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The rapid advancement of artificial intelligence (Al) and machine learning
(ML) technologies has opened up novel avenues for predicting coal and gas
outbursts in coal mines. This study proposes a novel prediction framework that
integrates advanced Al methodologies through a multi-model fusion strategy
based on ensemble learning and model Stacking. The proposed model leverages
the diverse data interpretation capabilities and distinct training mechanisms
of various algorithms, thereby capitalizing on the complementary strengths
of each constituent learner. Specifically, a Stacking-based ensemble model is
constructed, incorporating Support Vector Machines (SVM), Random Forests
(RF), and k-Nearest Neighbors (KNN) as base learners. An attention mechanism is
then employed to adaptively weight the outputs of these base learners, thereby
harnessing their complementary strengths. The meta-learner, primarily built
upon the XGBoost algorithm, integrates these weighted outputs to generate
the final prediction. The model's performance is rigorously evaluated using
real-world coal and gas outburst data collected from a mine in Pingdingshan,
China, with evaluation metrics including the Fl-score and other standard
classification indicators. The results reveal that individual models, such as
XGBoost, SVM, and RF, can effectively quantify the contribution of input feature
importance using their inherent mechanisms. Furthermore, the ensemble model
significantly outperforms single-model approaches, particularly when the base
learners are both strong and mutually uncorrelated. The proposed ensemble
framework achieves a markedly higher F1-score, demonstrating its robustness
and effectiveness in the complex task of coal and gas outburst prediction.

KEYWORDS

artificial intelligence, coal and gas outbursts prediction, multi-model fusion, XGBoost,
attention mechanism

1 Introduction

Coal and gas outbursts remain a significant threat to the safety of coal mine workers
in China. In geologically complex regions, the deepening of mining activities further
aggravates subsurface conditions, increasing both the frequency and severity of outburst-
related incidents (Ou et al., 2023; Fu et al., 2022). Therefore, the development of accurate
and reliable predictive models for coal and gas outbursts is critically important.

Extensive research has been conducted on predictive models for coal and gas outbursts,
resulting in the development of a variety of approaches. These include the initial velocity
method for borehole outbursts (Wang et al., 2020a), the drilling cuttings index method
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(Wang et al., 2020b), mathematical evaluation models (Soleimani
et al., 2023; Hassan et al., 2017; Zhou et al., 2019; Rudakov
and Sobolev, 2019; Yang et al., 2023), and Al-based models
(Qiao et al, 2019; Anani et al., 2024; Li et al, 2024; Zhu
et al., 2023; Song et al.,, 2021; Wang et al.,, 2023), all of which
have demonstrated varying degrees of effectiveness. The rapid
progress in Al technology has provided new opportunities for
enhancing prediction accuracy. For instance, Fan et al. improved
the SVM model using the firefly algorithm (FA) to predict coal
and gas outbursts and validated its overall performance (Fan
et al,, 2023). Liu et al. used a least squares SVM optimized with
the particle swarm optimization (PSO) algorithm, confirming its
effectiveness using gas outburst data from the Jiulishan Coal Mine
in Jiaozuo City, China (Liu et al., 2021). Furthermore, Zheng
et al. (2023) used XGBoost to predict and analyze the contribution
rate distribution of coal and gas outburst indicators. However,
these aforementioned studies tend to treat coal and gas outburst
prediction as an isolated task. Given the inherent uncertainties
and complex underlying mechanisms of such predictions, multiple
hypotheses may perform well on the training set. Relying on
a single model may suffer from poor generalization due to its
susceptibility to randomness and overfitting. To address these
limitations, we proposed a novel multi-model fusion prediction
method that integrates an attention mechanism for analyzing the
contribution rates of coal and gas data (Zhao et al., 2024a; Lin
et al,, 2020). Initially, Pearson’s correlation analysis was conducted
to identify and select strongly correlated features as model
inputs. Subsequently, within the Stacking ensemble framework, a
coal and gas outburst prediction model that integrates multiple
learners was constructed to capture a more comprehensive data
observation space. Finally, the efficacy of the proposed model was
rigorously validated using real-world data from the Pingdingshan
Coal Mine in China. The results unequivocally demonstrate
that the Stacking-based ensemble method with multi-model
fusion achieves robust predictive performance for coal and gas
outburst events.

10.3389/fdata.2025.1623883

2 Data analysis

2.1 Research overview and data sources

Coal and gas outbursts are influenced by four main factors:
geological conditions, coal seam characteristics, gas-related factors,
and operational practices. Based on field observations, these factors
are further subdivided into 14 specific elements (He et al., 2010)
(Figure 1). The risk level (L) of coal and gas outbursts is classified
into five categories based on the amount of ejected coal (Table 1).

In this study, we used coal and gas outburst data collected from
a coal mine in Pingdingshan over a period spanning from 1984 to
2009 (Xie et al., 2018). The first 50 data points were selected as the
training set, while the final 10 data points were reserved for testing
purposes. The coal and gas outburst data from the Pingdingshan
Coal Mine are summarized in Table 2. The geographical location of
Pingdingshan is shown in Figure 2.

2.2 Data process

Before feeding the training data into the model, it is crucial
to carefully preprocess the dataset by identifying and addressing
any anomalies.

Step 1: The Pauta criterion was applied to establish the outlier
threshold. Data points that deviated from the mean by more than
three standard deviations were considered outliers. These outliers
were then removed, and their corresponding entries were set to
null values.

Step 2: Missing values were then filled by extracting the five data
points preceding and following each missing entry. In this study,
Lagrange interpolation was used to estimate the missing data, as
shown in Equations 1, 2.

n
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FIGURE 1
Factors influencing coal and gas outbursts.
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n  X—X
. J
li(x) Hj:() xXi — xj’
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where [;(x) represents the interpolation basis function; L, (x)
denotes the interpolated value of the missing data; y; is a known
(non-missing) value; x is the index corresponding to the missing
value; x; denotes the index of the known data point; and x; is the
interpolation node.

2.3 Correlation analysis

The primary indicator for determining the severity of a coal
and gas outburst was the quantity of coal thrown (Table 1). As
shown in Figure 3, Pearson’s correlation analysis was performed
to rigorously investigate both the interrelationships among the
various influencing factors and their individual correlations with
the quantity of coal thrown, as defined by Equation 3.

3)

where cov(X,Y) is covariance and ox and oy are the standard
deviations of X and Y, respectively.

Following the strong and weak correlation partitions
established by Zhang et al. (2022), the correlation results presented
in Figure3 were subsequently classified. The outcomes of
this classification are comprehensively detailed in Table 3. As
demonstrated in Table 3, this study meticulously selected six
factors exhibiting medium to high correlation levels as input
variables for the model, specifically including A5, B3, D2, A4, B2,
and A3.

3 Methods
3.1 XGBoost principle

XGBoost is a prominent and highly efficient boosting ensemble
learning algorithm, representing an advanced evolution of the
Gradient Boosted Decision Tree (GBDT) model (Yao et al., 2022;
Xiong et al., 2024; Utkarsh, 2024). The predictive output of the
XGBoost model is formulated as shown in Equation 4:

n K
yi=_ JuxifieF, @)
TABLE 1 Coal and gas outburst hazard levels.
Risk level Outburst category Coal thrown
quantity (Q/t)
I No outburst 0
1I Small outburst 0<Q<50
111 Medium outburst 50 < Q<100
v Large outburst 100 < Q < 500
A% Extra-large outburst 500 < Q
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where J; denotes the predicted value for the i-th sample; K
represents the number of trees; F signifies the function space of the
tree; x; is the feature vector of the i-th data point; and f; refers to
the function learned by the k-th tree, which is characterized by its
structure g and leaf weights w.

The loss function of the XGBoost model comprises two
components, as shown in Equation (5):

L=Y" 1wi)+ 3 Q) )
where the first term represents the training error between the
predicted value 7; and the true target value y;; the second
term denotes the sum of tree complexities, which serves as a
regularization term to control the model’s complexity, as presented
in Equation 6:

1
Qf) =y T+ Srlwl?, ©)
where y and A are the penalty coeflicients.
During the minimization process of the objective

function defined the incremental function

fi(x;) is added at each iteration to reduce the loss function.

in Equation 5,

The objective function at the f-th iteration is presented
in Equation 7:

n K
L9 =315+ Y Q)

i=1 k=1

n Af—
=D 003 A+ Q). )
For Equation7, the The sample set is defined in each
leaf of t objective function is approximated using a second-

{ilq(xi=j)}.

Here, g = 35,0—1)1()’1‘,??71)) and h; = 3;@_1)1(%’5’,071))

order Taylor expansion. The j-th tree as I

represent the first and second derivatives of the loss function,
respectively. From these definitions, Equation 8 can be derived
as follows:

" 1
19 = 3" [gifilx) + 5h,»ff(xi)] + Q(f)
i=1

n T
1 1
=D laifila) + S +y T+ 503w
i=1 j=1
~ T
=37,

1
(ier, 80w) + E(Z hi+Mwil+yT (8)

i€lj
Defining G; = Zidj giand Hj = Y, ; hjleads to Equation 9:

i€l

0 ~ ZT Y 2
LW = i [Gjw;j + 2(H] + 1wl +yT. 9)
The partial derivative with respect to w; yields Equation 10:
Gj
wj = — (10)
Hj+ A
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TABLE 2 Coal and gas outburst data from a coal mine in Pingdingshan.

Number Al A2 A3 A4 A5 B1 B2 B3 C1 c2 C3 D1 D2 D3 Q/t L

1 535 3 3 1 1 5.4 1 0.32 0.66 0.4 11.23 3 1 1 19.7 11
2 522 3 1 3 1 48 1 0.35 1.93 0.5 10.17 1 3 1 16 I
3 584 3 1 1 5 3.2 3 0.2 2.38 0.53 12.06 3 1 5 132 v
4 484 3 3 1 3 4.81 1 0.53 525 0.5 4.75 1 1 1 12 11
5 566 5 1 1 1 3.5 1 0.51 0.36 0.2 9 1 1 1 30 11
6 463 1 1 3 1 4.81 3 0.26 6.24 0.6 4.8 3 3 1 46 11
7 490 3 1 1 1 4.81 1 0.49 6.24 0.6 7.81 3 1 1 28 11
8 424 1 1 1 1 3.65 3 0.51 0.47 0.27 8.53 3 1 1 6 I
9 535 3 1 1 1 52 3 0.29 3.68 0.49 17.14 3 1 1 62 111
10 566 5 3 3 3 3.5 1 0.38 1.04 0.75 8.57 3 3 3 144.6 v
11 563.4 5 1 1 1 3.7 1 0.57 0.76 0.4 8.76 1 1 3 53 1I
12 564 5 1 1 1 3.7 1 0.57 0.7 0.38 7.24 1 1 1 0 I

13 485 5 3 5 3 33 1 0.11 7.8 12 19.65 3 3 5 450 v
14 482 3 1 1 1 34 1 0.14 7.6 1.3 18.64 1 1 1 0 I

15 623 3 3 1 3 4.5 1 0.35 0.44 0.3 14.27 3 1 1 22 1I
16 584 3 1 1 3 3.2 1 0.24 232 0.5 11.86 1 1 3 0 I

17 557.6 1 1 1 1 3.1 3 0.54 0.52 0.4 11.38 3 3 1 43 1I
18 557.6 1 3 1 1 3.4 3 0.15 0.78 0.6 18.85 3 3 3 240 v
19 557.6 1 1 1 1 32 3 0.46 0.36 0.5 9.48 1 1 1 0 I

20 486 1 1 1 1 3.5 3 0.29 0.33 0.38 12.56 3 1 1 22 I
21 529.8 3 1 3 1 4.3 3 0.67 0.42 0.32 11.48 3 3 1 5 1I
22 583 1 1 1 1 4.5 3 0.43 1.15 0.7 9.18 3 3 3 10 11
23 583 1 1 1 1 4.7 1 0.46 1.05 0.66 9.24 1 1 1 0 I

24 533 5 3 3 3 4.1 3 0.23 0.34 0.2 12.57 5 3 3 440 v
25 530 5 1 1 1 4.1 1 0.36 0.32 0.18 12.38 1 3 1 0 I

26 622 3 1 1 1 3 1 0.32 231 0.5 20.19 3 1 1 64 juss
27 573 1 1 1 1 4.1 3 0.5 0.79 0.34 7.33 3 1 1 16 1I
28 537.9 3 1 1 3 53 1 0.19 0.22 0.8 2391 3 3 3 138 v
29 562 3 1 1 1 5.25 1 0.47 4.5 0.5 14.28 1 3 1 12.5 1I
30 540 1 1 1 1 4.8 1 0.31 0.62 0.32 12.33 1 1 1 0 I

31 540 1 1 3 1 4.8 3 0.27 0.52 0.3 12.05 1 1 1 8 11
32 457 1 1 1 3 3.5 3 0.15 1.95 0.6 5.09 1 5 1 478 v
33 460 1 1 1 1 3.5 1 0.38 1.38 0.52 4.68 1 1 1 0 I

34 589 3 1 1 1 3.2 3 0.24 2.1 0.6 11.05 1 1 1 4.6 11
35 636.4 5 3 3 5 3.2 3 0.15 3.08 0.46 18.25 3 5 5 396 v
36 584 3 1 1 5 32 3 0.25 2.94 0.7 14.18 5 3 5 215 v
37 564.6 5 1 1 1 35 1 0.48 0.78 0.6 9.27 3 1 1 44 I
38 480 1 1 1 1 4.81 1 0.53 5.25 0.5 4.75 1 1 1 0 I

39 840 7 3 3 5 4.5 3 0.17 1.15 0.25 23.52 3 3 5 551 v
40 838 5 1 1 1 4.5 1 0.26 1.03 0.25 20.86 1 1 3 0 I

41 566 5 1 3 1 3.5 1 0.51 0.48 0.6 7.93 1 1 1 55 111

(Continued)
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TABLE 2 (Continued)

Number

42 620 1 1 1 1 3 1 0.34 1.83 0.46 18.75 1 1 1 0 I

43 800 5 1 3 1 33 3 0.18 0.42 022 15.89 1 3 5 190 v
44 820 5 1 1 1 45 1 0.21 1.22 028 | 2031 1 1 1 0 I

45 614 1 1 1 1 45 1 0.55 5.4 0.3 9.87 3 1 1 7 il
46 697 1 1 1 1 4.1 1 0.35 0.58 0.12 1591 3 1 1 14 11
47 629 3 1 1 1 45 1 0.34 0.99 0.18 15.67 1 1 3 32 i
48 490 3 1 1 1 32 1 051 0.85 0.15 14.32 1 5 1 34 il
49 652 1 1 1 1 4 1 0.54 05 0.52 12.03 3 1 3 5 i
50 820 7 1 1 1 45 1 0.19 1.22 03 2471 5 1 1 115 v
51 554 1 3 3 1 5.4 1 0.28 0.35 0.3 15.47 3 1 1 27 il
52 482 3 3 1 3 481 1 0.53 6.24 0.6 4.75 1 1 1 20 il
53 550 1 1 1 1 5.4 1 04 0.28 0.25 10.48 1 1 1 0 I

54 606 1 3 1 1 2 1 041 0.34 045 7.99 3 1 1 16 i
55 557.6 3 3 1 3 3 3 0.24 L5 05 21.06 3 1 3 180 v
56 563 1 1 1 1 35 1 0.55 0.42 035 6.21 1 1 1 0 I

57 487 3 3 1 3 481 1 0.53 5.25 0.5 4.75 1 1 1 10 il
58 583 1 3 1 1 48 1 0.34 1.24 0.75 10.34 3 3 1 20 il
59 580 1 1 1 1 34 1 0.26 27 0.52 12.27 1 3 1 0 I

60 520 3 1 3 1 45 1 0.26 1.38 0.4 12.74 1 1 3 455 i

Pingdingshan No.8 mine

FIGURE 2
Geographical location of the No. 8 mine in Pingdingshan, China.
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FIGURE 3

Pearson’s correlation analysis of factors affecting coal and gas outbursts.
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Substituting the weights into the objective function yields
Equation 11:

2
L(t) o~ _l T Gj

zzj=1Hj+A

+yT. 11)

A smaller loss function signifies enhanced model performance.
A greedy algorithm is used to partition the subtree by enumerating
feasible split points: a new split is added to existing leaves at each
step, and the maximum gain is computed accordingly. The gain is

Frontiersin Big Data

then calculated as shown in Equation 12.

Gr + Gr

G, G
Hp + A H; + Hgr + A

1
2°H + A

~

LGain =

-y, (12

where the first and second terms represent the gains achieved by
splitting the left and right subtrees, respectively, whereas the third
term corresponds to the gain obtained without any split.
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TABLE 3 Pearson'’s correlation analysis results.

Degree of correlation  Value range Results

Strong correlation (0.6,0.8] A5 and B3

Moderately correlation (0.4,0.6] D2, A4,B2,and A3
Weak correlation (0/2,0.4] A2,D1,and C3

No correlation (0,0.2] C2, A1, Cl1, B1, and D3

hy h; hs hy h,
FIGURE 4

Structure of the attention cell.

3.2 Attention mechanism

The attention mechanism receives the output from the
Stacking model as its input and adaptively assigns weights to its
input features, thereby emphasizing the most relevant ones and
suppressing less important features, consequently facilitating more
accurate feature selection (Zhu et al., 2021; Wankhade et al., 2023).
The structure of the attention mechanism is shown in Figure 4.

In Figure 4, X1, X2,..., x; represents the inputs from multi-
source fusion data; hy, hy, ..., h; corresponds to the output state
values generated by the ensemble model, while a;; signifies the
adaptive attention weight assigned to each output; s; denotes the
final output.

By calculating the correlation between hi, hy,---,h; and
the current decoding time, the e;; for each influencing factor is

obtained. These updated values are presented in Equation 13.

eri = V¥ tan ((Wh; + Uh;),i = 1,2,...,t — 1. (13)

According to the computed probability e;; of each influencing
factor within the population, this value is then used to compute
the attention weight for each output of the ensemble model. The
updated output is presented in Equation 14.

exp(er,;)
Zﬁ:’;, exp(ex,;)

The hidden states hy, hy,---,h; are weighted by their
corresponding attention values and then linearly combined. The

a; = i=1,2-,t—1 (14)

>
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updated output is shown in Equation 15.
N; .
C=) . ayhni=12-- -1 (15)

St represents the final output derived through the attention
mechanism, as shown in Equation 16.

St =f(C) ht)) (16)

where V, W, and U represent the trainable parameters, which are
continuously updated during model training.

3.3 Multi-model fusion for coal and gas
outburst prediction

The performance of the Stacking model is directly influenced
by the number of base models used. Using too few base models
may not provide adequate diversity to effectively support the meta-
model, while using too many could result in redundancy, higher
computational costs, and a more intricate tuning process. Typically,
3-5 base models are recommended (Kumar et al., 2024; Zhao et al.,
2024b).

Based on the predictive capabilities of various base learners,
this article selected high-performing models as the first-layer
base learners in the Stacking model. This selection is driven
by the fact that base models with strong learning abilities
contribute to improving the overall predictive accuracy of the
ensemble. Specifically, RE, which uses the bagging technique, is
preferred for its robust learning capacity and well-established
theoretical foundation, making it applicable across a wide range
of domains. SVM is selected for its unique strengths in handling
small datasets, non-linear relationships, and high-dimensional
regression problems. KNN is included due to its solid theoretical
background and eflicient training process, delivering strong
practical performance. For the second layer, models with robust
generalization capabilities are chosen to aggregate and correct
biases from the multiple base learners in the training set while
mitigating overfitting through ensemble strategies. Consequently,
the Stacking ensemble model incorporates RE, KNN, and SVM as
the first-layer base learners, with Attention-XGBoost serving as the
meta-learner in the second layer. The overall architecture is shown
in Figure 5.

It is important to note that the training set for the meta-
learner is derived from the outputs of the base learners. Directly
utilizing the base learners’ training data to form the meta-learner’s
training set could result in significant overfitting. To prevent
the data from being redundantly learned by both layers and
to avoid overfitting, an appropriate data usage strategy must
be implemented. The dataset is first split into training and
testing sets using cross-validation, with the three base learners
making independent predictions. For each base learner, the original
training dataset is partitioned into six mutually exclusive subsets,
ensuring that no data IDs are repeated across subsets. For each
base learner, one data subset is reserved as the validation set, while
the remaining five subsets serve as the training set. Each base
learner produces prediction results on its own validation subset.
These predictions from the three base learners are then combined

frontiersin.org
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FIGURE 5
Prediction framework based on AXGBoost and Stacking.

to form a new dataset, equal in size to the original dataset, as
illustrated in Figure 6. This approach facilitates a comprehensive
feature transformation from the original input features to the meta-
learner’s input features. Since each base learner’s predicted data
subset was excluded from its own training, this method guarantees
that every data point is used only once during training, effectively
preventing overfitting.

The training and prediction process of the AXGBoost-Stacking
model is shown in Figure 6, and the detailed training procedure is
outlined as follows:

Step 1: The coal and gas outburst dataset is defined as presented
in Equation 17.

s ={(ynxn)n=1,2,---,N}, (17)
where x,, represents the feature vector of the n-th sample, y, is
the corresponding target (predicted) value, and p is the number
of features, meaning that each feature vector can be expressed
as (X1, X2y xp). Next, the dataset is partitioned into Z equally
sized subsets: Sy, S5,..., S;. The cross-validation between datasets as
presented in Equation 18.

$5:=8-38,, (18)

where S, denotes the z-th test set and S, represents the
corresponding training set.

Step 2: The training set S, is fed into the first layer of the
XGBoost-Stacking ensemble model, where three base learners are
trained to obtain the base model L. Simultaneously, each sample x,
in the cross-validation test set S; is passed through the trained base
model L to generate the corresponding predictions.

Frontiersin Big Data

Step 3: The output predictions from the three base learners are
concatenated to form a new data sample, which is then used as
the input for the second layer of the Stacking model. At this stage,
a prediction algorithm that integrates the attention mechanism
with XGBoost is used to aggregate these outputs and finalize the
prediction of coal ejection volume.

In this study, the AXGBoost-Stacking model is implemented
using the scikit-learn library in Python. A detailed description of
the algorithm is provided in Table 4.

4 Experimentation and evaluation

4.1 Model evaluation indicators

The multi-model Stacking prediction framework proposed
in this study adopts the AXGBoost-Stacking model, which uses
SVM, RE and KNN as base learners and an attention-enhanced
XGBoost model as the meta-learner. The Stacking ensemble
learning algorithm enables a two-layer fusion of the SVM, RF,
KNN, and XGBoost models. In addition to AXGBoost-Stacking
model, three alternative Stacking models can also be constructed
for comparative analysis:

1) The SVM-Stacking model uses RE, KNN, and AXGBoost as
base learners, with SVM serving as the meta-learner.

2) The RF-Stacking model uses SVM, KNN, and AXGBoost as
the base learners, with RF acting as the meta-learner.

3) The KNN-Stacking model uses SVM, RF, and AXGBoost as
the base learners, with KNN acting as the meta-learner.

frontiersin.org


https://doi.org/10.3389/fdata.2025.1623883
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Xie et al.

10.3389/fdata.2025.1623883

< Dataset partitioning >
<XGB00$[ algorithm procD

Prediciton | Trainl | | Trainl | | Trainl | | Trainl | | Trainl | ;

| Train2 | | Prediciton | | Train2 | | Train2 | | Train2 | | Train2 | XGBoost model training
begins
| Train3 | | Train3 | | Prediciton | Train3 | | Train3 | | Train3 | \L
| Traind | | Train4 | | Train4 | Prediciton | Train4 | | Train4 | Train input samples, determine objective
function Obyj, iteration times »

| Train$ | | Train$ | | Train$ | I Train5 | | Prediciton | | Train$ | \jl/
| Train6 | | Train6 | | Train6 | | Train6 | | Trainé | | Prediciton Calculate the first derivative g;and the second

C he first layer of base model training and predictioD - \L

derivative A;

Training sets Test sets

SVM KNN RF Calculate the loss function L@ .
model model model H
Train set Test set Train set Test set Train set Test set i
predicted predicted predicted predicted predicted predicted Add tree update loss function
values values values values values values PO =384 f(x)

\(>-<>/

; C The second layer meta model training and predictioD

Meet the iteration
requirements?

Attention mechanism Layer

v

<Model training completed>

XGBoost Model

Prediction results of
coal thrown quantit

FIGURE 6

Coal thrown quantity prediction method based on multi-model fusion within a Stacking framework.

TABLE 4 AXGBoost-Stacking algorithm description.

Algorithm: AXGBoost-Stacking model

. Def attention_3d_block
. Initialize AXGBoost-Stacking model
. Get input data train_X from DataSet
. Get output(label) data train_Y from DataSet
. Train_.X = train_Xreshape((train_X.shape[0],1,train_X.shape[1]))
train .Y =  train_Y.reshape((train_Y.shape[0],1,train_Y.shape[1]))
inputs: Input(train_X.shape[1], train_X.shape[2])
6. Base_model_layer:Stacking_basemodel_output =
Stacking(base_mode[model_1, model_2, model_3])
7. attention.layer:attention_output =
Flatten(attention_3d_block(Stacking_basemodel_output))
8. meta_model_layer:Stacking metamodel_output =
Stacking(meta_mode[model])
9. train iterater begin
10. Calculate the mean square error of the loss function based on the
predicted and actual values
11. Train iterater end

[ N O N

To evaluate the predictive performance of the AXGBoost-
Stacking model and compare it with the individual predictive
capabilities of the other three Stacking models, this study uses
mean squared error (MSE), mean error (ME), and the Fl-score
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[as defined in reference Xie et al. (2018)] as evaluation metrics.
The formulas for calculating MSE and ME are provided in
Equations 19, 20.

j— .
MSE= -3 (=5

1
ME =~ Zi:l

where y; is true data, and y; is prediction data.

(19)

lyi = 3il» (20)

The calculation formula for the FI-score is presented in
Equation 21.

Precision x Recall

Fl = 2 x (21)

Precision + Recall’

where Precision indicates the model’s accuracy, and R, represents
the model’s recall rate.

4.2 Comparison of prediction results

4.2.1 Input feature contribution analysis

As previously mentioned, this study uses the following features
as model inputs: A5, B3, D2, A4, B2, and A3. The model’s output is
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the coal thrown quantity, corresponding to the classification levels
outlined in Table 2. Figure 7 illustrates the contribution analysis of
input features for the SVM, RF, and XGBoost models. Additionally,
the comparison of prediction performance among single models is

provided in Figure 8.

Frontiersin Big Data

As shown in Figure 7, A5, B3, and D2 exhibit high feature
importance across different models. This finding is consistent with
the Pearson correlation results presented in Table 3, indirectly
validating that A5, B3, and D2 exert a greater influence on the

model’s predictive performance than other factors.

10
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Based on the AUC values used for parameter tuning of the
SVM, RE KNN, and XGBoost models, the optimal parameter
settings are listed in Table 5. As shown in Table 5, the prediction
performance of the individual models, assessed by MSE and
ME, is also compared. Combined with the results in Figure 8,
it is clear that the XGBoost and SVM models exhibit superior
predictive performance.

~== True value
—e=—SVM_pre
—=— RF_pre
—=—KNN_pre
—==—XGBoost pre

140

Data Number

FIGURE 8
Comparison of the prediction performance of individual models.

TABLE 5 Parameters of each model.

Model Model parameter MSE ME F1

SVM Kernel = “linear”, C =4 1,821.56 13.16 0.875

RF n_estimators = 100, 2,722.525 20.85 0.857
random_state = 0, n_jobs = —1

KNN n_neighbors = 3 3,555.525 | 28.65 0.6

XGBoost | n_neighbors = 6, learining_rate 582.725 16.25 0.6
=0.09

10.3389/fdata.2025.1623883

4.2.2 Performance analysis of Stacking model
prediction

To evaluate the predictive performance of the Stacking
ensemble model, SVM, RE KNN, and XGBoost were used as
meta-learners for comparative analysis. The selected parameters
for SVM, RE and KNN are consistent with those listed in Table 6.
The resulting prediction results are shown in Figure 9, Tables 6, 7.
The results highlight that the selection of base learners significantly
impacts the final predictive performance.

As shown in Tables6, 7, the method proposed in this
study achieves high prediction accuracy. Moreover, a comparison

200

180 = True value

160 F ~e=— SVM-Stacking_pre
140 F —==— RF-Stacking_pre

= KNN-Stacking_pre
—==— AXGBoost-Stacking_pre

Data Number

FIGURE 9
Comparison of the prediction performance of the Stacking model.

TABLE 7 Parameters of each model.

Model MSE ME F1
SVM-Stacking 1,641.318 15.38 0.823
RF-Stacking 319.525 7.75 0.857
KNN-Stacking 2,762.125 24.05 0.923
AXGBoost-Stacking 29.725 1.65 0.98

TABLE 6 Parameters of each model.

Serial True Level SVM-Stacking RF-Stacking KNN-Stacking AXGBoost-Stacking
number value - - - -
Prediction Level Prediction Level Prediction Level Prediction Level
value value value value
1 27 il 40.4188 il 43 il 34 1 29 il
2 20 il 12.0889 il 12 il 5 1 19 11
3 0 I 0.095 I 0 I 0 I 0 I
4 16 i 9.6556 il 0 I 4 il 15 i
5 180 v 58.6095 v 138 v 22 il 163 v
6 0 1 7.0851 il 7 il 0 I 0 I
7 10 il 12.0889 il 12 il 5 11 11 1
8 20 il 13.8117 il 10 il 8 1 19 11
9 0 I 1.3268 11 0 I 0 I 0 I
10 455 il 9.4444 il 19 il 0 I 46 i
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between Tables 5, 7 reveals that the Stacking model outperforms
the individual models in terms of prediction accuracy. Compared
with the prediction results reported in Xie et al. (2018),
the approach utilized in this study demonstrates superior
predictive performance.

5 Conclusion

This study incorporates advanced algorithmic techniques
from the fields of AI and ML. In contrast to previous
studies, particularly Xie et al. (2018), this study, within the
Stacking ensemble framework, leverages multiple algorithms to
interpret the data space and structure from diverse perspectives,
enabling complementary strengths among models and yielding
optimal prediction outcomes. Experimental results demonstrate
that conducting feature contribution analysis before model
construction effectively quantifies the importance of each feature.
The Stacking ensemble learning algorithm exhibits strong
predictive accuracy and holds significant application in coal and
gas outburst prediction. The main contributions of this study are
summarized as follows:

e Through Pearson’s correlation analysis and feature
importance evaluation, coal seam angle, coal seam solidity
coefficient, and slag falling situation are identified as key
factors contributing significantly to the prediction outcomes.

e Compared with individual models, the Stacking ensemble
model effectively integrates the strengths of each base learner,
thereby enhancing overall prediction accuracy.

e Due to the complexity of the model and the risk of overfitting
caused by the small data size, cross-validation was adopted
to prevent overfitting from occurring. In future research,
adversarial learning or large-scale models will be introduced
to effectively expand and validate the dataset.
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