AUTHOR=Xie Qian , Yan Junsheng , Dai Zhenhua , Du Wengang , Wu Xuefei TITLE=Study on coal and gas outburst prediction technology based on multi-model fusion JOURNAL=Frontiers in Big Data VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2025.1623883 DOI=10.3389/fdata.2025.1623883 ISSN=2624-909X ABSTRACT=The rapid advancement of artificial intelligence (AI) and machine learning (ML) technologies has opened up novel avenues for predicting coal and gas outbursts in coal mines. This study proposes a novel prediction framework that integrates advanced AI methodologies through a multi-model fusion strategy based on ensemble learning and model Stacking. The proposed model leverages the diverse data interpretation capabilities and distinct training mechanisms of various algorithms, thereby capitalizing on the complementary strengths of each constituent learner. Specifically, a Stacking-based ensemble model is constructed, incorporating Support Vector Machines (SVM), Random Forests (RF), and k-Nearest Neighbors (KNN) as base learners. An attention mechanism is then employed to adaptively weight the outputs of these base learners, thereby harnessing their complementary strengths. The meta-learner, primarily built upon the XGBoost algorithm, integrates these weighted outputs to generate the final prediction. The model's performance is rigorously evaluated using real-world coal and gas outburst data collected from a mine in Pingdingshan, China, with evaluation metrics including the F1-score and other standard classification indicators. The results reveal that individual models, such as XGBoost, SVM, and RF, can effectively quantify the contribution of input feature importance using their inherent mechanisms. Furthermore, the ensemble model significantly outperforms single-model approaches, particularly when the base learners are both strong and mutually uncorrelated. The proposed ensemble framework achieves a markedly higher F1-score, demonstrating its robustness and effectiveness in the complex task of coal and gas outburst prediction.