucomamanagement,

postoperative outcomes are notoriously variable, influenced by

a complex interplay of patient factors, surgical technique, and

postoperative care. Complications such as hypotony maculopathy

and bleb-related endophthalmitis pose significant risks to vision

and quality of life, while also placing substantial burdens

on healthcare systems due to prolonged follow-up, additional

interventions, and higher costs (Vijaya et al., 2011; Stokes

et al., 2022). This variability has led researchers to develop

predictive models aimed at identifying patients at higher risk of

complications, traditionally using logistic regression and other

conventional statistical techniques (Lavin et al., 1992; Jampel et al.,

2001; Lehmann et al., 2000; Parrish et al., 2001).

However, these traditional models are inherently limited by

their reliance on linear assumptions and a small set of predefined

variables, meaning they often struggle to capture the complex,

nonlinear relationships that may drive surgical success or failure.

In contrast, artificial intelligence (AI) models offer far more

flexible and adaptive approaches. AI models can capture complex,

nonlinear relationships in surgical outcomes that traditional

statistical methods often overlook (Hashimoto et al., 2018). In

addition, they can continuously learn and evolve, incorporating

new data over time to improve their predictive accuracy and remain

clinically relevant (Huang et al., 2018).

AI has already demonstrated considerable success in other

areas of ophthalmology, including automated detection of diabetic

retinopathy, prediction of visual field progression, and detection of

glaucoma itself using fundus photography and optical coherence

tomography (OCT) (Lee and Lee, 2020; Giannini et al., 2019). Its

application to surgical outcome prediction, however, represents a

more recent development; one that holds great potential to support

personalized surgical planning and targeted postoperative care.

The successful translation of these predictive models into

routine surgical care depends not only on their accuracy but

also on their clinical interpretability, generalizability across patient

populations, and external validation. To better understand the

current state of this evolving field, we conducted a systematic

review to comprehensively evaluate the scientific evidence on

AI-driven prediction of postoperative outcomes in glaucoma

surgery. The review aims to assess the quality, performance, and

limitations of current models, with the ultimate goal of identifying

opportunities for improvement and priorities for future research.

Methods

Study design

This systematic review was conducted to evaluate the

application of AI in predicting postoperative outcomes following

glaucoma surgery. To ensure methodological transparency and

comprehensive reporting, we adhered to the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (Moher et al., 2009).

Search strategy

A comprehensive search of the literature was performed

across four major databases: Medline, Embase, Web of Science,

and Scopus. The search covered the period from inception to

November 20, 2024. The search strategy incorporated terms

related to AI, machine learning, deep learning, glaucoma surgery,

trabeculectomy, and surgical outcomes. Publication date and

language were not restricted. The complete search strings for each

database are available in Supplementary Table 1.

Eligibility criteria

Studies were eligible for inclusion if they met the following

criteria: they were human studies with a cohort, cross-sectional,

observational, or randomized controlled trial design; they

examined the use of AI to predict or assess postoperative outcomes

following glaucoma surgery; and they were published in English.

Studies were excluded if they were systematic reviews, scoping

reviews, case reports, letters to the editor, abstracts, or conference

posters. Animal studies, studies without relevant outcomes or

outcome data, and studies published in languages other than

English were also excluded.

Screening and study selection

Two independent reviewers (ZK and LK) screened the titles

and abstracts of all citations for eligibility based on the predefined

inclusion and exclusion criteria. Full-text review was performed for

all studies that met initial screening criteria. Any disagreements

during either stage of screening were resolved through consensus

discussion between the two reviewers. If consensus could not be

reached, a third reviewer served as an arbiter. After full-text review,

six studies remained and were selected for final inclusion and

data extraction. The study selection process is summarized via a

PRISMA flow chart in Supplementary Figure 1.

Data extraction

Data extraction was conducted using a standardized

spreadsheet developed a priori in Google Sheets (available in

Supplementary Table 2). Two independent reviewers (ZK and LK)

extracted data from each of the six included studies following

a full-text review. All extracted data were compared between

reviewers, and discrepancies were resolved through discussion.

If necessary, a third reviewer (MB) was consulted to resolve

any conflicts.

The extracted data included study authorship, year of

publication, study objective, study design, setting (single-center

or multicenter), sample size, mean age, and sex distribution of

the study population. Data extraction also captured each study’s

inclusion and exclusion criteria, data source, type of surgical

intervention, and definitions of surgical success and failure.

Additionally, data on the outcomes predicted by the AI models,
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the types of algorithms employed, the methods used to develop

and validate the models, and the performance of each model

were collected. The specific input parameters or features used

for prediction were recorded along with any reported feature

importance rankings. Key conclusions from each study, any

author-reported limitations, and all reported evaluation metrics,

including accuracy, area under the receiver operating characteristic

curve (AUROC), area under the precision-recall curve (AUPRC),

anomaly correlation coefficient (ACC), Matthews correlation

coefficient (MCC), F1 score, precision, negative predictive value

(NPV), sensitivity, and specificity, were also extracted.

To ensure consistent interpretation of AUROC scores across

studies, we applied the classification system proposed by Hosmer

and Lemeshow (2000). AUROC values below 0.5 were categorized

as “bad,” values from 0.5 to 0.7 as “poor,” values from 0.7 to 0.8

as “acceptable,” values from 0.8 to 0.9 as “excellent,” and values

exceeding 0.9 as “outstanding.”

Quality assessment

The methodological quality and risk of bias for all included

studies were evaluated using the Joanna Briggs Institute (JBI)

Critical Appraisal Checklist for Cohort Studies (Moola et al., 2020).

Each study was independently appraised by two reviewers (ZK and

LK). Any discrepancies in the initial assessments were discussed

until consensus was reached. If necessary, a third reviewer (MB)

was consulted.

Data synthesis

A meta-analysis was not performed due to substantial

heterogeneity across the included studies, including differences in

the types of algorithms and models used, variability in how data

and outcomes were presented, and inconsistency in the evaluation

metrics applied. Instead, we conducted a narrative synthesis, with

a focus on summarizing each study’s methodological approach,

algorithms, input features, and reported predictive performance.

Study outcomes

This systematic review primarily examined how effectively AI

algorithms predict postoperative outcomes in glaucoma surgery.

Secondary outcomes included characterization of the specific

algorithms and models used, the types of input data and features

incorporated into model development, approaches to model

training and validation, and the degree to which performance

varied across different study designs, definitions of surgical success,

and model architectures.

Results

Study characteristics

Our search yielded 91 studies; 39 studies underwent title

and abstract screening after duplicate removal; 8 articles were

selected for full-text review; 2 articles were removed, leaving

a total of 6 studies. Our included studies collectively analyzed

4,630 glaucoma surgeries involving 3,523 unique patients. The

median sample size across studies was 218.5 (IQR: 153 to 1,540),

ranging from 102 (Barry and Wang, 2024) to 2,398 surgeries

(Agnifili et al., 2023), with a median follow-up duration of 1 year

(IQR: 0), spanning from 3 months (Barry and Wang, 2024) to 5

years (Birla et al., 2024). In terms of study design, four studies

were retrospective cohort studies and two employed prospective

cohort designs. Five studies relied on single-center data, with

only one drawing from a multicenter database (Agnifili et al.,

2023).

In terms of patient demographics, female patients

comprised 48.9% (n = 1,723) of the total cohort. The

average age across 4 studies reporting means was 68.0

years (pooled SD: 15.9), while 2 studies reported median

ages of 74 (Agnifili et al., 2023) and 26 years (Birla et al.,

2024), respectively. In terms of racial representation across

studies, 53.6% of the total sample were White, 19.1%

were Asian, 8.9% were non-White Hispanic, 8.6% were

unknown or unreported by the authors, 4.2% were Black,

and 5.6% were of another race. None of the included studies

reported the socioeconomic characteristics of their respective

patient populations.

Most studies (n = 4) included patients with various

subtypes of glaucoma, with three including both primary

and secondary glaucoma. Birla et al. (2024) was the only

study to focus exclusively on just one subtype [juvenile open-

angle glaucoma (JOAG)]. Barry and Wang (2024) and Lin

et al. (2024) did not report the specific diagnoses of 100%

and 28% of their respective samples. Overall, four of the

studies included patients with primary open-angle glaucoma

(POAG), three included patients with pseudoexfoliative

glaucoma (PXG), two included patients with JOAG, two

included patients with primary angle-closure glaucoma (PACG),

one included patients with pigment dispersion glaucoma

(PDG), and one included patients with uveitic glaucoma

(UG) and neovascular glaucoma (NVG). Additionally, the

types of procedures varied among studies. Most (n = 4)

focused exclusively on trabeculectomy, one focused on Ahmed

valve implantation, and another took a broader approach

and encompassed trabeculectomy, ExPress shunts, tube

shunts, minimally invasive glaucoma surgery (MIGS), and

cyclophotocoagulation (CPC).

The heterogeneity of patient populations, diagnoses, and

procedures contributed to differences in success criteria and model

features across the studies. Details of the included studies can be

found in Table 1.

Algorithms and models

Across the six included studies, over 20 distinct algorithms

were tested. The most frequently used algorithms included:

random forests (n = 3), support vector machine (SVM, n =

3), decision trees (n = 2), and neural networks (n = 2). Other

tested models included extreme gradient boosting (XGBoost), k-

nearest neighbors, Bio-Clinical BERT, and Text Transformers,

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2025.1605018
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Kailani et al. 10.3389/fdata.2025.1605018

T
A
B
L
E
1

S
tu
d
y
c
h
a
ra
c
te
ri
st
ic
s.

S
tu
d
y
—
fi
rs
t

a
u
th
o
r(
s)
(y
e
a
r)

S
tu
d
y
d
e
si
g
n

S
a
m
p
le

si
z
e

(e
y
e
s)

A
g
e
(y
e
a
rs
)

F
e
m
a
le

(%
)

R
a
c
e
(%

)
P
ro
c
e
d
u
re
(s
)

G
la
u
c
o
m
a

ty
p
e
(s
)

F
o
ll
o
w
-u

p
d
u
ra
ti
o
n

A
gn

ifi
li
et
al
.(
20
23
)

P
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

10
2

74
.0
(6
2.
8–

80
.0
)

42
(4
1.
2)

N
/R

T
ra
b
ec
u
le
ct
o
m
y

P
O
A
G
,P

X
G

1
ye
ar

B
an
n
a
et
al
.(
20
22
)

R
et
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

23
0

68
.7
(±

12
.4
)

95
(4
1.
3)

W
h
it
e
(9
0.
9)

B
la
ck

(9
.1
)

T
ra
b
ec
u
le
ct
o
m
y

P
O
A
G
,P

X
G
,P

D
G
,

JO
A
G
,c
h
ro
n
ic
PA

C
G

1
ye
ar

B
ar
ry

an
d
W
an
g
(2
02
4)

R
et
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

2,
39
8

72
.5
(±

15
.4
)

74
5
(4
7.
4)

A
si
an

(3
2.
8)

W
h
it
e

(3
1.
8)

H
is
p
an
ic
(1
8.
1)

O
th
er

(1
0.
7)

B
la
ck

(5
.5
)

U
n
k
n
o
w
n
(1
.1
)

T
ra
b
ec
u
le
ct
o
m
y,
E
xP

re
ss

sh
u
n
ts
,t
u
b
e
sh
u
n
ts
,

M
IG

S,

cy
cl
o
p
h
o
to
co
ag
u
la
ti
o
n

N
/R

3
m
o
n
th
s

B
ir
la
et
al
.(
20
24
)

P
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

20
7

26
(1
0–

39
)

52
(3
3)

N
/R

T
ra
b
ec
u
le
ct
o
m
y

JO
A
G

5
ye
ar
s

L
ee

et
al
.(
20
24
)

R
et
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

15
3

62
.4
(±

13
.9
)

46
(3
0.
1)

A
si
an

(1
00
.0
)

A
h
m
ed

va
lv
e

im
p
la
n
ta
ti
o
n

P
O
A
G
,U

G
,N

V
G
,P

X
G
,

PA
C
G

1
ye
ar

L
in

et
al
.(
20
24
)

R
et
ro
sp
ec
ti
ve

co
h
o
rt
st
u
d
y

1,
54
0

63
.6
(±

15
.7
)

87
9
(5
7.
0)

W
h
it
e
(8
6.
0)

A
si
an

(4
.0
)

H
is
p
an
ic
(4
.0
)
B
la
ck

(3
.0
)
O
th
er

(3
.0
)

T
ra
b
ec
u
le
ct
o
m
y

P
O
A
G
(7
2%

)
1
ye
ar

P
O
A
G
,p
ri
m
ar
y
o
p
en
-a
n
gl
e
gl
au
co
m
a;
P
X
G
,p
se
u
d
o
ex
fo
li
at
iv
e
gl
au
co
m
a;
P
D
G
,p
ig
m
en
t
d
is
p
er
si
o
n
gl
au
co
m
a;
JO

A
G
,j
u
ve
n
il
e
o
p
en
-a
n
gl
e
gl
au
co
m
a;
PA

C
G
,p
ri
m
ar
y
an
gl
e-
cl
o
su
re

gl
au
co
m
a;
M
IG

S,
m
in
im

al
ly
in
va
si
ve

gl
au
co
m
a
su
rg
er
y;
U
G
,u
ve
it
ic
gl
au
co
m
a;
N
V
G
,

n
eo
va
sc
u
la
r
gl
au
co
m
a.

among others (Table 2). This wide range of models highlights

both the exploratory nature of the field and the absence of a

universally agreed-upon approach for surgical outcome prediction

in glaucoma. Overall, the best performing models across studies

were random forests (n = 2), decision trees (n = 2), XGBoost (n

= 1), and a transformer multilayer neural network architecture (n

= 1) (Table 3).

Methodological quality and validation

All included studies were appraised using the JBI Critical

Appraisal Checklist for Cohort Studies and were determined

to be of high methodological quality (Table 4). Five of the six

studies performed internal validation, withmost using k-fold cross-

validation (k = 3 to 10). External validation, a more rigorous test

of generalizability, was reported in only one study (Birla et al.,

2024), which tested its model on a separate set of five unrelated

patients. However, a validation cohort of this size is insufficient to

assess real-world performance across diverse patient populations

and overestimates the model’s predictive reliability.

Management of class imbalance

Class imbalance, where one outcome (typically surgical failure)

is far less common than the other, was directly addressed in

three studies: Banna et al. (2022) applied up-sampling to equalize

success and failure cases; Barry and Wang (2024) adjusted for

imbalance through weighted loss functions, classification threshold

optimization, and by tuning for both accuracy and F1 score; and Lin

et al. (2024) fine-tuned models using macro-averaged AUROC and

F1 score, both of which account for imbalanced data. The lack of

standardization in addressing class imbalance (and not addressing

it) contributed to variability in reported performance across studies

and limits comparability.

Surgical success criteria and outcome
definitions

Surgical success was defined differently across the six studies,

though most definitions centered on postoperative intraocular

pressure (IOP) reduction. Some studies defined success as

achieving IOP below an absolute threshold (e.g., <18 mmHg),

while others required a percentage reduction from baseline. Beyond

IOP, some studies expanded their definition of success to include

factors such as avoidance of additional glaucoma surgery or

reduced need for medication. Two studies also incorporated visual

outcomes, specifically loss of light perception. Of note, the timing of

success evaluation ranged from 3months to 5 years postoperatively,

with most studies requiring at least two consecutive follow-up visits

before outcomes were classified. These inconsistencies in outcome

definitions complicate direct performance comparisons and may

have influenced the variability in reported AI model accuracy

across studies.
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TABLE 2 Model characteristics from each included study.

Study—first
author(s) (year)

Models assessed Best performing
model

Features used Validation
method

Variable importance
ranking

Agnifili et al. (2023) Decision trees N/A Demographic

characteristics,

glaucoma-related clinical

data, ocular surface

features

N/R CST; SCR; age; CET; ECR;

ocular surface clinical test;

surgical site-derived

parameters

Banna et al. (2022) Random forest, SVM,

MNN, multivariable

logistic regression

Random forest (trained

using demographic,

ophthalmic, and

systemic data)

Demographic

characteristics, systemic

health data, ocular

parameters

Five-fold

cross-validation

age; preoperative VA; ARB;

MI; CCT; BMI; topical

alpha-agonist; white race;

smoking history; COPD;

inhaled corticosteroids;

preoperative IOP class (≥18

and ≤25); PGA; gender;

number of preoperative

medication classes (4 to 5);

oral CAI; preoperative IOP

class (>25); HTN; CVA; HLD

Barry and Wang (2024) Decision trees, random

forest, XGBoost,

penalized logistic

regression, multi-layer

perceptron, k-nearest

neighbors, GNB, linear

discriminant analysis,

SVM

Random forest Demographic

characteristics, past

ocular surgeries,

diagnoses, medications,

social history,

ophthalmologic exam

findings, concurrent

cataract surgery on same

day as glaucoma surgery,

contact/glasses use

Five-fold

cross-validation

IOP; trabeculectomy;

concurrent cataract

extraction; MIGS; tube shunt;

RSE; acetazolamide;

brimonidine tartrate;

astigmatism; CCT; age;

brimonidine tartrate/timolol;

ARNC; presence of IOL;

dorzolamide HCl; BCVA;

glaucoma (unspecified);

erythromycin; netarsudil

mesylate

Birla et al. (2024) Functional trees,

bagging, logistic

regression

Functional trees Demographic

characteristics, ocular

parameters

Ten-fold

cross-validation

intraoperative MMC; age at

diagnosis; tenon’s thickness;

baseline IOP; treatment

duration; fistulization

technique

Lee et al. (2024) Logistic regression,

XGBoost, SVM

XGBoost (trained using

demographic,

ophthalmic, and

systemic data)

Sociodemographic

characteristics,

ophthalmologic features,

comorbid conditions,

systemic medications,

psychiatric medications

Three-fold

cross-validation

age; valve in sulcus; used

patch; statin; POAG

diagnosis; preoperative

topical medication

Lin et al. (2024) Random forest,

transformer,

MNN-LSTM,

MNN-BioClinicalBERT,

MNN-Transformer

MNN-Transformer Demographic

characteristics, glaucoma

diagnosis, active

preoperative medication

use, chronic systemic

diseases, ocular

parameters

Five-fold

cross-validation

N/R

N/A, not applicable; N/R, not reported; CST, conjunctival stromal thickness; SCR, stromal conjunctival reflectivity; CET, conjunctival epithelial thickness; ECR, epithelial conjunctival reflectivity;

SVM, support vector machine; MNN, multilayer neural network; VA, visual acuity; ARB, angiotensin receptor blocker; MI, myocardial infarction; CCT, central corneal thickness; BMI, body

mass index; COPD, chronic obstructive pulmonary disease; IOP, intraocular pressure; prostaglandin analog; CAI, carbonic anhydrase inhibitor; HTN, hypertension; CVA, cerebrovascular

accident; HLD, hyperlipidemia; XGBoost, eXtreme Gradient Boosting; GNB, Gaussian Naive Bayes; MIGS, minimally invasive glaucoma surgery; RSE, refraction spherical equivalent; ARMC,

age-related nuclear cataract; IOL, intraocular lens; BCVA, best corrected visual acuity; MMC, mitomycin C; XGBoost, Extreme Gradient Boosting; POAG, primary open-angle glaucoma;

MNN-LSTM, long short-term memory multimodal model; MNN-BioClinicalBERT, BioClinical BERT multimodal model; MNN-Transformer, transformer multimodal model.

Model performance metrics

All six studies reported AUROC scores to evaluate their models’

ability to distinguish between surgical success and failure. Five

studies also reported accuracy, sensitivity, and specificity, and four

reported precision scores. Additional metrics, including AUPRC

(n = 3), F1 score (n = 3), MCC (n = 1), and NPV (n = 1), were

reported in some cases.

The highest-performing model was developed by Birla et al.

(2024), achieving an accuracy of 87.5% and an AUROC of

0.926. This model used a tree-based algorithm trained on

both preoperative and intraoperative variables, including age

at diagnosis, baseline intraocular pressure (IOP), duration of

preoperative medical treatment, Tenon’s thickness, intraoperative

mitomycin C (MMC) administration, and scleral fistulation

technique. Despite being trained on a relatively small dataset (n =
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TABLE 3 Performance metrics of best performing models.

Study—first
author(s) (year)

Best model Outcome(s) Accuracy AUROC Sensitivity Specificity

Agnifili et al. (2023) Decision trees Surgical failure vs.

surgical success

N/R 0.784 N/R N/R

Banna et al. (2022) Random forest

(trained using

demographic,

ophthalmic, and

systemic data)

Surgical failure vs.

surgical success

0.65 0.68 0.44 0.86

Barry and Wang (2024) Random forest Surgical failure

based on IOP

reduction,

medication use, or

need for additional

surgery

0.755 0.767 0.955 0.223

Birla et al. (2024) Functional trees Surgical success

based on

postoperative IOP

or reduction in IOP

0.8747 0.926 0.874 0.804

Lee et al. (2024) XGBoost (trained

using demographic,

ophthalmic, and

systemic data)

Surgical failure 0.844 0.782 0.714 0.868

Lin et al. (2024) MNN-Transformer Surgical success,

surgical failure due

to elevated IOP, and

surgical failure due

to low IOP

0.735 0.750 0.659 0.811

AUROC, area under the receiver operating characteristic; XGBoost, extreme gradient boosting; MNN-Transformer, transformer multimodal model; IOP, intraocular pressure.

218), its performance suggests that effective feature selection may

be more critical than dataset size alone.

In contrast, Lin et al. (2024) developed the least accurate model,

a long short-term memory (LSTM)-based deep learning model

trained exclusively on free-text operative notes, which achieved an

accuracy of only 40.9%. This low performance is partially explained

by the multi-class nature of the prediction task, which categorized

outcomes into surgical success, failure due to elevated IOP, or

failure due to low IOP. The poor accuracy highlights the challenges

of using unstructured text data alone for predictive modeling in

glaucoma surgery. However, when the LSTM model incorporated

structured electronic health record (EHR) data, accuracy improved

to 63.5%, reinforcing the importance of structured data for AI-

based surgical outcome prediction.

Sensitivity and specificity varied widely across studies,

with three studies reporting higher specificity than sensitivity,

while two reported the opposite. Sensitivity ranged from

0.152 (Gaussian Naïve Bayes in Barry and Wang, 2024) to

1.000 (multiple models in Lee et al., 2024), while specificity

ranged from 0.089 (decision tree in Barry and Wang, 2024)

to 0.926 (Gaussian Naïve Bayes in Barry and Wang, 2024).

Such extreme variability in performance metrics likely reflects

differences in study populations, feature selection, dataset

size, and model architecture. Models trained on single-center

datasets generally reported higher accuracy, but this likely

reflects overfitting to site-specific data rather than true predictive

superiority. The lack of robust external validation in most

studies raises concerns about their generalizability in real-world

clinical practice.

Discussion

Overview of findings

To our knowledge, this is the first systematic review to evaluate

the role of AI in predicting postoperative outcomes in glaucoma

surgery. Our findings indicate that AI models hold promise for

forecasting surgical outcomes, though performance varied widely

across studies. The best-performingmodels achieved accuracy rates

as high as 87.5% (Birla et al., 2024), while the weakest model yielded

an accuracy of just 40.9% when predicting multi-class outcomes

(Lin et al., 2024). Notably, tree-based algorithms such as random

forests consistently ranked among the top-performing models,

aligning with broader findings in surgical AI research where tree-

based methods have demonstrated robust performance (Hassan

et al., 2022).

Despite differences in modeling approaches, certain features

emerged as consistently important for predictive accuracy.

These included demographic factors (e.g., age), systemic health

indicators [e.g., body mass index (BMI), smoking history,

comorbid conditions], and ophthalmic parameters [e.g., central

corneal thickness (CCT), preoperative intraocular pressure (IOP),

preoperative visual acuity (VA), and active ocular medications].
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TABLE 4 Quality appraisal using Joanna Briggs Research Institute Checklist for Cohort Studies.

Study—
first
author(s)
(year)

1. Were
the two
groups
similar and
recruited
from the
same
population?

2. Were
the
exposures
measured
similarly
to assign
people to
both
exposed
and
unexposed
groups?

3. Was the
exposure
measured
in a valid
and
reliable
way?

4. Were
confounding
factors
identified?

5. Were
strategies
to deal with
confounding
factors
stated?

6. Were
the groups
or
participants
free of the
outcome
at the start
of the
study (or
at the
moment
of
exposure)?

7. Were
the
outcomes
measured
in a valid
and
reliable
way?

8. Was
the
follow
up time
reported
and
su�cient
to be
long
enough
for
outcomes
to
occur?

9. Was
follow
up
complete,
and if
not,
were the
reasons
to loss
to
follow
up
described
and
explored?

10. Were
strategies
to address
incomplete
follow up
utilized?

11. Was
appropriate
statistical
analysis
used?

Overall
quality

Agnifili et al. (2023)

Banna et al. (2022)

Barry and Wang

(2024)

Birla et al. (2024)

Lee et al. (2024)

Lin et al. (2024)

Judgement:

Yes

No

N/A

Color values in this table indicate the judgment of quality appraisal based on the Joanna Briggs Institute (JBI) Checklist. Green represents “Yes” (criterion met), red represents “No” (criterion not met), and gray represents “N/A” (not applicable).
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The predominance of structured clinical data suggests that natural

language processing (NLP) remains an underutilized tool in

glaucoma surgery prediction, with only one study (Lin et al., 2024)

incorporating unstructured operative notes. However, significant

challenges remain, including the lack of standardized definitions

for surgical success and limited external validation, both of which

hinder the generalizability and clinical applicability of thesemodels.

This review highlights both the promise and current limitations

of AI in glaucoma surgery outcome prediction. While AI models

offer a powerful tool for personalized surgical planning and risk

stratification, their translation into clinical practice will require

addressing key methodological and practical barriers, as explored

in the following sections.

Algorithm performance and key
determinants of success

Comparing model performance across the included studies

was challenging, largely due to variations in dataset size,

validation protocols, and performance metrics. Nevertheless,

several general observations emerged. First, model performance

did not necessarily improve with larger sample sizes. For instance,

Birla et al. (2024) achieved high accuracy despite training on just

over 200 samples, which may reflect effective feature selection, a

well-curated dataset, or possible overfitting. The limited sample size

underscores the need for caution when drawing conclusions about

model performance. In addition, models that included a broader

range of features, particularly systemic health data, often exhibited

superior performance (Banna et al., 2022; Lee et al., 2024; Lin et al.,

2024).

A more meaningful comparison arises from studies that

directly evaluated multiple models under uniform validation

conditions. Random forest and XGBoost typically outperformed

other algorithms (Banna et al., 2022; Barry and Wang, 2024; Lee

et al., 2024; Lin et al., 2024). Barry and Wang (2024) reported

that random forest models surpassed both XGBoost and logistic

regression across nearly all validation metrics, highlighting the

value of capturing nonlinear relationships in clinical data. Although

sensitivity, specificity, and precision varied significantly across

models, no single metric consistently distinguished a best model,

suggesting that clinical priorities and data availability should

inform model selection.

Random forests excelled particularly well in small-to-medium-

sized datasets and multiclass prediction tasks, often outperforming

more complex architectures when training data were limited

(Banna et al., 2022; Barry andWang, 2024; Birla et al., 2024). These

ensemble-based models are also known to mitigate overfitting

(Banna et al., 2022; Merali et al., 2019) and have shown successful

applications in electronic medical record analyses (Merali et al.,

2019; Tseng et al., 2020). Indeed, tree-based models have frequently

outperformed deep learning methods in tabular medical datasets,

particularly when the sample size is modest (Grinsztajn et al., 2022;

Shwartz-Ziv and Armon, 2022). However, these findings may not

extrapolate to scenarios involving substantially larger datasets or

high-dimensional feature modalities such as imaging or textual

data, where deep learning often has an advantage (Shwartz-Ziv and

Armon, 2022).

Deep learning models, including neural networks,

Transformers, and LSTMs, tended to underperform in these

studies, likely due to insufficient training samples. For example,

Barry and Wang (2024) reported that a neural network trained

on over 2,000 cases performed comparably to their top tree-based

model, whereas Banna et al. (2022) found that a neural network

trained on fewer samples fared worse. In addition, tree-based

approaches are inherently less suited to unstructured data (e.g.,

images or text), where deep learning methods are typically

favored. Lin et al. (2024) explored Transformers and LSTMs

for analyzing surgeon operative notes, but achieved suboptimal

accuracy (<50%). This may reflect either limited training data or

an insufficiently discriminative textual feature set. Nonetheless,

performance improved when structured EHR data were combined

with unstructured text, implying that multimodal approaches may

be more effective than relying exclusively on text-based inputs.

Lastly, no studies investigated regression-based approaches

to predict continuous variables such as postoperative IOP, a

strategy that could potentially yield more nuanced clinical insights.

Whether a study adopts a classification or regression framework

ultimately depends on clinical priorities and the nature of the

available data. While classification models are useful for binary or

multiclass outcomes (e.g., success vs. failure), regression models

might better capture gradations in postoperative results, thus

supporting more personalized surgical planning.

The importance of feature selection

Despite inconsistent reporting of feature importance rankings

across studies, we were still able to conclude that feature selection

plays a critical role in model performance, a finding that aligns

with prior research on AI algorithms (Pudjihartono et al., 2022;

Wang et al., 2024). Across our included studies, a range of

preoperative, intraoperative, and postoperative variables were

found to be of high predictive value. Among preoperative variables,

age, baseline IOP, CCT, and active topical medications emerged as

key discriminative factors. Age was the most consistently highly

ranked variable, though its association with surgical success or

failure varied across studies, underscoring its biological relevance

even if its predictive direction remains inconsistent. Baseline IOP,

a well-established clinical predictor, was heavily relied upon by

AI models, with higher preoperative IOP often associated with

greater postoperative reduction. This reinforces its importance

in preoperative risk stratification and surgical planning. Less

traditional factors, such as smoking history and body mass index

(BMI), also demonstrated strong discriminative power, suggesting

that a comprehensive preoperative assessment, incorporating both

established and AI-identified risk factors, could enhance patient

selection and surgical planning.

While most models relied on preoperative clinical data,

such as age, baseline IOP, CCT, and past ocular surgeries, the

inclusion of intraoperative and early postoperative factors further

enhanced predictive accuracy. For example, MMC administration,

surgical technique, and concurrent cataract extraction were notable
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predictors in studies that included intraoperative variables. These

findings highlight the importance of capturing real-time surgical

and recovery data to improve predictive power. Postoperatively,

early IOP reduction and visual acuity trends were consistently

identified as critical predictors of long-term outcomes. The reliance

on early postoperative IOP aligns with clinical evidence that

early IOP trends strongly predict surgical success or failure

(Esfandiari et al., 2017; Rong et al., 2013). This finding reinforces

the importance of close postoperative monitoring and timely

interventions, such as early suture lysis or medication adjustments,

to mitigate risks of failure. By identifying patients at higher risk

based on early IOP trajectories, AI-assisted decision support could

enable more proactive and personalized management strategies,

ultimately improving long-term outcomes.

Although incorporating intraoperative and early postoperative

variables enhances model performance, their inclusion may

not always be clinically practical. In real-world applications, if

the primary objective of these models is to assess a patient’s

suitability for surgery, these features would not be available at

the time of preoperative evaluation. However, predictive models

may also serve a role in immediate postoperative management,

where these features could provide valuable insights. Thus, while

their inclusion may not be essential for preoperative decision-

making, it remains clinically relevant in models designed to

support early postoperative monitoring and intervention. Overall,

feature selection plays a critical role in model performance, with

both traditional and AI-identified risk factors contributing to

predictive accuracy.

Implications for surgical practice

AI-driven predictions in glaucoma surgery have the potential

to transform clinical practice by enabling personalized surgical

planning, targeted postoperative monitoring, and proactive

management strategies. By identifying patients at higher risk of

surgical failure, such as those with thin corneas, low baseline IOP,

or poor conjunctival health, AI models can guide surgeons toward

alternative procedures such as tube shunts or adjunctive therapies

such as MMC to optimize outcomes. Additionally, insights into

intraoperative factors like scleral flap design and Tenon’s thickness

can help refine surgical techniques, improving wound healing and

bleb formation.

Postoperatively, AI models can enhance patient care by flagging

high-risk individuals for closer monitoring. For example, patients

with poor early IOP control or declining visual acuity may

benefit from timely interventions such as early suture lysis, bleb

needling, or medication adjustments. This proactive approach can

reduce the need for reoperations and improve long-term outcomes.

Furthermore, AI-driven risk stratification can support patient

counseling, helping clinicians set realistic expectations and tailor

treatment plans based on individual risk profiles.

To maximize clinical utility, AI models may be integrated into

EHRs to provide real-time decision support during preoperative

planning and postoperative care. Specific use scenarios include

preoperative decision support to assess surgical candidacy and

guide procedure selection, identification of high-risk patients who

might benefit from increased monitoring or adjunctive treatments,

and adaptive follow-up planning to allocate resources more

effectively based on individualized risk stratification. Automated

alerts for high-risk patients can prompt clinicians to take

proactive measures, while benchmarking surgical outcomes across

institutions can identify best practices and areas for improvement.

By leveraging AI-driven predictions, clinicians can enhance

surgical outcomes, improve patient satisfaction, and reduce the

burden of glaucoma-related vision loss.

Limitations

Despite offering valuable insights into the emerging role of

AI for predicting surgical outcomes in glaucoma, this review has

several notable limitations. First, the small number of included

studies, combined with their heterogeneous designs, datasets, and

outcome definition, limits the ability to draw definitive conclusions

or compare model performance across different clinical settings.

Most of the studies were single-center and retrospective, raising

concerns about potential overfitting to local patient populations;

moreover, nearly all lacked robust external validation, making

it difficult to assess generalizability to broader populations. The

limited sample sizes in certain studies further amplify the risk of

overfitting, especially when complex models, such as deep learning

architectures, are applied. In addition, many of the datasets in

included studies were imbalanced with respect to key demographic

variables such as ethnicity and age, which not only undermines

model performance in underrepresented groups but also raises

broader concerns in respect to potential biases and inequities. The

use of imbalanced data in automated decision-making systems

may inadvertently perpetuate or exacerbate existing disparities

in healthcare, and as AI models begin to influence clinical

decision-making, these ethical implications must be addressed.

This underscores the need for transparent model development,

demographic diversity in training datasets, and ongoing bias

monitoring in real-world implementation.

Second, definitions of “surgical success” and the selection of

predictive features varied markedly among the included studies,

contributing to inconsistencies in reported performance metrics.

Although this variety reflects real-world differences in surgical

practice and patient populations, it also underscores the need for

standardized outcome definitions and comprehensive multicenter

datasets. Additionally, while class imbalance was addressed in some

studies, no uniform approach was used, which may obscure the

true performance of AImodels in predicting rare outcomes. Finally,

the exclusion of non-English articles and conference abstracts may

have led to publication bias, as relevant unpublished or non–peer-

reviewed data were not incorporated. Together, these limitations

underscore the need for larger, prospective, and externally validated

studies with uniform definitions and standardized data collection to

better establish the clinical utility of AI in glaucoma surgery.

Future directions and testable theories

A primary goal for advancing AI in glaucoma surgery is to build

comprehensive, high-quality datasets that capture preoperative,

intraoperative, and postoperative variables. These data should
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include clinically relevant predictors, such as baseline IOP, CCT,

and early postoperative IOP trends, while also integrating operative

notes and imaging modalities like OCT. For example, Birla et al.

(2024) demonstrated that a model incorporating intraoperative

factors such as mitomycin C administration, Tenon’s thickness,

and scleral fistulation technique achieved an AUROC of 0.926,

suggesting that inclusion of surgical detail can meaningfully

enhance predictive accuracy. Similarly, Banna et al. (2022) and Lee

et al. (2024) identified systemic health factors such as BMI, smoking

history, and medication use as influential, underscoring the need

to capture a broad set of patient-level features. Standardizing

success and failure definitions across studies will further enable

meaningful comparisons and consistent benchmarking of new

models. In the included studies, definitions varied significantly,

ranging from absolute IOP thresholds to percent reductions

and avoidance of additional interventions, introducing variability

in performance metrics. Adopting consistent use of the term

“success” is critical due to its influence on model training.

Thus, prospective clinical trials should adopt uniform, clinically

relevant composite endpoints, such as those recommended by

the American Academy of Ophthalmology’s Glaucoma Preferred

Practice Pattern R© Committee (Gedde et al., 2025) to support

model generalizability. Furthermore, approaches to missing data

and class imbalance, such as those methods proven effective in

our review [e.g., up-sampling (Banna et al., 2022), weighted loss

functions (Barry and Wang, 2024), and macro-averaged metrics

(Lin et al., 2024)], should be explicitly reported to mitigate potential

biases. In addition, large, multicenter datasets should be made

publicly available to foster transparency and external validation

while maintaining diligent de-identification protocols for patients’

health information. The improved performance seen in single-

center datasets in this review may reflect overfitting rather than

generalizability, highlighting the importance of robust external

testing in future work.

In parallel, there is a need to systematically compare deep

learning models to more traditional machine learning methods

(e.g., random forests, XGBoost) on large, multimodal datasets

that include unstructured text and imaging. While random forests

consistently outperformed deep models in most studies reviewed,

such as those by Barry and Wang (2024) and Banna et al.

(2022), accuracy improved when structured and unstructured

data were combined, as demonstrated by Lin et al. (2024),

where the model’s performance increased from 40.9% to 63.5%.

These findings should guide future trials exploring multimodal

model development. Furthermore, rigorous validation, particularly

external validation on independent, multicenter cohorts, is essential

to establish real-world generalizability. Clear reporting of metrics

such as AUROC, precision, and F1 score can clarify trade-offs

between false positives and negatives, especially in imbalanced

datasets. Moving forward, prospective clinical trials should evaluate

whether AI-guided risk predictions improve surgeon decision-

making and patient outcomes beyond standard care. For instance,

models identifying patients at risk based on early postoperative

IOP trends, demonstrated in multiple studies as a key predictor,

could be tested for their ability to prompt earlier interventions

such as suture lysis or medication adjustments. Moreover, real-

time AI integration into clinical workflows (e.g., EHR-based alerts)

represents a valuable testable theory: does instantaneous feedback

to surgeons enhance postoperative results? In the future, this may

be assessed through EHR-integrated systems that automatically

redact personal health information from model inputs, audit all

data accesses, and require clinician confirmation before displaying

predictions to ensure patient privacy is maintained. We suggest

that future studies attempt to evaluate the impact of AI predictive

models on real outcomes in glaucoma patients, such as through

RCTs where AI guides treatment decisions.

Another critical challenge is model interpretability. Strategies

like SHapley Additive exPlanations (SHAP) can offer transparent

insights into feature importance and help clinicians understand

model outputs, potentially improving user trust and accelerating

adoption. As the field evolves, continuous learning mechanisms

may be incorporated to keep models updated with emerging

surgical techniques and shifting patient demographics.

Researchers could also explore regression-based approaches

for predicting continuous outcomes such as exact postoperative

IOP, which might provide richer, more personalized insights

than binary classifications. Examining the clinical impact

of these more granular predictions, especially in dynamic

healthcare environments, remains an important direction for

future investigations.

In addition to methodological advancements, several practical

barriers must be addressed before AI can be deployed for clinical

use. These include the need for intuitive, user-friendly interfaces

that seamlessly integrate into clinical workflows, interoperability

with EHRs, and adequate training for clinical staff to interpret and

use AI-generated insights. Without addressing these operational

factors, even the most highly accurate models may struggle to

gain traction in real-world practice among ophthalmologists.

In addition, patient privacy is essential, and federated learning

approaches, which enable collaborative model training across

institutions without requiring patient-level data sharing, may serve

to enhance data privacy and regulatory compliance. “Finally, before

AI-based predictive models can be approved for use as medical

devices, they must meet regulatory requirements set by authorities

such as the United States Food and Drug Administration (FDA)

and obtain Conformité Européenne (CE) marking in Europe.

For FDA approval, criteria include prospective clinical validation,

transparency and interpretability of the model’s decision-making

process, external validation and demonstration of generalizability,

robust risk analysis, a clearly defined intended use (e.g.,

preoperative decision support, identification of high-risk patients

for intensified care, or adaptive follow-up planning), seamless

integration into clinical workflows, and adherence to privacy and

cybersecurity standards (U.S. Food Drug Administration, 2021,

2022). Similarly, CE marking in Europe requires formal clinical

evaluation demonstrating real-world clinical benefit, submission

of comprehensive technical documentation, appropriate risk

classification, and evidence of generalizability and bias mitigation

across diverse patient populations (European Parliament Council

of the European Union, 2017).

To accelerate external validation while promoting equitable,

generalizable AI development, we encourage glaucoma centers,

research institutions, and developers to partner in creating multi-

institutional data-sharing consortia. Such collaboration is critical
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as we look toward building diverse, high-quality datasets and in

turn, advancing the responsible translation of predictive models

into clinical care.

Conclusion

The application of AI to predicting postoperative outcomes

in glaucoma surgery is a promising but immature field. While

the reviewed studies demonstrate clear potential, this potential

remains limited by small datasets, inconsistent feature selection,

and a lack of external validation. To fully realize the benefits of AI,

future research must focus on standardization, external validation,

prospective evaluation, and clinical impact assessment. Prospective

trials evaluating AI integration into real-world surgical decision-

making and postoperative care are also essential. Thus, although

it is evident that AI already demonstrates potential in this field,

without shared standards and robust validation, it remains at the

“proof of concept” level. Addressing these methodological gaps will

enable AI to fulfill its promise of enhancing personalized glaucoma

surgery and improving patient outcomes.
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