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The rapid advancement of artificial intelligence (AI) and machine learning

(ML) technologies has opened up novel avenues for predicting coal and gas

outbursts in coal mines. This study proposes a novel prediction framework that

integrates advanced AI methodologies through a multi-model fusion strategy

based on ensemble learning andmodel Stacking. The proposedmodel leverages

the diverse data interpretation capabilities and distinct training mechanisms

of various algorithms, thereby capitalizing on the complementary strengths

of each constituent learner. Specifically, a Stacking-based ensemble model is

constructed, incorporating Support Vector Machines (SVM), Random Forests

(RF), and k-Nearest Neighbors (KNN) as base learners. An attentionmechanism is

then employed to adaptively weight the outputs of these base learners, thereby

harnessing their complementary strengths. The meta-learner, primarily built

upon the XGBoost algorithm, integrates these weighted outputs to generate

the final prediction. The model’s performance is rigorously evaluated using

real-world coal and gas outburst data collected from a mine in Pingdingshan,

China, with evaluation metrics including the F1-score and other standard

classification indicators. The results reveal that individual models, such as

XGBoost, SVM, and RF, can e�ectively quantify the contribution of input feature

importance using their inherent mechanisms. Furthermore, the ensemble model

significantly outperforms single-model approaches, particularly when the base

learners are both strong and mutually uncorrelated. The proposed ensemble

framework achieves a markedly higher F1-score, demonstrating its robustness

and e�ectiveness in the complex task of coal and gas outburst prediction.

KEYWORDS

artificial intelligence, coal and gas outbursts prediction, multi-model fusion, XGBoost,

attention mechanism

1 Introduction

Coal and gas outbursts remain a significant threat to the safety of coal mine workers

in China. In geologically complex regions, the deepening of mining activities further

aggravates subsurface conditions, increasing both the frequency and severity of outburst-

related incidents (Ou et al., 2023; Fu et al., 2022). Therefore, the development of accurate

and reliable predictive models for coal and gas outbursts is critically important.

Extensive research has been conducted on predictive models for coal and gas outbursts,

resulting in the development of a variety of approaches. These include the initial velocity

method for borehole outbursts (Wang et al., 2020a), the drilling cuttings index method
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(Wang et al., 2020b), mathematical evaluation models (Soleimani

et al., 2023; Hassan et al., 2017; Zhou et al., 2019; Rudakov

and Sobolev, 2019; Yang et al., 2023), and AI-based models

(Qiao et al., 2019; Anani et al., 2024; Li et al., 2024; Zhu

et al., 2023; Song et al., 2021; Wang et al., 2023), all of which

have demonstrated varying degrees of effectiveness. The rapid

progress in AI technology has provided new opportunities for

enhancing prediction accuracy. For instance, Fan et al. improved

the SVM model using the firefly algorithm (FA) to predict coal

and gas outbursts and validated its overall performance (Fan

et al., 2023). Liu et al. used a least squares SVM optimized with

the particle swarm optimization (PSO) algorithm, confirming its

effectiveness using gas outburst data from the Jiulishan Coal Mine

in Jiaozuo City, China (Liu et al., 2021). Furthermore, Zheng

et al. (2023) used XGBoost to predict and analyze the contribution

rate distribution of coal and gas outburst indicators. However,

these aforementioned studies tend to treat coal and gas outburst

prediction as an isolated task. Given the inherent uncertainties

and complex underlying mechanisms of such predictions, multiple

hypotheses may perform well on the training set. Relying on

a single model may suffer from poor generalization due to its

susceptibility to randomness and overfitting. To address these

limitations, we proposed a novel multi-model fusion prediction

method that integrates an attention mechanism for analyzing the

contribution rates of coal and gas data (Zhao et al., 2024a; Lin

et al., 2020). Initially, Pearson’s correlation analysis was conducted

to identify and select strongly correlated features as model

inputs. Subsequently, within the Stacking ensemble framework, a

coal and gas outburst prediction model that integrates multiple

learners was constructed to capture a more comprehensive data

observation space. Finally, the efficacy of the proposed model was

rigorously validated using real-world data from the Pingdingshan

Coal Mine in China. The results unequivocally demonstrate

that the Stacking-based ensemble method with multi-model

fusion achieves robust predictive performance for coal and gas

outburst events.

FIGURE 1

Factors influencing coal and gas outbursts.

2 Data analysis

2.1 Research overview and data sources

Coal and gas outbursts are influenced by four main factors:

geological conditions, coal seam characteristics, gas-related factors,

and operational practices. Based on field observations, these factors

are further subdivided into 14 specific elements (He et al., 2010)

(Figure 1). The risk level (L) of coal and gas outbursts is classified

into five categories based on the amount of ejected coal (Table 1).

In this study, we used coal and gas outburst data collected from

a coal mine in Pingdingshan over a period spanning from 1984 to

2009 (Xie et al., 2018). The first 50 data points were selected as the

training set, while the final 10 data points were reserved for testing

purposes. The coal and gas outburst data from the Pingdingshan

Coal Mine are summarized in Table 2. The geographical location of

Pingdingshan is shown in Figure 2.

2.2 Data process

Before feeding the training data into the model, it is crucial

to carefully preprocess the dataset by identifying and addressing

any anomalies.

Step 1: The Pauta criterion was applied to establish the outlier

threshold. Data points that deviated from the mean by more than

three standard deviations were considered outliers. These outliers

were then removed, and their corresponding entries were set to

null values.

Step 2:Missing values were then filled by extracting the five data

points preceding and following each missing entry. In this study,

Lagrange interpolation was used to estimate the missing data, as

shown in Equations 1, 2.

Ln(x) =
∑n

i=o
li(x)yi (1)
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li(x) =
∏n

j=0

x− xj

xi − xj
,

j 6= i (2)

where li(x) represents the interpolation basis function; Ln(x)

denotes the interpolated value of the missing data; yi is a known

(non-missing) value; x is the index corresponding to the missing

value; xi denotes the index of the known data point; and xj is the

interpolation node.

2.3 Correlation analysis

The primary indicator for determining the severity of a coal

and gas outburst was the quantity of coal thrown (Table 1). As

shown in Figure 3, Pearson’s correlation analysis was performed

to rigorously investigate both the interrelationships among the

various influencing factors and their individual correlations with

the quantity of coal thrown, as defined by Equation 3.

ρX,Y =
cov(X,Y)

σXσY
, (3)

where cov(X,Y) is covariance and σX and σY are the standard

deviations of X and Y, respectively.

Following the strong and weak correlation partitions

established by Zhang et al. (2022), the correlation results presented

in Figure 3 were subsequently classified. The outcomes of

this classification are comprehensively detailed in Table 3. As

demonstrated in Table 3, this study meticulously selected six

factors exhibiting medium to high correlation levels as input

variables for the model, specifically including A5, B3, D2, A4, B2,

and A3.

3 Methods

3.1 XGBoost principle

XGBoost is a prominent and highly efficient boosting ensemble

learning algorithm, representing an advanced evolution of the

Gradient Boosted Decision Tree (GBDT) model (Yao et al., 2022;

Xiong et al., 2024; Utkarsh, 2024). The predictive output of the

XGBoost model is formulated as shown in Equation 4:

ŷi =
∑K

k=1
fk(xi), fk ∈ F, (4)

TABLE 1 Coal and gas outburst hazard levels.

Risk level Outburst category Coal thrown
quantity (Q/t)

I No outburst 0

II Small outburst 0 < Q ≤ 50

III Medium outburst 50 < Q ≤ 100

IV Large outburst 100 < Q ≤ 500

V Extra-large outburst 500 < Q

where ŷi denotes the predicted value for the i-th sample; K

represents the number of trees; F signifies the function space of the

tree; xi is the feature vector of the i-th data point; and fk refers to

the function learned by the k-th tree, which is characterized by its

structure q and leaf weights w.

The loss function of the XGBoost model comprises two

components, as shown in Equation (5):

L =
∑n

i=1
l(yi, ŷi)+

∑K

k=1
�(fk), (5)

where the first term represents the training error between the

predicted value ŷi and the true target value yi; the second

term denotes the sum of tree complexities, which serves as a

regularization term to control the model’s complexity, as presented

in Equation 6:

�(f ) = γT +
1

2
λ ‖w‖2 , (6)

where γ and λ are the penalty coefficients.

During the minimization process of the objective

function defined in Equation 5, the incremental function

ft(xi) is added at each iteration to reduce the loss function.

The objective function at the t-th iteration is presented

in Equation 7:

L(t) =

n
∑

i=1

l(yi, ŷi)+

K
∑

k=1

�(fk)

=
∑n

i=1
l(yi, ŷ

t−1
i + ft(xi))+�(fk). (7)

For Equation 7, the The sample set is defined in each

leaf of t objective function is approximated using a second-

order Taylor expansion. The j-th tree as Ij = {i|q(xi=j)}.

Here, gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i )

represent the first and second derivatives of the loss function,

respectively. From these definitions, Equation 8 can be derived

as follows:

L(t) =

n
∑

i=1

[gift(xi)+
1

2
hif

2
t (xi)]+ �(ft)

∼=

n
∑

i=1

[gift(xi)+
1

2
hif

2
t (xi)]+ γT +

1

2
λ

T
∑

j=1

w2
j

∼=
∑T

j=1 [(
∑

i∈Ij
gi)wj +

1

2
(
∑

i∈Ij

hi + λ)w2
j ]+ γT (8)

Defining Gj =
∑

i∈Ij
gi and Hj =

∑

i∈Ij
hi leads to Equation 9:

L(t) ∼=
∑T

j=1
[Gjwj +

1

2
(Hj + λ)w2

j ]+ γT. (9)

The partial derivative with respect to wj yields Equation 10:

wj = −
Gj

Hj + λ
. (10)
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TABLE 2 Coal and gas outburst data from a coal mine in Pingdingshan.

Number A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 D1 D2 D3 Q/t L

1 535 3 3 1 1 5.4 1 0.32 0.66 0.4 11.23 3 1 1 19.7 II

2 522 3 1 3 1 4.8 1 0.35 1.93 0.5 10.17 1 3 1 16 II

3 584 3 1 1 5 3.2 3 0.2 2.38 0.53 12.06 3 1 5 132 IV

4 484 3 3 1 3 4.81 1 0.53 5.25 0.5 4.75 1 1 1 12 II

5 566 5 1 1 1 3.5 1 0.51 0.36 0.2 9 1 1 1 30 II

6 463 1 1 3 1 4.81 3 0.26 6.24 0.6 4.8 3 3 1 46 II

7 490 3 1 1 1 4.81 1 0.49 6.24 0.6 7.81 3 1 1 28 II

8 424 1 1 1 1 3.65 3 0.51 0.47 0.27 8.53 3 1 1 6 II

9 535 3 1 1 1 5.2 3 0.29 3.68 0.49 17.14 3 1 1 62 III

10 566 5 3 3 3 3.5 1 0.38 1.04 0.75 8.57 3 3 3 144.6 IV

11 563.4 5 1 1 1 3.7 1 0.57 0.76 0.4 8.76 1 1 3 53 II

12 564 5 1 1 1 3.7 1 0.57 0.7 0.38 7.24 1 1 1 0 I

13 485 5 3 5 3 3.3 1 0.11 7.8 1.2 19.65 3 3 5 450 IV

14 482 3 1 1 1 3.4 1 0.14 7.6 1.3 18.64 1 1 1 0 I

15 623 3 3 1 3 4.5 1 0.35 0.44 0.3 14.27 3 1 1 22 II

16 584 3 1 1 3 3.2 1 0.24 2.32 0.5 11.86 1 1 3 0 I

17 557.6 1 1 1 1 3.1 3 0.54 0.52 0.4 11.38 3 3 1 43 II

18 557.6 1 3 1 1 3.4 3 0.15 0.78 0.6 18.85 3 3 3 240 IV

19 557.6 1 1 1 1 3.2 3 0.46 0.36 0.5 9.48 1 1 1 0 I

20 486 1 1 1 1 3.5 3 0.29 0.33 0.38 12.56 3 1 1 22 II

21 529.8 3 1 3 1 4.3 3 0.67 0.42 0.32 11.48 3 3 1 5 II

22 583 1 1 1 1 4.5 3 0.43 1.15 0.7 9.18 3 3 3 10 II

23 583 1 1 1 1 4.7 1 0.46 1.05 0.66 9.24 1 1 1 0 I

24 533 5 3 3 3 4.1 3 0.23 0.34 0.2 12.57 5 3 3 440 IV

25 530 5 1 1 1 4.1 1 0.36 0.32 0.18 12.38 1 3 1 0 I

26 622 3 1 1 1 3 1 0.32 2.31 0.5 20.19 3 1 1 64 III

27 573 1 1 1 1 4.1 3 0.5 0.79 0.34 7.33 3 1 1 16 II

28 537.9 3 1 1 3 5.3 1 0.19 0.22 0.8 23.91 3 3 3 138 IV

29 562 3 1 1 1 5.25 1 0.47 4.5 0.5 14.28 1 3 1 12.5 II

30 540 1 1 1 1 4.8 1 0.31 0.62 0.32 12.33 1 1 1 0 I

31 540 1 1 3 1 4.8 3 0.27 0.52 0.3 12.05 1 1 1 8 II

32 457 1 1 1 3 3.5 3 0.15 1.95 0.6 5.09 1 5 1 478 IV

33 460 1 1 1 1 3.5 1 0.38 1.38 0.52 4.68 1 1 1 0 I

34 589 3 1 1 1 3.2 3 0.24 2.1 0.6 11.05 1 1 1 4.6 II

35 636.4 5 3 3 5 3.2 3 0.15 3.08 0.46 18.25 3 5 5 396 IV

36 584 3 1 1 5 3.2 3 0.25 2.94 0.7 14.18 5 3 5 215 IV

37 564.6 5 1 1 1 3.5 1 0.48 0.78 0.6 9.27 3 1 1 44 II

38 480 1 1 1 1 4.81 1 0.53 5.25 0.5 4.75 1 1 1 0 I

39 840 7 3 3 5 4.5 3 0.17 1.15 0.25 23.52 3 3 5 551 IV

40 838 5 1 1 1 4.5 1 0.26 1.03 0.25 20.86 1 1 3 0 I

41 566 5 1 3 1 3.5 1 0.51 0.48 0.6 7.93 1 1 1 55 III

(Continued)
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TABLE 2 (Continued)

Number A1 A2 A3 A4 A5 B1 B2 B3 C1 C2 C3 D1 D2 D3 Q/t L

42 620 1 1 1 1 3 1 0.34 1.83 0.46 18.75 1 1 1 0 I

43 800 5 1 3 1 3.3 3 0.18 0.42 0.22 15.89 1 3 5 190 IV

44 820 5 1 1 1 4.5 1 0.21 1.22 0.28 20.31 1 1 1 0 I

45 614 1 1 1 1 4.5 1 0.55 5.4 0.3 9.87 3 1 1 7 II

46 697 1 1 1 1 4.1 1 0.35 0.58 0.12 15.91 3 1 1 14 II

47 629 3 1 1 1 4.5 1 0.34 0.99 0.18 15.67 1 1 3 32 II

48 490 3 1 1 1 3.2 1 0.51 0.85 0.15 14.32 1 5 1 34 II

49 652 1 1 1 1 4 1 0.54 0.5 0.52 12.03 3 1 3 5 II

50 820 7 1 1 1 4.5 1 0.19 1.22 0.3 24.71 5 1 1 115 IV

51 554 1 3 3 1 5.4 1 0.28 0.35 0.3 15.47 3 1 1 27 II

52 482 3 3 1 3 4.81 1 0.53 6.24 0.6 4.75 1 1 1 20 II

53 550 1 1 1 1 5.4 1 0.4 0.28 0.25 10.48 1 1 1 0 I

54 606 1 3 1 1 2 1 0.41 0.34 0.45 7.99 3 1 1 16 II

55 557.6 3 3 1 3 3 3 0.24 1.5 0.5 21.06 3 1 3 180 IV

56 563 1 1 1 1 3.5 1 0.55 0.42 0.35 6.21 1 1 1 0 I

57 487 3 3 1 3 4.81 1 0.53 5.25 0.5 4.75 1 1 1 10 II

58 583 1 3 1 1 4.8 1 0.34 1.24 0.75 10.34 3 3 1 20 II

59 580 1 1 1 1 3.4 1 0.26 2.7 0.52 12.27 1 3 1 0 I

60 520 3 1 3 1 4.5 1 0.26 1.38 0.4 12.74 1 1 3 45.5 II

FIGURE 2

Geographical location of the No. 8 mine in Pingdingshan, China.
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FIGURE 3

Pearson’s correlation analysis of factors a�ecting coal and gas outbursts.

Substituting the weights into the objective function yields

Equation 11:

L(t) ∼= −
1

2

∑T

j=1

G2
j

Hj + λ
+ γT. (11)

A smaller loss function signifies enhanced model performance.

A greedy algorithm is used to partition the subtree by enumerating

feasible split points: a new split is added to existing leaves at each

step, and the maximum gain is computed accordingly. The gain is

then calculated as shown in Equation 12.

LGain ∼=
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
−

GL + GR

HL + HR + λ
]− γ , (12)

where the first and second terms represent the gains achieved by

splitting the left and right subtrees, respectively, whereas the third

term corresponds to the gain obtained without any split.
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TABLE 3 Pearson’s correlation analysis results.

Degree of correlation Value range Results

Strong correlation (0.6,0.8] A5 and B3

Moderately correlation (0.4,0.6] D2, A4, B2, and A3

Weak correlation (0/2,0.4] A2, D1, and C3

No correlation (0,0.2] C2, A1, C1, B1, and D3

FIGURE 4

Structure of the attention cell.

3.2 Attention mechanism

The attention mechanism receives the output from the

Stacking model as its input and adaptively assigns weights to its

input features, thereby emphasizing the most relevant ones and

suppressing less important features, consequently facilitating more

accurate feature selection (Zhu et al., 2021; Wankhade et al., 2023).

The structure of the attention mechanism is shown in Figure 4.

In Figure 4, x1, x2, . . . , xt represents the inputs from multi-

source fusion data; h1, h2, . . . , ht corresponds to the output state

values generated by the ensemble model, while ati signifies the

adaptive attention weight assigned to each output; st denotes the

final output.

By calculating the correlation between h1, h2, · · · , ht and

the current decoding time, the et,i for each influencing factor is

obtained. These updated values are presented in Equation 13.

et,i = VT∗ tan h(Wht + Uhi), i = 1, 2, . . . , t − 1. (13)

According to the computed probability et,i of each influencing

factor within the population, this value is then used to compute

the attention weight for each output of the ensemble model. The

updated output is presented in Equation 14.

at,i =
exp(et,i)

∑Nt

k=i
exp(ek,i)

, i = 1, 2, · · · , t − 1. (14)

The hidden states h1, h2, · · · , ht are weighted by their

corresponding attention values and then linearly combined. The

updated output is shown in Equation 15.

C =
∑Ni

i=1
at,ihi, i = 1, 2, · · · , t − 1 (15)

St represents the final output derived through the attention

mechanism, as shown in Equation 16.

st = f (C, ht), (16)

where V , W, and U represent the trainable parameters, which are

continuously updated during model training.

3.3 Multi-model fusion for coal and gas
outburst prediction

The performance of the Stacking model is directly influenced

by the number of base models used. Using too few base models

may not provide adequate diversity to effectively support the meta-

model, while using too many could result in redundancy, higher

computational costs, and amore intricate tuning process. Typically,

3–5 base models are recommended (Kumar et al., 2024; Zhao et al.,

2024b).

Based on the predictive capabilities of various base learners,

this article selected high-performing models as the first-layer

base learners in the Stacking model. This selection is driven

by the fact that base models with strong learning abilities

contribute to improving the overall predictive accuracy of the

ensemble. Specifically, RF, which uses the bagging technique, is

preferred for its robust learning capacity and well-established

theoretical foundation, making it applicable across a wide range

of domains. SVM is selected for its unique strengths in handling

small datasets, non-linear relationships, and high-dimensional

regression problems. KNN is included due to its solid theoretical

background and efficient training process, delivering strong

practical performance. For the second layer, models with robust

generalization capabilities are chosen to aggregate and correct

biases from the multiple base learners in the training set while

mitigating overfitting through ensemble strategies. Consequently,

the Stacking ensemble model incorporates RF, KNN, and SVM as

the first-layer base learners, with Attention-XGBoost serving as the

meta-learner in the second layer. The overall architecture is shown

in Figure 5.

It is important to note that the training set for the meta-

learner is derived from the outputs of the base learners. Directly

utilizing the base learners’ training data to form the meta-learner’s

training set could result in significant overfitting. To prevent

the data from being redundantly learned by both layers and

to avoid overfitting, an appropriate data usage strategy must

be implemented. The dataset is first split into training and

testing sets using cross-validation, with the three base learners

making independent predictions. For each base learner, the original

training dataset is partitioned into six mutually exclusive subsets,

ensuring that no data IDs are repeated across subsets. For each

base learner, one data subset is reserved as the validation set, while

the remaining five subsets serve as the training set. Each base

learner produces prediction results on its own validation subset.

These predictions from the three base learners are then combined
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FIGURE 5

Prediction framework based on AXGBoost and Stacking.

to form a new dataset, equal in size to the original dataset, as

illustrated in Figure 6. This approach facilitates a comprehensive

feature transformation from the original input features to the meta-

learner’s input features. Since each base learner’s predicted data

subset was excluded from its own training, this method guarantees

that every data point is used only once during training, effectively

preventing overfitting.

The training and prediction process of the AXGBoost-Stacking

model is shown in Figure 6, and the detailed training procedure is

outlined as follows:

Step 1: The coal and gas outburst dataset is defined as presented

in Equation 17.

s = {(yn,xn), n = 1, 2,· · ·,N}, (17)

where xn represents the feature vector of the n-th sample, yn is

the corresponding target (predicted) value, and p is the number

of features, meaning that each feature vector can be expressed

as (x1, x2,..., xp). Next, the dataset is partitioned into Z equally

sized subsets: S1, S2,..., Sz . The cross-validation between datasets as

presented in Equation 18.

S̄z = S− Sz , (18)

where Sz denotes the z-th test set and
¯
Sz represents the

corresponding training set.

Step 2: The training set S̄z is fed into the first layer of the

XGBoost-Stacking ensemble model, where three base learners are

trained to obtain the base model L. Simultaneously, each sample xn
in the cross-validation test set Sz is passed through the trained base

model L to generate the corresponding predictions.

Step 3: The output predictions from the three base learners are

concatenated to form a new data sample, which is then used as

the input for the second layer of the Stacking model. At this stage,

a prediction algorithm that integrates the attention mechanism

with XGBoost is used to aggregate these outputs and finalize the

prediction of coal ejection volume.

In this study, the AXGBoost-Stacking model is implemented

using the scikit-learn library in Python. A detailed description of

the algorithm is provided in Table 4.

4 Experimentation and evaluation

4.1 Model evaluation indicators

The multi-model Stacking prediction framework proposed

in this study adopts the AXGBoost-Stacking model, which uses

SVM, RF, and KNN as base learners and an attention-enhanced

XGBoost model as the meta-learner. The Stacking ensemble

learning algorithm enables a two-layer fusion of the SVM, RF,

KNN, and XGBoost models. In addition to AXGBoost-Stacking

model, three alternative Stacking models can also be constructed

for comparative analysis:

1) The SVM-Stacking model uses RF, KNN, and AXGBoost as

base learners, with SVM serving as the meta-learner.

2) The RF-Stacking model uses SVM, KNN, and AXGBoost as

the base learners, with RF acting as the meta-learner.

3) The KNN-Stacking model uses SVM, RF, and AXGBoost as

the base learners, with KNN acting as the meta-learner.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2025.1623883
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Xie et al. 10.3389/fdata.2025.1623883

FIGURE 6

Coal thrown quantity prediction method based on multi-model fusion within a Stacking framework.

TABLE 4 AXGBoost-Stacking algorithm description.

Algorithm: AXGBoost-Stacking model

1. Def attention_3d_block

2. Initialize AXGBoost-Stacking model

3. Get input data train_X from DataSet

4. Get output(label) data train_Y from DataSet

5. Train_X = train_X.reshape((train_X.shape[0],1,train_X.shape[1]))

train_Y = train_Y.reshape((train_Y.shape[0],1,train_Y.shape[1]))

inputs: Input(train_X.shape[1], train_X.shape[2])

6. Base_model_layer:Stacking_basemodel_output =

Stacking(base_mode[model_1, model_2, model_3])

7. attention.layer:attention_output =

Flatten(attention_3d_block(Stacking_basemodel_output))

8. meta_model_layer:Stacking_metamodel_output =

Stacking(meta_mode[model])

9. train iterater begin

10. Calculate the mean square error of the loss function based on the

predicted and actual values

11. Train iterater end

To evaluate the predictive performance of the AXGBoost-

Stacking model and compare it with the individual predictive

capabilities of the other three Stacking models, this study uses

mean squared error (MSE), mean error (ME), and the F1-score

[as defined in reference Xie et al. (2018)] as evaluation metrics.

The formulas for calculating MSE and ME are provided in

Equations 19, 20.

MSE =
1

n

∑n

i=1
(yi − ŷi)

2 (19)

ME =
1

n

∑n

i=1

∣

∣yi − ŷi
∣

∣ , (20)

where yi is true data, and ŷi is prediction data.

The calculation formula for the F1-score is presented in

Equation 21.

F1 = 2×
Precision× Recall

Precision+ Recall
, (21)

where Precision indicates the model’s accuracy, and Recall represents

the model’s recall rate.

4.2 Comparison of prediction results

4.2.1 Input feature contribution analysis
As previously mentioned, this study uses the following features

as model inputs: A5, B3, D2, A4, B2, and A3. The model’s output is
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FIGURE 7

Contribution of input features to the prediction model. (A) SVM model input feature contribution. (B) RF model input feature contribution. (C)

XGBoost model input feature contribution.

the coal thrown quantity, corresponding to the classification levels

outlined in Table 2. Figure 7 illustrates the contribution analysis of

input features for the SVM, RF, and XGBoost models. Additionally,

the comparison of prediction performance among single models is

provided in Figure 8.

As shown in Figure 7, A5, B3, and D2 exhibit high feature

importance across different models. This finding is consistent with

the Pearson correlation results presented in Table 3, indirectly

validating that A5, B3, and D2 exert a greater influence on the

model’s predictive performance than other factors.
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Based on the AUC values used for parameter tuning of the

SVM, RF, KNN, and XGBoost models, the optimal parameter

settings are listed in Table 5. As shown in Table 5, the prediction

performance of the individual models, assessed by MSE and

ME, is also compared. Combined with the results in Figure 8,

it is clear that the XGBoost and SVM models exhibit superior

predictive performance.

FIGURE 8

Comparison of the prediction performance of individual models.

TABLE 5 Parameters of each model.

Model Model parameter MSE ME F1

SVM Kernel= “linear”, C = 4 1,821.56 13.16 0.875

RF n_estimators= 100,

random_state= 0, n_jobs=−1

2,722.525 20.85 0.857

KNN n_neighbors= 3 3,555.525 28.65 0.6

XGBoost n_neighbors= 6, learining_rate

= 0.09

582.725 16.25 0.6

4.2.2 Performance analysis of Stacking model
prediction

To evaluate the predictive performance of the Stacking

ensemble model, SVM, RF, KNN, and XGBoost were used as

meta-learners for comparative analysis. The selected parameters

for SVM, RF, and KNN are consistent with those listed in Table 6.

The resulting prediction results are shown in Figure 9, Tables 6, 7.

The results highlight that the selection of base learners significantly

impacts the final predictive performance.

As shown in Tables 6, 7, the method proposed in this

study achieves high prediction accuracy. Moreover, a comparison

FIGURE 9

Comparison of the prediction performance of the Stacking model.

TABLE 7 Parameters of each model.

Model MSE ME F1

SVM-Stacking 1,641.318 15.38 0.823

RF-Stacking 319.525 7.75 0.857

KNN-Stacking 2,762.125 24.05 0.923

AXGBoost-Stacking 29.725 1.65 0.98

TABLE 6 Parameters of each model.

Serial
number

True
value

Level SVM-Stacking RF-Stacking KNN-Stacking AXGBoost-Stacking

Prediction
value

Level Prediction
value

Level Prediction
value

Level Prediction
value

Level

1 27 II 40.4188 II 43 II 34 II 29 II

2 20 II 12.0889 II 12 II 5 II 19 II

3 0 I 0.095 I 0 I 0 I 0 I

4 16 II 9.6556 II 0 I 4 II 15 II

5 180 IV 58.6095 IV 138 IV 22 II 163 IV

6 0 I 7.0851 II 7 II 0 I 0 I

7 10 II 12.0889 II 12 II 5 II 11 II

8 20 II 13.8117 II 10 II 8 II 19 II

9 0 I 1.3268 II 0 I 0 I 0 I

10 45.5 II 9.4444 II 19 II 0 I 46 II
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between Tables 5, 7 reveals that the Stacking model outperforms

the individual models in terms of prediction accuracy. Compared

with the prediction results reported in Xie et al. (2018),

the approach utilized in this study demonstrates superior

predictive performance.

5 Conclusion

This study incorporates advanced algorithmic techniques

from the fields of AI and ML. In contrast to previous

studies, particularly Xie et al. (2018), this study, within the

Stacking ensemble framework, leverages multiple algorithms to

interpret the data space and structure from diverse perspectives,

enabling complementary strengths among models and yielding

optimal prediction outcomes. Experimental results demonstrate

that conducting feature contribution analysis before model

construction effectively quantifies the importance of each feature.

The Stacking ensemble learning algorithm exhibits strong

predictive accuracy and holds significant application in coal and

gas outburst prediction. The main contributions of this study are

summarized as follows:

• Through Pearson’s correlation analysis and feature

importance evaluation, coal seam angle, coal seam solidity

coefficient, and slag falling situation are identified as key

factors contributing significantly to the prediction outcomes.

• Compared with individual models, the Stacking ensemble

model effectively integrates the strengths of each base learner,

thereby enhancing overall prediction accuracy.

• Due to the complexity of the model and the risk of overfitting

caused by the small data size, cross-validation was adopted

to prevent overfitting from occurring. In future research,

adversarial learning or large-scale models will be introduced

to effectively expand and validate the dataset.
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