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Introduction: In the medical AI field, there is a significant gap between advances

in AI technology and the challenge of applying locally trained models to diverse

patient populations. This is mainly due to the limited availability of labeled

medical image data, driven by privacy concerns. To address this, we have

developed a self-supervised machine learning framework for detecting eye

diseases from optical coherence tomography (OCT) images, aiming to achieve

generalized learning while minimizing the need for large labeled datasets.

Methods: Our framework, OCT-SelfNet, e�ectively addresses the challenge of

data scarcity by integrating diverse datasets from multiple sources, ensuring a

comprehensive representation of eye diseases. By employing a robust two-phase

training strategy self-supervised pre-training with unlabeled data followed by a

supervised training stage, we utilized the power of a masked autoencoder built

on the SwinV2 backbone.

Results: Extensive experiments were conducted across three datasets with

varying encoder backbones, assessing scenarios including the absence of

self-supervised pre-training, the absence of data fusion, low data availability,

and unseen data to evaluate the e�cacy of our methodology. OCT-SelfNet

outperformed the baseline model (ResNet-50, ViT) in most cases. Additionally,

when tested for cross-dataset generalization, OCT-SelfNet surpassed the

performance of the baseline model, further demonstrating its strong

generalization ability. An ablation study revealed significant improvements

attributable to self-supervised pre-training and data fusion methodologies.

Discussion: Our findings suggest that the OCT-SelfNet framework is highly

promising for real-world clinical deployment in detecting eye diseases fromOCT

images. This demonstrates the e�ectiveness of our two-phase training approach

and the use of a masked autoencoder based on the SwinV2 backbone. Our

work bridges the gap between basic research and clinical application, which

significantly enhances the framework’s domain adaptation and generalization

capabilities in detecting eye diseases.
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1 Introduction

A significant gap exists between the progress made in AI

technology and its applicability in real-world medical scenarios.

The problem of applicability arises primarily due to the scarcity

of labeled data in the medical domain, largely driven by privacy

concerns. This limitation restricts the deployment of scalable

medical AI solutions in diverse patient populations. Solving this

issue is crucial for advancing AI-driven healthcare and ensuring

that models can generalize to diverse clinical settings. Our work

addressed these challenges by developing a machine learning (ML)

tool to detect eye diseases using optical coherence tomography

(OCT) images, which is vital for effective eye care management.

In addition, we created a model that learns generalized features

from diverse, unlabeled data, enhancing its applicability and

reliability in real-world medical scenarios. Our contributions focus

on overcoming data scarcity and ensuring the wide applicability of

AI models in healthcare.

Age-related macular degeneration (AMD) is one of the leading

causes of irreversible blindness and vision impairment (VI)

globally. VI affects nearly 2.2 billion people globally, among which

almost 1 billion cases could be prevented with early diagnosis

and intervention (World Health Organization, 2023). Therefore,

it is essential to identify individuals at risk of disease onset or

progression from early to more advanced stages since timely

intervention can prevent or slow progression, thus preventing

irreversible VI (Scott and Bressler, 2013). Individuals with a

high risk for VI would benefit from more frequent ophthalmic

examinations, monitoring, and treatment (Yi et al., 2009).

In real-world clinical settings, the effectiveness of deep learning

networks is often limited by the use of homogeneous training

datasets. To enhance their performance, it is essential to use diverse

datasets from multiple institutions with varying demographics,

OCT devices, and protocols. This diversity will improve themodels’

adaptability and scalability in clinical workflows. Moreover, it will

enable the model to be trained on a larger sample size, helping

to mitigate the issue of data scarcity and further enhancing its

generalization ability.

Self-supervised learning (SSL) is a new approach to computer

vision, and advancements have been made in Natural Language

Processing (NLP), specifically with the development of BERT

(Devlin et al., 2018). SSL focuses on deriving meaningful

information from unlabeled data. The masked autoencoder (MAE)

(He et al., 2022) focuses on reconstructing masked portions of the

input data. This approach allowed the model to learn robust feature

representations by understanding the underlying structure of the

visual data.

Our proposed work has brought and evaluated recent advances

in large pre-trained transformers to enhance the detection and

diagnosis for automated ophthalmic diagnosis. We have developed

a large-scale, self-supervised model with random masking inspired

by masked autoencoder (He et al., 2022) with a transformer

architecture, SwinV2 (Liu et al., 2022) backbone, explicitly for

classifying AMD using OCT images. Our approach builds on the

current implementation of Masked Autoencoders (MAE) for OCT

data by introducing two key differences that set it apart. First, while

conventional MAEs typically rely on standard ViT architectures,

we integrate the more advanced SwinV2 architecture, which

offers superior feature extraction through its hierarchical attention

mechanism, capturing both fine-grained and global structures in

OCT images more effectively. Second, we enhance the pre-training

phase of our OCT-SelfNet framework by incorporating a Data

Fusion methodology, allowing our model to learn from multiple

diverse datasets simultaneously. This contrasts with the standard

MAE, where models are typically trained on a single dataset,

potentially limiting their generalizability. By using data fusion,

our model not only learns more diverse representations but is

also better trained to generalize across different clinical datasets

and imaging conditions, making it more acceptable for real-world

applications. We focus on the binary classification of distinguishing

normal cases from those with AMD.

By leveraging self-supervised learning (SSL), this model aims to

reduce the need for experts to make extensive manual annotations,

easing the workload and facilitating broader clinical AI applications

from retinal imaging data. Our model can learn versatile and

generalizable features from unlabeled retinal OCT datasets, which

is crucial for creating AI systems that require fewer labeled

examples to adapt to various diagnostic tasks.

Our framework follows a two-phase approach designed to

optimize model performance by leveraging both self-supervised

and supervised learning techniques. In the first phase, a SwinV2-

based masked autoencoder undergoes self-supervised training

using a combination of three different OCT datasets without any

labels. This phase allows the model to learn generalized, low-level

features by reconstructing masked portions of the input images,

capturing valuable information across various datasets. By training

without labels, the model can identify robust patterns shared

across different clinical contexts, enhancing its ability to learn rich

representations that are not biased by specific dataset annotations.

In the second phase, the model undergoes a training in a supervised

manner, focusing on each dataset. This phase enables the model to

learn more dataset-specific features, training its weights to better

align with the particular dataset it is working with. To assess the

performance of different transformer models with our method,

we also evaluated our results using Vision Transformer (ViT)

(Dosovitskiy et al., 2020) and Swin Transformer-based masked

autoencoders (Liu et al., 2021). ViT computes self-attention across

the entire image, which requires quadratic time complexity O(N2)

with respect to the number of patches (N). This is computationally

expensive, especially for high-resolution images. Due to this global

attention, ViT becomes inefficient for large images. In Swin, the

shifted window attention mechanism is introduced, where self-

attention is computed within local, non-overlapping windows,

which reduces the computational complexity to O(N) per window.

However, it allows for global context learning by shifting the

windows across layers. SwinV2 introduces additional optimizations

to reduce computational overhead further. It improves scalability,

allowing the model to handle even larger images more efficiently

without sacrificing performance. This comparison allowed us to

observe how each transformer model adapted to our approach.

Studies demonstrate the adaptability of the ResNet50 model

in handling complex tasks like AMD detection and diabetic

retinopathy classification using OCT images, showcasing the

effectiveness of this architecture in medical imaging analysis (Alam
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FIGURE 1

A graphical depiction of our methodology, with procedural steps. (a) Self-supervised pre-training using OCT images from multiple sources. (b)

Supervised training on an individual dataset. (c) Performance and generalization evaluation on test sets from all sources.

et al., 2020; Leingang et al., 2023; Sotoudeh-Paima et al., 2022;

Xu et al., 2023). We used it as the reference model to compare

with the result from our proposed methodology. In addition to

using the ResNet50 model, we also employed the Vit-base model

as another baseline model to conduct a comprehensive analysis.

Multiple OCT datasets (Kermany et al., 2018; Srinivasan et al.,

2014; Li et al., 2020), named DS1, DS2, and DS3, respectively,

were combined to train an improved DL model to increase

the training data’s diversity and allow our model to learn a

broader range of patterns and relationships. This diversity will

improve the model’s generalization to new, unseen data, and

it will be beneficial for the cases where the larger dataset

is unavailable.

A graphical depiction of our methodology, with procedural

steps, is shown in Figure 1. Figure 1a illustrates self-supervised pre-

training using OCT images from multiple sources. OCT images

from training sets of three sources are combined without labels

to create a fused dataset for the SSL pre-training. A masked

autoencoder with a transformer-based network consisting of an

encoder and a decoder parts is used in this phase. Figure 1b shows

training on an individual dataset, where the decoder part is replaced

with a classification head, and pre-trained weights are transferred to

the encoder. Figure 1c depicts the performance and generalization

evaluation on test sets from all sources using the trained classifier

model. Specifically, if the classifier is trained using DS1, it is

subsequently evaluated on all three test sets. This evaluation aims
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FIGURE 2

Overview of the framework: in the initial pre-training phase (a), the framework uses masked image autoencoder as a self-supervised task to learn

representations from unlabeled images. In this process, a random subset of image patches is masked and fed into the auto-encoder. Then in the

subsequent supervised training stage (b), the pre-trained encoder from the first phase is employed along with a linear classifier for the classification

task. The learned weights from the pre-training phase are transferred to this phase.

to observe how well the model performs on test sets other than

the one it was trained on, thereby assessing its generalization

capability as a supervised classifier and cross-dataset generalizer

across diverse datasets.

The main contributions of this paper are summarized as

follows:

• This paper implemented a two-phase approach: (1) a

SwinV2-based masked autoencoder in the pre-training phase

to deeply understand image structures and relationships

between different regions, and (2) a supervised training

stage classifier that is for classifying specific age-related

macular degeneration (AMD) cases from normal cases using

OCT images.

• This paper incorporates a Data Fusion methodology into

its framework to enhance the capability of the model by

combining information from multiple sources, which allows

for more robust and comprehensive analysis, improving the

model’s ability to generalize and make accurate predictions

across small datasets and clinical scenarios.

• Through a comprehensive evaluation and ablation study,

this paper demonstrates that the proposed approach shows

much higher robustness and better generalization even when

evaluated on different test sets without requiring additional

training. This is promising for effective implementation in

practical clinical environments.

• This paper also evaluates OCT-SelfNet as a cross-dataset

generalizer, where it exceeds the baselinemodel’s performance,

further demonstrating its strong generalization ability in

handling unseen data.

2 Related works

Machine Learning (ML) and Deep Learning (DL) techniques

have shown promise in automating ophthalmic diagnosis.

Significant research has been done on longitudinal OCT retinal

layer segmentation through the use of an LSTM-based U-Net

architecture (He et al., 2023). Additionally, the work by Mukherjee

et al. (2022a) and Mukherjee et al. (2022b) has leveraged advanced

techniques such as 3D U-Net and 3D convolutional autoencoders,

for retinal layer segmentation in OCT images.

Implementing a self-supervised framework using transformer-

based encoder networks with multi-source datasets for generalized

retinal disease detection signifies a notable progression in medical

image analysis. This approach leverages the power of transformer

models (Vaswani et al., 2017), originally introduced in natural
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Require: Unlabeled OCT imagesXunlabeled, Labeled OCT

images Xlabeled

Self-supervised pre-training:

1: Initialize OCT-SelfNet, a self-supervised neural

network model MSS with parameters θSS

2: Train MSS on Xunlabeled using a self-supervised

objective:

θSS = argmin
θSS

LSS(θSS,Xunlabeled)

3: Save the learned weights θSS.

Supervised training:

4: Initialize the classifier model, OCT-SelfNet

Mclassifier with parameters θclassifier.

5: Load weights from MSS encoder to Mclassifier

Mclassifier:θclassifier ← θSS;

6: Train Mclassifier on Xlabeled using a supervised

objective:

θclassifier = argmin
θclassifier

Lclassifier(θclassifier,Xlabeled)

7: Save the classifier weights θclassifier.

Cross-evaluation on test set of different

dataset:

8: for each test set, Xtest in dataset Di do

9: Evaluate Mclassifier on the test set Xtest of Di.

10: Record classification metrics:

Metricsi = Lclassification(θclassifier,X
(Di)
test)

11: end for

Algorithm 1. An algorithm for self-supervised pre-training and supervised

training for OCT classification.

language processing (NLP) and adapted for computer vision

tasks such as medical imaging by opening opportunities for

scalable and generalized models and sparked significant interest

among researchers in computer vision. Inspired by this, the

vision transformer (ViT) (Dosovitskiy et al., 2020) has been

developed. It has been extensively studied in medical imaging

(Alshammari et al., 2022; Ayana et al., 2023; Kihara et al., 2022;

Okolo et al., 2022; Wang et al., 2022). However, employing

a ViT architecture requires significant computational resources,

posing a challenge for communities with limited computational

infrastructure. Moreover, the necessity of substantial datasets for

efficient training presents challenges in scenarios with limited

data availability, particularly in the medical field. Despite these

challenges, researchers are actively working on solutions to address

these issues through continuous advancements in hardware,

developing efficient techniques and algorithms.

In contrast to previous works (Awais et al., 2017; Leandro

et al., 2023; Lee et al., 2017; Lu et al., 2018; Tsuji et al.,

2020), which study one dataset in isolation, our study is

distinct and intrinsically more challenging as we investigate the

intricacies of domain adaptation by simultaneously considering

multiple datasets, training our model on one dataset, and

assessing its performance on other datasets to understand domain

generalization and adaptation dynamics.

TABLE 1 Network details.

Mode Model Model size
(M)

FLOPS (G)

Pre-training OCT-SelfNet-ViT 126.88 10.06

OCT-SelfNet-Swinlarge 83.56 16.41

OCT-SelfNet-SwinV2 33.79 5.62

Classifier Resnet-50 23.5 4.1

ViT-base 86 16.85

OCT-SelfNet-ViT 60.52 10.47

OCT-SelfNet-Swinlarge 84.01 8.55

OCT-SelfNet-SwinV2 34.27 3.34

The evolution of SSL in computer vision progressed

significantly with the introduction of BEiT (Bao et al., 2021),

which incorporated BERT-like pre-training methods into image

processing. BEiT’s approach to predicting masked portions of

images illustrated a significant advancement in self-supervised

learning paradigms, bridging the gap between language and vision

modalities. Other works underlined (Fang et al., 2022; Jing and

Tian, 2020; Qiu and Sun, 2019) the growing significance of SSL in

ophthalmology-focused deep learning research. They demonstrate

how SSL can be leveraged to overcome challenges such as the

scarcity of labeled data and the need for patient-specific diagnostic

tools. In the field of Cervical OCT image classification, the work by

Wang et al. (2024) has used this SSL combining contrastive-MIM

framework and Swin transformer architecture to use unlabeled

cervical OCT images. MedFLIP, developed by Li et al. (2024),

has integrated a Masked Auto Encoder with a text encoder to

facilitate mutual learning between text and image modalities

in medical image analysis. For the analysis of smaller CT scan

datasets, Wolf et al. (2023) focused on self-supervised pre-training

using contrastive and masked autoencoders to leverage a large,

unannotated CT dataset during the pre-training phase. Zhou et al.

(2023) also used this SSL framework to train on medical images

and subsequently employed the pre-trained model for downstream

tasks such as chest X-ray disease classification, abdominal CT

multi-organ segmentation, and MRI brain tumor segmentation.

Automated ophthalmic diagnosis benefits significantly from

the application of machine learning techniques, as indicated

by research (Alam et al., 2020; Friberg et al., 2011; Schmidt-

Erfurth et al., 2018; Wang et al., 2016). However, relying on

similar datasets during training often hinders their real-world

effectiveness, resulting in challenges when deployed in clinical

settings. To optimize their effectiveness in clinical workflow,

they require access to diverse datasets from multiple institutions

with varying demographics, OCT image-capturing devices, or

protocols to improve their adaptability, versatility, and scalability.

Our framework employs the data fusion methodology, and in

an ablation study, the noticeable performance decline without

data fusion highlights the necessity of leveraging diverse datasets.

This aspect is particularly advantageous in enhancing the model’s

generalization capabilities, making it adept at handling unseen

data and variations in image settings commonly encountered in

clinical scenarios.
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FIGURE 3

Illustration of Normal and AMD distribution from three datasets (DS1, DS2, and DS3) with bar chart and donut chart.

3 Methodology

In this work, we have leveraged pre-trained weights from an

SSL MAE network (He et al., 2022) with SwinV2 (Liu et al., 2022)

as a backbone, and combined multiple datasets, demonstrating a

two-stage approach concerning the classification of Normal vs.

AMD from OCT images by comparing their performance against

the baseline model. Our proposed framework comprises four

integral stages.

1. Data fusion: a comprehensive approach by integrating datasets

from three different sources has been adopted to enhance the

data diversity.

2. Self-supervised pre-training: in this stage, self-supervised pre-

training was conducted on unlabeled OCT images using

transformer-based MAE to acquire visual representations. After

completing this training, the learned weights were transferred to

a classifier model.

3. Supervised training: subsequently, supervised training was

performed on labeled OCT datasets using the transferred

weights to enhance the model’s classification capabilities.

4. Baseline training: we have used ResNet50 (He et al., 2015),

and ViT-base (without SSL) (Dosovitskiy et al., 2020) classifier

as the baseline model to compare the performance of the

proposed models.
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FIGURE 4

The training and validation MSE Loss curves of OCT-SelfNet with SwinV2 backbone.

FIGURE 5

Qualitative visualizations of the performance of SwinV2-based self-supervised MAE pre-training. (a) Ground truth image, (b) input image with masks,

(c) after epoch-2, (d) after epoch-20, and (e) final reconstructed image after epoch-50.
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TABLE 2 Comparison of our work with the baseline methods (ResNet-50, and ViT) with three datasets.

Dataset Classifier name Accuracy AUC-ROC AUC-PR F1-score

DS1 (Test-1) ResNet50 0.99 0.98 0.97 0.97

ViT 0.96 0.97 0.91 0.83

OCT-SelfNet-ViT 0.94 0.94 0.84 0.75

OCT-SelfNet-Swinlarge 0.96 0.96 0.90 0.83

OCT-SelfNet-SwinV2 0.96 0.96 0.89 0.84

DS2 (Test-2) ResNet50 0.87 0.80 0.86 0.76

ViT 0.87 0.93 0.90 0.82

OCT-SelfNet-ViT 0.90 0.97 0.94 0.87

OCT-SelfNet-Swinlarge 0.92 0.99 0.96 0.90

OCT-SelfNet-SwinV2 0.99 0.99 0.99 0.98

DS3 (Test-3) ResNet50 0.95 0.96 0.94 0.94

ViT 0.98 0.99 0.99 0.98

OCT-SelfNet-ViT 0.94 0.98 0.97 0.91

OCT-SelfNet-Swinlarge 0.97 0.99 0.99 0.96

OCT-SelfNet-SwinV2 0.98 0.98 0.97 0.97

The evaluation focuses on binary classification accuracy, AUC-ROC, AUC-PR, and F1-score. Scores shown in bold represent the highest performance.

TABLE 3 Comparison of classifiers for DS1, DS2, and DS3 datasets for cross dataset generalization analysis.

Train set Classifier name Accuracy AUC-ROC AUC-PR F1-score

Test-2 Test-3 Test-2 Test-3 Test-2 Test-3 Test-2 Test-3

DS1 ResNet50 0.98 0.70 0.99 0.56 0.97 0.70 0.98 0.20

ViT 0.98 0.97 0.99 0.99 0.99 0.99 0.98 0.95

OCT-SelfNet-ViT 0.95 0.78 0.99 0.87 0.97 0.76 0.96 0.51

OCT-SelfNet-Swinlarge 0.97 0.77 0.99 0.87 0.99 0.76 0.96 0.51

OCT-SelfNet-SwinV2 0.99 0.88 0.99 0.93 0.99 0.86 0.99 0.80

Test-1 Test-3 Test-1 Test-3 Test-1 Test-3 Test-1 Test-3

DS2 ResNet50 0.77 0.42 0.59 0.54 0.33 0.64 0.28 0.51

ViT 0.64 0.47 0.66 0.71 0.24 0.55 0.30 0.53

OCT-SelfNet-ViT 0.71 0.54 0.74 0.85 0.30 0.67 0.35 0.67

OCT-SelfNet-Swinlarge 0.65 0.55 0.75 0.76 0.26 0.58 0.37 0.57

OCT-SelfNet-SwinV2 0.72 0.55 0.79 0.86 0.42 0.73 0.39 0.59

Test-1 Test-2 Test-1 Test-2 Test-1 Test-2 Test-1 Test-2

DS3 ResNet50 0.86 0.87 0.72 0.87 0.53 0.84 0.49 0.82

ViT 0.68 0.93 0.74 0.96 0.36 0.96 0.34 0.88

OCT-SelfNet-ViT 0.88 0.85 0.77 0.90 0.46 0.88 0.39 0.71

OCT-SelfNet-Swinlarge 0.86 0.94 0.75 0.95 0.45 0.95 0.44 0.91

OCT-SelfNet-SwinV2 0.88 0.83 0.75 0.93 0.44 0.84 0.46 0.72

Results of our work (OCT-SelfNet-ViT) are compared with baseline methods (ResNet-50, ViT) on binary classification. Scores shown in bold represent the highest performance.

3.1 Data fusion

In this step, we used three datasets containing Optical

Coherence Tomography (OCT) images that illustrate various

retinal diseases. For this study, we focused on binary classification

and therefore only retained OCT images of NORMAL and AMD

cases, and the rest of the categories of OCT images were removed.

Then we split each of those datasets into training, validation, and

test sets. All training data from the three datasets was combined

and shuffled into a single training set, and all validation sets were

similarly combined. Test sets were excluded from the data merging

process to maintain the model’s complete separation from the test

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2025.1609124
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Jannat et al. 10.3389/fdata.2025.1609124

FIGURE 6

Comparison of AUC-ROC scores for di�erent classifiers across three datasets and test sets. Each group represents AUC-ROC scores for classifiers

within a specific dataset and test set combination, highlighting performance variations. Comparison of AUC-ROC scores for di�erent classifiers

across three datasets and test sets. Each group represents AUC-ROC scores for classifiers within a specific dataset and test set combination,

highlighting performance variations.

sets, which will later be used for evaluation purposes in the later

stage. These combined training and validation sets are used in the

self-supervised pre-training stage.

The motivation behind this data combination is to increase the

diversity of the training data so that the model can learn larger

representations in the self-supervised pre-training stage, and it will

help the model to generalize better for the case of an unseen dataset.

During the supervised stage, the trained model will be trained

using three separate datasets. Each training session will focus on an

individual training set, with evaluations conducted on the test set

of that dataset as well as on the test sets from the other two datasets.

This approach will help assess the performance of the classifier.

3.2 Self-supervised pre-training

SSL is a technique that enables a model to train itself from

unlabeled data by understanding the structure or representation of

the data. An example of an SSL technique is the MAE (He et al.,

2022), which randomly masks some parts of the input data and

trains the model to learn the representation of the given data to

reconstruct the original input.

The MAE trained in this study was primarily composed of two

components: an encoder and a decoder. The image, resized to (224

× 224) was fed into the encoder portion of the MAE, which then

applied a patch operation (16 × 16 patches) to randomly mask a

portion (70%) of the input image and finally processed it through a

transformer encoder. We chose to use random masking as part of

the self-supervised learning (SSL) approach because it is a simple

yet effective strategy for encouraging the model to learn robust

feature representations without requiring labeled data. Random

masking allows the model to focus on different regions of the image

during training. During the experimentation phase, we conducted

a series of trials to explore different masking ratios, including

20%, 50%, 70%, and 80%. Based on our results, we observed that

masking 70% of the image produced the best performance in terms

of model accuracy and generalization. Therefore, we settled on

the 70% masking ratio as it provided the most balanced trade-

off between model performance and computational efficiency. This

70% masking ratio was found to be optimal as it strikes a good

balance between covering a significant portion of the image for

effective training and preserving enough visible content for the

model to focus on important features.

In the encoder, we used three distinct networks–ViT

(Dosovitskiy et al., 2020), Swin (Liu et al., 2021), and SwinV2 (Liu

et al., 2022) as a backbone to conduct a comprehensive study on

their performance.

1. ViT-based MAE: in ViT-based MAE, the encoder comprised

an embedding dimension of 1,024 and four attention heads,

repeated for six layers. The encoder’s final output was the set of

features representing a higher-level abstraction of the original

input image. The features were taken as input and processed

by the decoder through the transformer layers. The transformer

had an embedding dimension of 1,024 and four attention heads,

which were repeated for four layers. After passing through a

linear layer to get the patches, masking was applied, and finally,

the image was reconstructed.

2. Swin-based MAE: the Swin transformer-based MAE uses an

encoder built with a Swin transformer backbone with an

embedding size of 96. The number of layers in each stage

of the Swin transformer architecture is (2, 2, 18, 2), which

indicates the number of layers at each stage. The model uses

shifted window attention mechanisms in each stage to focus on

local information within 4 × 4 patches. This gradually builds a

global understanding by connecting windows with shifts. The

attention heads are set to (6, 12, 24, 48), which doubles with
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FIGURE 7

Visualization of model interpretability with attention map overlays highlighting important regions across datasets. Each row corresponds to each

dataset, and the subsequent row shows the attention map of the OCT-SelfNet-SwinV2 model overlaid on the ground truth image.

each stage. This enables the model to attend to more intricate

details, indicating that different layers of the encoder employ

varying attention heads, capturing hierarchical features in the

input image.

The decoder had an embedding size of 768, which allowed for

a more expressive representation in the decoding process. The

decoder network had a similar number of attention heads and

layers as the encoder. It involved a patch-expanding mechanism

and Swin transformer layers, which were configured to restore

the spatial dimensions of the encoded features. The layer-wise

design was built to gradually reconstruct the original image

dimensions, ensuring that the decoder could effectively decode

the encoded representation obtained by the encoder.

3. SwinV2-basedMAE: we used a SwinV2-basedMAE for this task,

taking advantage of the SwinV2 network’s superior performance.

While we kept the Swin-based decoder, we switched the encoder

for SwinV2 to address issues with training stability, high-

resolution processing, and data efficiency. SwinV2’s improved

performance over Swin is perfect for our need for both detail

and efficiency. The encoder configuration was set using an

embedding dimension of 96, depths of (2, 2, 6, 2), and attention

heads of (3, 6, 12, 24). This tailored approach allowed the

SwinV2-based MAEs to excel at extracting intricate details.

3.3 Supervised training

Following the self-supervised pre-training with the combined

training samples, a transfer learning approach is applied in this

supervised stage. For the classifier architecture, a classification head

was added to the model in place of the decoder to use MAE

as a classifier. The classification head took the features from the

encoder part and ran through a linear layer to produce class

logits. These class logits were then used for classification tasks.

The linear layer comprised three successive dense layers, each

accompanied by Rectified Linear Unit (ReLU) activation functions.

This linear layer learned weights during training. The softmax
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FIGURE 8

Confusion matrices for the OCT-SelfNet-SwinV2 classifier, trained on DS1 (Row 1), DS2 (Row 2), and DS3 (Row 3). These matrices illustrate the

model’s performance on its respective test set and generalization across the remaining test sets, providing detailed category-specific insights.

function was then used to transform the class logits into class

probabilities, enabling the model to predict the respective classes.

While training, we applied the feature extraction methodology,

where the pre-trained encoder weights were kept frozen, and

only the classification head layers were trained. This choice was

intentional, as it is more suited to real-life implementations,

especially when dealing with limited data. Freezing the encoder

allows us to leverage the robust capabilities of pre-trained models,

even on small datasets, and the model can still perform effectively.

Moreover, this approach significantly reduces training time, which

is crucial in real-world applications where computational resources

and time are often constrained.

The approach involved training one dataset and then evaluating

the model’s performance on the test set and two other test sets

from other datasets to assess its robustness. This cross-evaluation

procedure was repeated for all three datasets, comprehensively

analyzing the model’s adaptability across diverse datasets. In

Figure 2, the two-stage training process is illustrated.
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FIGURE 9

AUC-ROC curves for the OCT-SelfNet-SwinV2 classifier, trained on DS1 (Row 1), DS2 (Row 2), and DS3 (Row 3).

Integrating self-supervised pre-training and supervised

training in this methodology establishes a robust framework,

OCT-SelfNet, for classifying retinal diseases in OCT

images. Combining the MAE architecture and the

subsequent classifier model aims to capitalize on the learned

representations to improve the model’s generalization to new,

unseen data.

3.4 Baseline model

For the comparison, we used ResNet-50 as our baseline

model. Unlike our proposed approach, ResNet-50 did not

undergo a self-supervised pre-training stage. Instead, we used

a version of ResNet-50 that was pre-trained on the ImageNet

dataset. This allowed us to evaluate the performance differences

between a model with conventional pre-training and our self-

supervised pre-training methodology. This ResNet-50 architecture

started with a 7 × 7 kernel convolution and a max pooling

layer, followed by a series of convolutional layers with varying

sizes and numbers of kernels. Repeated in specific patterns,

these layers enhanced the network’s ability to extract and

process complex features from images. After 50 convolutional

layers, the network concluded with average pooling and fully

connected layers with two nodes using softmax activation for

binary classification (Normal vs. AMD). To provide a more
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FIGURE 10

OCT image classification results: this figure displays a series of OCT images with OCT-SelfNet-SwinV2 model predictions and ground truth labels.

Each image is annotated with two lines: the first line shows the model’s prediction (either AMD or Normal), and the second line indicates the ground

truth category. Predictions that match the ground truth are highlighted in green, while incorrect predictions are marked in red.

comprehensive evaluation, we extended our baseline comparison

by incorporating the ViT-Base (Vision Transformer) model

(without the SSL pre-training). The choice of ViT-Base is

motivated by its strong performance in various computer

vision tasks, leveraging transformer-based architectures that are

fundamentally different from the convolutional operations

in ResNet50. By including ViT-Base, and ResNet50, we

aim to evaluate the performance of our model against two

state-of-the-art architectures.

The complete algorithm for the two-phase training process is

presented in pseudocode (Algorithm 1) for clearer understanding.

Table 1 details the network size and floating point

operations per second (FLOPS) of the proposed and baseline

models. It can be seen that the proposed OCT-SelfNet-

SwinV2 classifier model has a slightly larger size than the

baseline ResNet-50 classifier, but its FLOPS is very close to

the ResNet-50. This demonstrates that while the proposed

model introduces some additional parameters (34.27M) than

ResNet-50 (23.5M), it still is much smaller than the ViT-base

model (86M) and does not increase the computational load,

making it comparable to the smaller ResNet-50 model in terms

of efficiency.

3.5 Loss function

We have employed a loss function for the pre-training phase

that uses the mean squared error (MSE) between the predicted

and original images and only considers the pixels where the mask

is active. To determine the loss on the pixels where the mask is

active, the mean square error (MSE) is multiplied by the mask.

The percentage of the image that is masked is shown by the mask

ratio. The loss is computed by dividing the mean square error

(MSE) by the mask ratio because the mask is being used to focus

only on particular regions of the image. This enables us to scale

the loss appropriately and appropriately normalize the loss to the

portion of the image that is masked. The loss function is provided

in Equation 1,

1

mratio
×

1

N

N∑

i=1

(x̄i − xi)
2
×mi (1)

Here x̄i is the predicted image, xi is the original input image,

mi is the mask, mratio is the mask ratio and N is the number of

total sample.
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4 Datasets

Our experiments were carried out on three distinct datasets,

DS1, DS2, and DS3 to ensure a comprehensive evaluation of the

proposed methodology for binary image classification (Normal vs.

AMD). The use of those different datasets enables the training of

models using varied distributions and provides richer comparisons

of model performance across various test sets. In each of these

datasets, there are multiple categories such as Normal, AMD, CNV,

etc. Each OCT image is associated with a single disease category.

For our study, we only considered the Normal and AMD categories

from each dataset. Since our primary objective for this project

was to develop a binary classifier for distinguishing NORMAL

and AMD, we focused exclusively on these two classes of OCT

images, removing other categories from both the training and

evaluation processes.

4.1 DS1

DS1 encompasses a total of 109,559 OCT retinal

(Spectralis OCT, Heidelberg Engineering, Germany) images

which are classified into four categories: Normal, Choroidal

Neovascularization (CNV), Diabetic Macular Edema (DME), and

Drusen. We discovered identical images as stated before in this

study (Gholami et al., 2023). So we followed their approach to

clean the data and after that, we were left with 101,565 images.

While Drusen are not an early sign of CNV, their presence in the

retina can indicate a higher risk for developing advanced AMD,

including the wet form which eventually involves the growth of

abnormal blood vessels beneath the retina, a process known as

CNV. Since Drusen is primarily associated with the early stage of

AMD, we annotated Drusen images as AMD. Then we split this

DS1 intro train, test, and validation set with 80%, 10%, 10% ratio.

4.2 DS2

The DS2 dataset includes retinal images from 45 subjects,

consisting of 15 normal patients, 15 patients with dry AMD, and 15

patients with DME. We split this dataset into training, validation,

and test sets, with the first 10 subjects allocated to training, the

subsequent two subjects to validation, and the final three subjects

to testing. All OCT volumes were obtained using Heidelberg

Engineering Spectralis SD-OCT in protocols approved by the IRB

(Srinivasan et al., 2014).

4.3 DS3

DS3 is a dataset comprising OCT images from 500 subjects.

These images were captured using two different fields of view: 3-

and 6-mm. A single 3-mm file contains 304 scans of an individual

patient, while a 6-mm file contains 400 scans. Our focus was on

the slice images of the fovea since they capture the most prominent

features of the retina. We considered peripheral retinal sections

to have limited significance in classification. All OCT images
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FIGURE 11

Comparison of AUC-ROC scores for OCT-SelfNet-SwinV2 classifier without and with self-supervised pretraining phase across three datasets and test

sets.

were captured using a spectral-domain OCT system with a center

wavelength of 840 nm (RTVue-XR, Optovue, CA) (Li et al., 2020).

This DS3 was divided into training, validation, and test sets using a

stratified approach based on disease categories (AMD andNormal).

Each disease category was grouped separately, and then the dataset

was split into three subsets: 80% for training, 10% for validation,

and 10% for testing, ensuring an equal distribution of samples

across all disease categories. This stratified splitting approach helps

maintain representative distributions of diseases in each subset,

which is essential for effectively training and evaluating machine

learning models.

During the self-supervised pre-training stage, the model was

trained with training sets from those three datasets to keep

the test set unseen from the model. Also, all classes from

those three datasets have been used in this pre-training stage,

allowing it to grasp the intricacies of representation learning

comprehensively. This inclusive training approach enabled the

network to capture a broad spectrum of features and patterns

present in the diverse classes. However, in the supervised training

stage, we focused on binary classification tasks concentrating solely

onAMDandNormal categories. This two-phase training approach,

from comprehensive pre-training to feature extraction, strategically

guides the model’s representation learning and optimizes its

performance for the targeted binary classification objective.

A general overview of these three datasets is provided

in Figure 3, with the distribution of data across the training,

validation, and test sets, along with the count of normal and AMD

in each set, accompanied by a bar chart and donut chart.

5 Experiments

5.1 Implementation details

The learning rate is set to 1.5× 10−4 and Adam optimizer with

weight decay (Loshchilov and Hutter, 2017) of 0.05, using β1 and

β2 values of 0.9 and 0.95, respectively. The input consists of a batch

of 32 images, which were normalized. The NVIDIA Tesla V100

graphical processing unit (GPU) was used for the experiments.

In the self-supervised pre-training stage, the model was run for

50 epochs, and the model with the minimum validation loss was

saved for subsequent training. For the supervised training stage,

the model was run for 100 epochs with early stopping criteria with

a patience of 10, and the model with the maximum validation

accuracy was saved for testing. All the baseline experiments were

done and evaluated on an NVIDIA GeForce RTX 3060 Ti GPU

using similar hyperparameters. During supervised training stage

random rotation, horizontal flip, color jittering, Gaussian blurring,

and elastic transform techniques were used for data augmentation.

All images were resized to 224× 224 in training, and codes were

implemented with CUDA 11.2, Pytorch 1.12.1, and Python 3.10.9.

5.2 Evaluation metrics

The distribution Figure 3 reveals that all three datasets

are highly imbalanced, with the NORMAL cases significantly

outnumbering the AMD cases. This imbalance makes accuracy

an inadequate measure of the model’s performance, as it could

be misleadingly high simply due to the prevalence of NORMAL

cases. Instead, the AUC-ROC score is a more appropriate metric,

accounting for both true positive and false positive rates across

various threshold settings. To provide a comprehensive evaluation,

we also used the Area Under the Precision-Recall Curve (AUC-

PR) and the F1-Score andWilcoxon Signed-Ranking. Thesemetrics

offer further insights into the model’s ability to handle imbalanced

data by considering the precision and recall, which are critical for

understanding the model’s performance in distinguishing between

the minority and majority classes.

1. Accuracy: accuracy measures how many correct predictions

were made by the model; it is calculated by dividing the

total number of correct predictions by the total number of

predictions. The formula for accuracy is given by Equation 2.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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Here, TP = true positives, TN = true negatives, FP = false

positives, and FN = false negatives.

2. AUC-ROC: the area under the receiver operating characteristic

curve (AUC-ROC) is a metric used to evaluate a binary classifier.

The ROC curve plots the true positive rate against the false

positive rate for different threshold values. The AUC-ROC is

the area under the ROC curve, which gives a single value

that summarizes the overall performance of the model across

various threshold settings. Higher AUC-ROC indicates better

discrimination of positive and negative classes.

3. AUC-PR: similar to AUC-ROC, the Area Under the Precision-

Recall curve (AUC-PR) is a performance metric used to evaluate

a binary classifier. PR curve focuses on precision and recall by

plotting precision against recall for different threshold values.

The AUC-PR is the area under the Precision-Recall curve,

which provides a single value to denote the model’s overall

performance across various threshold settings. The higher the

score, the better the performance.

4. F1-score: F1-score is another performance evaluation metric

that takes both precision and recall into consideration which

makes this metric very useful in the case of data imbalance. The

F1-score is calculated using the Equation 3.

F1Score =
2 ∗ Precision ∗ Recall

Precision+ Recall
(3)

The value of F1-score ranges from 0 to 1, where a higher

value indicates better performance.

5. Wilcoxon Signed-Rank test: a statistical test has been done

to assess whether the observed performance differences (e.g.,

between our proposed model, OCT-SelfNet, and the baseline

models) are statistically significant or merely due to random

variation. To evaluate this, the p-value for AUC-ROC scores

between OCT-SelfNet and the baseline models in each of our

experiments is calculated. Given that AUC-ROC scores are not

guaranteed to follow a normal distribution and the data is

paired, the Wilcoxon Signed-Rank Test is used. A p-value <

0.05 indicates a statistically significant difference, meaning the

observed improvement or difference is unlikely to be due to

chance and vice versa.

5.3 Self-supervised pre-training result

Our evaluation explored the efficacy of three transformer-based

networks–ViT, Swin, and SwinV2–by conducting pre-training

for 50 epochs. Specifically, the SwinV2-based MAE exhibited

notable proficiency, achieving a mean squared error (MSE) loss

of 0.007 after 50 training epochs, as depicted in Figure 4. Figure 5

illustrates a visualization of the OCT image reconstruction from

the SwinV2-based MAE for different epochs. These qualitative

visualizations demonstrate the performance of the Swinv2-based

self-supervised Masked Autoencoder (MAE) during pre-training.

The visualizations consist of a sequence of images arranged from

left to right: starting with the ground truth image, followed by the

input image where random regions are masked, and reconstructed

images showing predicted patches at different epochs (epoch-

2, epoch-20, and epoch-50). This series illustrates the model’s
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FIGURE 12

Comparison of AUC-ROC scores for OCT-SelfNet-SwinV2 classifier without and with data fusion methodology across three datasets and test sets.

progressive learning process in reconstructing the masked regions

over time. Initially, the reconstructed images show rudimentary

patch predictions at epoch-2, gradually improving in accuracy and

detail by epoch-20. After epoch 50, themodel achieves more refined

reconstructions, though the predicted patches in the reconstructed

image may not be entirely clear. However, our project’s primary

objective was not to generate flawless reconstructions but to

capture intricate image structures and patterns. In subsequent

tasks, we used these pre-trained weights, leveraging their learned

representations rather than initializing the classifier network

randomly.

5.4 Supervised training result

5.4.1 Performance comparison with di�erent
encoder networks

To observe how different transformer model adapts to our

approach, in this experimentation, we employed three diverse

transformer-based MAE networks during the pre-training phase.

In the next stage, self-supervised training, we maintained the

same encoder and leveraged transfer learning to transfer the

learned weights. Additionally, a classifier network was integrated

for the downstream classification tasks. Each supervised network

underwent training for every dataset, and evaluations were

conducted across all three test sets to assess the network’s

performance on previously unseen test data. The performance

was then compared with the baseline model ResNet-50, which

underwent training on each dataset and subsequent evaluation

on all three test sets. Data augmentation techniques were applied

throughout this experimental process. Performance metrics,

including Accuracy, AUC-ROC, AUC-PR, and F1-Score, were

employed to measure the effectiveness of the different encoders.

Analysis of Table 2 shows that, in general classification tasks,

the performance of our self-supervised training approach

is comparable to that of the baseline models. However,

as demonstrated in Table 3, our method exhibits superior

performance in cross-dataset generalization analysis. In this

evaluation, the model was trained on DS1, and its classification

performance was assessed on DS2 and DS3. Similar evaluations

were conducted for DS2 and DS3 as well. The results in the table

demonstrate that our method outperforms the baseline models in

most cases, highlighting the superior generalization capability of

our approach compared to traditional models.

The bar chart depicted in Figure 6 presents a comparison of

AUC-ROC scores among various classifiers across three datasets

and test sets. The grouped bars allow for a direct comparison of

each classifier’s performance, showcasing OCT-SelfNet’s superior

performance over the baseline models in most instances. This

visualization enables a clear observation of how each classifier

performs across different datasets and highlights OCT-SelfNet’s

competitive edge in terms of AUC-ROC scores. AUC-ROC is

the preferred metric for evaluating classifiers on imbalanced

binary datasets because it comprehensively assesses their ability to

distinguish between classes across thresholds. This metric focuses

on discrimination ability, particularly crucial for imbalanced

datasets where one class dominates. Therefore, we chose AUC-

ROC to plot our comparison bar chart, ensuring an informative

evaluation of classifier performance across various datasets and test

sets.

For Tables 2, 3, we performed the Wilcoxon Signed-Rank Test

on the AUC-ROC scores of both the baseline model, ResNet50,

and ourmodel, OCT-SelfNet-SwinV2. The resulting p-value is 0.02,

further demonstrating that the difference in AUC-ROC scores is

statistically significant.

In this performance analysis, the OCT-SelfNet-SwinV2

classifier demonstrates the most reliable performance across all

test sets, which is particularly impressive given its smaller size

compared to other transformer-based classifiers. Although OCT-

SelfNet-Swinlarge slightly outperforms OCT-SelfNet-SwinV2 on

Dataset 3, considering both the model’s size and its performance

scores, SwinV2 proves to be an excellent and efficient option as

shown in Table 1. This balance between computational cost and

model effectiveness shows the model’s potential for deployment

in real-world applications where computational efficiency is

important. Additionally, a visualization plot in Figure 7 is shown

to highlight the OCT-SelfNet-SwinV2 model’s decision making
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FIGURE 13

Comparison of OCT-SelfNet-SwinV2 classifier results with baseline

model Resnet-50: In OCT-SelfNet-SwinV2, the encoder is

pre-trained on only Train Set 1 and later supervised training was

done on DS1, evaluated on Test Set 1, Test Set 2, and Test Set 3.

process. In this figure, multiple sample images from each dataset

is shown, followed by their corresponding attention maps overlaid

on top of the original ground truth images. This visualization

allows for a better understanding of the regions that were the main

focus of the model while making the decision. In the color map,

red and yellow areas indicate the most important regions for the

model’s prediction, receiving the highest attention, while blue areas

represent regions with the least attention. From the overlay images,

it can be observed that for DS2, which has a comparatively smaller

sample size, the attention maps exhibit some noise in the form

of additional small highlighted regions which indicates that the

model’s attention may be less stable due to limited data availability.

Figure 8 presents the confusion matrix for the OCT-SelfNet-

SwinV2 classifier, showcasing its performance after trained on

each dataset. In the first row, the matrix illustrates the classifier’s

effectiveness on Test Set-1 and its generalization across two

additional test sets when it was trained on DS1. The second

row highlights the results for DS2, while the third row shows

the performance for DS3. These confusion matrices provide a

comprehensive, category-specific performance analysis, offering

deeper insights into the classifier’s generalization capabilities across

multiple datasets.

To better visualize the overall performance and the capability

of distinguishing categories of OCT-SelfNet-SwinV2 across three

datasets, an AUC-ROC curve is shown in Figure 9.

Figure 10 showcases the results of OCT image classification

using the OCT-SelfNet-SwinV2 model. The figure displays a series

of OCT images, each annotated with the model’s prediction and

the corresponding ground truth label. Correct predictions are

highlighted in green, and incorrect predictions are marked in red.
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This visual representation facilitates an intuitive assessment of the

model’s performance in classifying OCT images across various

scenarios, including true positives, true negatives, false positives,

and false negatives. For each of these cases, two sample images

are provided to illustrate instances where the model succeeded

and struggled to make accurate predictions. This analysis reveals

that the model encounters difficulties, particularly with visually

challenging images to differentiate. In such cases, where the

distinctions between categories like AMD and Normal are subtle or

ambiguous, the model’s predictions are less accurate. This suggests

that the model’s performance declines when faced with images

that require more detailed visual interpretation, highlighting areas

where further refinement may be needed.

5.4.2 Performance evaluation on the e�ect of
self-supervised pre-training

This experiment aimed to assess the impact of self-supervised

pre-training on overall performance. We conducted experiments

where the classifier was trained from scratch without using any pre-

trained weights. Our goal was to compare the model’s performance

with and without self-supervised pre-training. The results, detailed

in Table 4 under the names OCT-SelfNet-SwinV2-with-SSL and

OCT-SelfNet-SwinV2-without-SSL, show a significant drop in

scores for smaller datasets (such as DS2 and DS3) when pre-

training was not used. Although not to the same degree, DS1 also

showed this drop.

Calculating the p-value for the AUC-ROC scores between

the OCT-SelfNet-SwinV2-without-SSL and OCT-SelfNet-

SwinV2-with-SSL models, we obtained a p-value of 0.01, which

is significantly low, demonstrating a substantial performance

improvement from using the SSL methodology.

These findings suggest that our proposed framework is

particularly effective in scenarios where larger datasets are

unavailable, as pre-training significantly enhances performance,

especially for smaller datasets.

Figure 11 displays a bar chart comparing the AUC-ROC scores

of the OCT-SelfNet-SwinV2 classifier with and without the self-

supervised pre-training stage. The grouped bar chart allows for

a side-by-side comparison, clearly indicating that OCT-SelfNet-

SwinV2-with-SSL consistently outperforms its counterpart in all

evaluated cases.

5.4.3 Performance evaluation on the e�ect of
data fusion in the pre-training phase

In this experiment, we examined the impact of data fusion

on classifier performance. Our approach involved using a self-

supervised pre-training model based on SwinV2 with individual

datasets during training. During the supervised training stage,

we used pre-trained weights from the self-supervised model

specific to each dataset (DS1, DS2, and DS3). We then

compared this approach’s performance with a pre-trained model

using data fusion. Table 5 presents the performance analysis

between the methodologies with and without data fusion for

the SwinV2-based network. The results demonstrate a notable

decline in performance for smaller datasets (DS2 and DS3)

when data fusion was not employed. Conversely, the decline
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FIGURE 14

Comparison of AUC-ROC scores between our method (OCT-SelfNet-SwinV2) and baseline (ResNet-50) on test sets from three datasets, when only

50% of training data has been used for training.

was minimal for DS1, suggesting that data fusion significantly

enhances performance, especially for smaller datasets. The p-

value between the OCT-SelfNet-SwinV2-without-datafusion and

OCT-SelfNet-SwinV2-with-datafusion models is 0.01, indicating

a significant performance improvement with the use of the data

fusion methodology. These findings underscore our proposed

methodology’s practical relevance and effectiveness in clinical

settings.

Figure 12 illustrates a bar chart that contrasts the AUC-

ROC scores of the OCT-SelfNet-SwinV2 classifier with and

without the integration of the data-fusion methodology. This

grouped presentation enables a direct comparison, highlighting

the consistent superiority of OCT-SelfNet-SwinV2-with-datafusion

across all assessed cases.

5.4.4 Performance evaluation on unseen datasets
settings

This experiment aimed to evaluate the performance of our

proposed method on datasets that were not part of the pre-training

phase; only DS1 was used during pre-training. This allowed us to

assess how our method performed on unseen sets, Test Set 2 and

Test Set 3, both of which were entirely new to the model which will

showcase the practical applicability of our approach in scenarios

where there is insufficient data available for training.

In this experiment, the OCT-SelfNet-SwinV2 underwent pre-

training exclusively with DS1, and the acquired weights were

subsequently transferred to the classifier network. The classifier

network was then trained on DS1, and evaluations were conducted

on Test Set 1, Test Set 2, and Test Set 3. For effective pre-

training and optimal learning representation, a larger dataset

is essential, therefore, DS1 was selected as it has the highest

number of samples among the three datasets. The results of this

experiment, presented in Table 6, demonstrate that the proposed

method consistently outperforms or matches the baseline model

across diverse test sets. When evaluating Test Set-1 and Test Set-2,

both the baseline model and our approach exhibited similar scores.

However, when assessing Test Set-3, which comprises unseen data

with variations in image settings, the baseline model’s performance

significantly declined compared to ours. The narrow score gaps

observed in OCT-SelfNet-SwinV2 across diverse test sets highlight

the generalization capabilities of our proposed approach. Figure 13

presents a bar chart comparing the AUC-ROC scores for each

test set across different classifiers. The grouped bar chart clearly

illustrates the superiority of OCT-SelfNet-SwinV2 over the ResNet-

50 model in most cases, further confirming its effectiveness in

handling a broad spectrum of datasets.

5.4.5 Performance comparison in limited data
settings

In this ablation study, the training set was intentionally

reduced to 50%, and subsequent training was conducted

for each dataset with the augmentation techniques. The

objective was to assess the performance of the OCT-SelfNet

classifier in comparison to the baseline model under insufficient

data conditions.

Examination of Table 7 indicates that, even with a reduction

in training data, the proposed method consistently outperforms

the baseline model. Specifically, the discrepancy among the scores

of unseen test sets compared to the trained dataset’s test set

is considerable for the baseline model. In contrast, the self-

supervised training approach exhibits minimal gaps, showcasing

better generalization capabilities. When trained on the reduced

DS1 training set, the OCT- SelfNet-SwinV2 model exhibited AUC-

ROC scores of 0.96, 0.99, 0.93, and AUC-PR of 0.89, 0.99, 0.83 on

Test Set-1, Test Set-2, and Test Set-3, respectively. In comparison,

the baseline model achieved AUC-ROC scores of 0.98, 0.99, and

0.55, accompanied by AUC-PR of 0.97, 0.98, and 0.70 on the same

test sets. This consistent pattern extended to other datasets, as

summarized in Table 7.

In the bar chart shown in Figure 14, AUC-ROC scores for each

test set are compared across different classifiers for this experiment,

clearly demonstrating how our proposed methodology surpasses

the baseline performances.
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FIGURE 15

Comparative analysis of (a) ground truth, (b) reconstructed, and (c) classified images by the OCT-SelfNet-SwinV2 model, illustrating the e�ect of the

SSL’s performance in accurately classifying the image.
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This finding underscores the robustness and improved

adaptability of the proposed methodology, particularly in scenarios

with limited training data.

5.5 Evaluating the influence of
reconstruction quality on the classifier’s
performance

In this ablation study, a side-by-side comparisonwas conducted

to visually illustrate whether the reconstruction quality during the

SSL training phase affects the performance of the trained classifier.

By comparing the images from both phases, we aim to observe

the relationship between the fidelity of reconstructed images and

the subsequent accuracy of classifications made by the model after

training.

Figure 15 presents a comparative series of images for

visual analysis. Figure 15a represents the ground truth image.

Figure 15b, depicts the reconstructed output generated by the

OCT-SelfNet-SwinV2 model in the self-supervised pre-training

phase, showcasing its capability to approximate the original image.

Figure 15c illustrates the classification result produced by the

OCT-SelfNet-SwinV2 Classifier. The prediction labels are color-

coded: green indicates the right prediction while red indicates

a wrong prediction. To comprehensively evaluate the impact

of reconstruction quality on classification, samples are provided

for true-positive, true-negative, false-positive, and false-negative

cases. This approach allows us to observe and analyze whether

the quality of the reconstructed images influences the accuracy

of the classification results. Through this qualitative analysis, it

is evident that during the SSL phase, the model adeptly learns

the image representation. Despite some minor blurriness in the

reconstructed image, these slight imperfections have no impact

on the supervised stage. During training, the classifier model

effectively uses the weights obtained from the SSL stage to achieve

accurate classifications.

6 Summary

In this work, we propose a two-phase deep learning framework

for detecting eye diseases from OCT images using a SwinV2

backbone. The methodology includes self-supervised pre-training

on unlabeled data, followed by supervised training on labeled

data. The model is pre-trained using unlabeled OCT images to

learn feature representations, addressing data scarcity in medical

domains. Using multi-source datasets exposes the model to diverse

variations, enhancing generalization. In the training phase, the pre-

trained model is adapted for disease classification using labeled

OCT images. This phase improves performance while leveraging

the learned features, minimizing the need for large labeled datasets.

The two-phase approach allows us to address the key limitations

in medical AI, such as data scarcity and the need for models that

can generalize across diverse clinical environments. Self-supervised

learning reduces the dependency on large labeled datasets, which

are difficult to obtain in medical imaging. The use of multi-

source datasets ensures that the model is exposed to variations in

patient demographics, OCT devices, and imaging protocols, thus

enhancing its scalability and adaptability for real-world clinical

applications.

Our experiments, conducted across three diverse datasets

with cross-evaluation and an extensive ablation study with

different encoder networks, yield promising results. The

performance analysis of the self-supervised training approach

against the baseline model reveals significant improvements

across various evaluation metrics, notably AUC-ROC and

AUC-PR. The consistent outperformance of the SwinV2-based

classifier underscores its robustness and suitability for automated

ophthalmic diagnosis, specifically in distinguishing normal cases

from AMD using OCT images. In our study, we conducted an

ablation analysis to assess the impact of self-supervised pre-

training on model performance, highlighting its crucial role.

It shows a significant decrease in scores for smaller datasets

without self-supervised pre-training, emphasizing the framework’s

effectiveness in enhancing generalization and prediction accuracy,

even with smaller datasets. This finding is especially relevant in

clinical settings where extensive labeled data acquisition isn’t

always feasible. Another ablation study was conducted to assess

performance under limited data conditions by reducing the

sample size to 50%, which further corroborates the robustness

and improved adaptability of our methodology for smaller

datasets. Despite a reduction in training data, our self-supervised

training approach showcases its ability to generalize effectively and

maintain performance stability across diverse test sets. The ablation

study of unseen datasets settings, where only DS1 was used in the

pre-training and test sets from DS2 and DS3 were used for the

evaluation, further validates the proposed method’s efficacy and

generalization abilities for new datasets, showcasing its practical

applicability and resilience in handling diverse and complex data

in real-world clinical contexts.

Our study acknowledges the potential limitations of the

proposed framework that may impact its generalizability and

applicability during clinical deployment. One key challenge is the

possibility of unwanted biases arising during data fusion, such

as imbalances in demographic representation or the prevalence

of specific disease categories, which can limit the model’s

performance. In clinical settings, themodel will need to be retrained

or trained periodically as new data becomes available. Furthermore,

given the high stakes of medical diagnoses, a human-in-the-loop

validation process is necessary for low-confidence results to ensure

the reliability of the predictions. Our future directions include

expanding the dataset to encompass a broader range of patients

while addressing and mitigating biases. Additionally, the focus of

our current work on binary classification (Normal vs. AMD) limits

the scope of the model’s practical utility, as real-world clinical

settings often involve patients with multiple conditions. We aim to

extend the framework to multi-class classification and incorporate

human-in-the-loop, making it suitable and reliable for widespread

application in ophthalmic diagnostics.

7 Conclusion

In this article, we have demonstrated the effectiveness of a self-

supervised deep learning framework using the SwinV2 backbone

for detecting eye diseases from OCT images. While the shifted

window-based transformer model has gained attention in research,
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its application and self-supervised methodology in OCT analysis

have yet to be explored. This article presents a comprehensive two-

phase framework that learns feature representations during the

pre-training stage from a multi-source dataset and leverages these

learned weights for the downstream classification task. Ourmethod

reduces the need for large labeled datasets by utilizing unlabeled

data in the self-supervised pre-training stage. This approach not

only minimizes the dependency on a single data source but also

enables the model to learn from the variations across different

data settings from multiple sources, improving its generalization

capability.

The performance evaluation of our proposed methodology,

OCT-SelfNet-SwinV2, through several experiments and scenarios

consistently demonstrates its superiority over the baseline model in

terms of generalization, showcasing its potential for broader clinical

AI applications in automated ophthalmic diagnosis. Our findings

highlight the critical importance of self-supervised pre-training,

and data fusion in achieving better performance and generalization

capabilities. However, our study recognizes potential limitations,

including biases from data fusion and the binary classification

focus, which may affect generalizability. Future work will address

these challenges by expanding the dataset, incorporating multi-

class classification, and integrating human-in-the-loop validation

for enhanced reliability in clinical applications.
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