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This review systematically summarizes recent advances in microarray feature

selection techniques and their applications in biomedical research. It addresses

the challenges posed by the high dimensionality and noise of microarray

data, aiming to integrate the strengths and limitations of various methods

while exploring their applicability across di�erent scenarios. By identifying

gaps in current research, highlighting underexplored areas, and proposing

clear directions for future studies, this review seeks to inspire academics

to develop novel techniques and applications. Furthermore, it provides a

comprehensive evaluation of feature selection methods, o�ering both a

theoretical foundation and practical guidance to help researchers select the

most suitable approaches for their specific research questions. Emphasizing the

importance of interdisciplinary collaboration, the study underscores the potential

of feature selection in transformative applications such as personalizedmedicine,

cancer diagnosis, and drug discovery. Through this review, not only does it

provide in-depth theoretical support for the academic community, but also

practical guidance for the practical field, which significantly contributes to the

overall improvement of microarray data analysis technology.

KEYWORDS

cancer classification, feature selection, microarray data, machine learning, gene

expression analysis

1 Introduction

The microarray is a powerful biotechnological tool that allows for the simultaneous
evaluation of the expression levels of multiple genes (Joseph and Sandoval, 2023). This
technique involves immobilizing numerous nucleic acid probes onto a solid surface, such
as a glass slide or a silicon chip, which are designed to specifically interact with their
corresponding RNA or DNA sequences (Wang et al., 2023a). Through the examination
of probe-target interactions, scientists can determine the expression levels of each gene in
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the sample. Due to its versatility, microarray technology finds
broad applications in the study of gene expression mechanisms,
identification of biomarkers, disease diagnosis, and pharmaceutical
development. On the other hand, the expression levels of
thousands of genes can be studied simultaneously in microarray
experiments, which are a crucial aspect of modern molecular
biology (Maolmhuaidh et al., 2023). However, the resulting data
can be challenging to analyze due to their high dimensionality
and small sample size. This complexity often leads to inaccurate
results and unreliable conclusions when traditional statistical
methods and machine learning algorithms are applied directly
(Prajapati et al., 2023b). To address these issues, microarray feature
selection techniques are employed to identify the most informative
gene features, thereby reducing the complexity of the data and
improving its interpretability.

Despite the advantages of microarray datasets, excessively
high dimensions can have several negative effects on model
performance in microarray data analysis, including overfitting,
increasing computational costs, and poor interpretability of results.
To combat these issues, various methods are used when dealing
with microarray datasets that contain too many dimensions.
Commonly used methods include feature selection and feature
extraction (Labory et al., 2024). Compared to feature extraction,
feature selection retains biological significance and interpretability
by filtering the most important original features, and usually has a
lower computational overhead (Pudjihartono et al., 2022). Feature
selection has significant advantages over feature extraction in the
downscaling process of microarray data (Pirch et al., 2021). First,
feature selection preserves the original gene characteristics and thus
results are more interpretable, which enables researchers to directly
correlate selected genes with specific biological processes or disease
mechanisms, providing clear guidance for biological research and
clinical applications. Second, the high biological relevance of
feature selection helps identify potential biomarkers and provide
insight into the molecular mechanisms of disease. In addition,
feature selection methods are often computationally more efficient,
especially when dealing with large-scale microarray data, and
many filtering methods based on statistical tests can quickly and
efficiently screen out important features. By reducing the number of
features, feature selection also reduces the complexity of the model,
thereby minimizing the risk of overfitting, which is particularly
important for high-dimensional microarray data with a limited
number of samples. Finally, since feature selection preserves the
original feature structure, the model can be trained and predicted
directly using these features, avoiding complex transformation
or preprocessing steps. As a result, feature selection shows clear
advantages in scenarios that require high interpretability, direct
biological relevance, and computational efficiency.

Microarray feature selection is an essential step in the
analysis of gene expression data. It helps streamline the data,
making it more accessible for study and providing actionable
insights for researchers. Focusing on the most informative features
through feature selection can not only improve the quality and
interpretability of the data, but also establish a foundation for the
development of the precise predictive model. However, inadequate
feature selection can lead to several challenges in the analysis of
microarray data, such as increased risk of overfitting, inefficient
use of computational resources, and reduced clarity of data

interpretation. Overcoming these issues can enable researchers
to gain a deeper understanding of data and advance biomedical
research. In recent developments, many studies have identified
problems in existing microarrays and proposed methods to solve
these problems. For example, Fadhil and Abdulazeez (2024)
summarized the application of deep learning methods to overcome
the high-dimensionality problem of microarray datasets. They
explored how deep learning methods can be applied in the
complex research field of cancer classification. Osama et al. (2023)
summarized preprocessing methods for microarray datasets and
discussed different feature selection methods based on machine
learning. In contrast, Hambali et al. (2020) failed to provide an
application of feature selection in their summary of different feature
selection techniques. Given these drawbacks, there has been a
lack of comprehensive summaries that cover the entire process
of microarray feature selection, this study covers a wider range
of research areas than previous reviews, especially summarizing
research results in recent years, allowing researchers to better
understand research trends.

To bridge this gap, this paper aims to explore dataset-specific
feature selection methods and summarize the advantages and
disadvantages of each category of methods. Additionally, this
article will discuss the various application areas of microarrays.
In preparation for this paper, the keyword ’microarray feature
selection’ was used to search for articles published after 2019 on
Google Scholar. This review will first provide an overview of the
basic concepts of microarray technology. Next, various methods
of microarray feature selection will be compared and analyzed,
different application fields of microarray feature selection will be
summarized, and technical challenges and potential future research
directions in this field will be evaluated. The following chapters
will cover key aspects of microarray feature selection. Section 2
will give a detailed overview of the relevant concepts of microarray
feature selection. Section 3 will comprehensively review the existing
literature and evaluate the advantages and disadvantages of various
feature selection methods. Section 4 will focus on the practical
applications of microarray feature selection in different fields.
The final section will explore potential issues and predict future
development directions, aiming to provide valuable guidance and
insights for future research.

2 Microarray feature selection process

This section focuses on basic concepts and terminology related
to microarray feature selection, providing an in-depth look at
the complexity of microarray datasets, design principles, and
the various advantages and disadvantages of different feature
selection methods. Furthermore, it will be explored how to evaluate
and compare the effectiveness of these methods and how to
select the most appropriate subset of features to achieve accurate
model results.

2.1 Introduction

Microarray technology dates back to the late 1990s and
early 2000s and is designed to measure the expression levels of
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numerous genes simultaneously (Moses and Pachter, 2022). As
microarray technology continues to mature, the fields of molecular
biology, bioinformatics and statistical analysis have also made great
progress (Singh et al., 2023). These advances ensure that microarray
technology remains an indispensable tool for systems biologists
and clinical researchers, driving discoveries and improving patient
care (Vatansever et al., 2021). Figure 1 shows The development of
microarrays in recent years. Researchers can use high-throughput
microarray technology to simultaneously analyze the expression
levels of thousands of genes or detect specific DNA sequences,
which allows researchers to delve deeper into a gene’s activity
under specific circumstances. The technology can also be used for
gene expression analysis, genotyping, drug discovery and disease
diagnosis.

In the analysis of high-dimensional microarray data, the
choice of feature selection methods is critical to control the
risk of overfitting. Microarray data are usually of extremely high
dimensionality but with a limited number of samples, resulting
in a model that is prone to overfitting on the training data. This
risk can be effectively reduced by choosing an appropriate feature
selection method. First, feature selection removes redundant and
noisy features and reduces model complexity, which is critical to
minimizing overfitting. Controlling the number of features selected
is equally critical; too many features may cause the model to
capture random fluctuations instead of the true signal. In addition,
a robust feature selection method improves the reliability of the
selected features and avoids instability due to small variations
in the data, which further reduces the likelihood of overfitting.
Choosing a feature selection method that matches the complexity
of the model ensures that the selected feature set best fits the
current model. Finally, embedding cross-validation into the feature
selection process can more accurately assess the contribution of
features to model performance and avoid features that are only
valid for the training data, thus effectively reducing the risk of
overfitting.

The class imbalance problem in microarray datasets can be
effectively addressed through feature selection, and the key is
to employ multiple strategies to enhance the recognition of
minority classes. First, prioritizing features that can significantly
differentiate between minority and majority classes ensures that
the model is more likely to capture signals from minority classes.
Second, class weights are introduced into the feature selection
process so that features of minority class samples are given higher
importance in the selection. In addition, balancing the dataset
before feature selection through undersampling or oversampling
techniques prevents the majority class from dominating the feature
selection process, resulting in a more representative feature set.

This paper will examine specific feature selection methods
in more detail, discussing their theoretical bases, practical
applications, and the challenges associated with implementing
these methods in different research contexts. This discussion will
provide a comprehensive understanding of how microarray feature
selection is integral to refining data analysis and ensuring the
reliability of research outcomes in the field of genomics.

Based on the overview provided previously, the main concepts
of microarray feature selection can be divided into three key
parts, as shown in Figure 2. This visual framework helps succinctly

organize various aspects of feature selection into a coherent
structure, thereby promoting deeper understanding. Next, we
will delve into the related concepts of these three parts. Each
component plays a unique role throughout the feature selection
process, covering everything from initial data preparation to the
final selection of features that best predict the outcome of interest.

2.2 Microarray dataset

Microarray technology, a pivotal tool in genomic research,
enables the high-throughput analysis of gene expression across
numerous conditions and diseases (Yang et al., 2020). Within
the realm of binary classification, several classic datasets are
frequently employed, each specific to particular types of cancer
or disease states. For instance, the Colon Cancer dataset includes
gene expression profiles from colon tissue and is used to study
colorectal cancer. This dataset helps in identifying genes or patterns
associated with different stages or types of colon cancer, thereby
aiding in diagnostics and potential treatment strategies (Shafi et al.,
2020). Similarly, the leukemia dataset provides gene expression data
specifically related to leukemia, a type of blood cancer. Including
samples from various subtypes of leukemia, this dataset allows
researchers to delve into the molecular characteristics of the disease
and identify potential biomarkers for diagnosis and treatment.
Additionally, the prostate dataset focuses on prostate cancer, a
prevalent condition among men. It contains gene expression
profiles associated with prostate tissue or cells to identify markers
that can differentiate benign from malignant prostate disease or
enhance our understanding of disease progression. Another key
dataset is the DLBCL dataset, which stands for diffuse large B-cell
lymphoma, one of the most common non-Hodgkin lymphomas.
It includes gene expression data from lymphoma tissues, helping
researchers to identify genetic markers or patterns associated
with different DLBCL subtypes and treatment responses (Shukla
and Tripathi, 2020). What’s more, the CNS dataset involves
various molecular data related to diseases affecting the central
nervous system. This dataset includes gene expression profiles
from conditions such as brain tumors and neurological disorders,
enabling researchers to understand the molecular signatures
associated with CNS disorders (Sánchez-Maroño et al., 2019).

For multi-classification datasets, this study also summarizes
commonly used datasets, which are equally important in genomic
research. The SRBCT dataset involves gene expression profiling
of small round blue cell tumors. The dataset includes four
categories of tumors and is commonly used to distinguish them and
identify specific genetic markers associated with each subtype (Sahu
and Dash, 2023). Likewise, the Lung Cancer (Harvard) dataset
focusing on lung cancer is another great resource (Karthika et al.,
2023). Organized into five categories, the dataset helps identify
genetic patterns that distinguish various subtypes or stages of
lung cancer, thereby aiding diagnostic and treatment strategies.
Additionally, the Leukemia2 dataset contains three categories that
help researchers understand the molecular differences between
leukemia subtypes and assist in identifying biomarkers for accurate
diagnosis or targeted therapy (Rupapara et al., 2022). Additionally,
the 9Tumor and Brain Tumor1 datasets provide valuable insights
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Microarray feature selection main concept.

intomolecular variations between different tumor types or subtypes
in different tissues or organs, aiding in classification and providing
potential therapeutic insights (Zhu et al., 2023).

In summary, these microarray datasets, encompassing both
binary and multi-classification data, serve as invaluable resources
for researchers across numerous fields. By exploring and analyzing
these datasets, scientists can uncover crucial insights and
advancements in areas such as cancer research and neurological
disorders. This paper provides a comprehensive analysis of datasets
used in various articles highlighted the most frequently employed
datasets in both binary and multi-class classifications, as detailed
in Tables 1, 2. This review not only underscores the importance
of these datasets but also reflects ongoing efforts to address
the challenges associated with microarray data analysis. Figure 3
provides a visual representation of the proportion of datasets
used, further illustrating the critical role these datasets play in
advancing our understanding of complex biological processes
and diseases.

2.3 Feature selection method

Despite the power of microarray technology in analyzing gene
expression and other biological processes, it still faces several
challenges. These include the complexity of data analysis, high

costs, sensitivity and dynamic range issues, and the need for
high-quality biological samples. In addition, microarray data often
exhibit characteristics such as high dimensionality and small
sample sizes, which pose additional challenges such as noise and
outlier issues (Hamraz et al., 2023). Feature selection is the main
approach to this problem, with the goal of selecting a subset of the
most important and useful features from a larger set of attributes
or variables (Dhal and Azad, 2022). This process is particularly
important in microarray data analysis because it identifies features
that represent gene or protein expression levels and can better
enhance data analysis. By identifying and retaining only the most
important features, feature selection can greatly improve prediction
accuracy and generalization capabilities, especially when dealing
with limited sample data. In microarray analysis, this approach
helps pinpoint genes associated with specific biological processes
or disease states, providing valuable insights for interpretation and
discovery of potential therapeutic targets.

Given the large number of genes typically present in microarray
data, it is often the case that only a subset of these genes
are relevant to the specific biological process or disease being
studied (Jovic et al., 2022). The challenges of microarray data
analysis are amplified by the presence of redundant features,
which significantly increases computational complexity and the
risk of overfitting. For example, for a dataset containing N

features, the number of potential feature subsets is up to 2N
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TABLE 1 Binary class dataset.

Dataset Sample Feature Where used

DLBCT 77 7,070 Tavasoli et al., 2021; Zhou et al., 2021

BreastEW 30 569 Chatterjee et al., 2020; Guha et al., 2020

SMK_CAN 187 187 19,993 Climente-González et al., 2019; Nematzadeh et al., 2019

Breast 97 24,481 Baliarsingh et al., 2020; Pirgazi et al., 2019

Breast cancer 9 699 Chatterjee et al., 2020; Das et al., 2022; Guha et al., 2020

Lung Cancer (Michigan) 96 7,129 Han et al., 2021; Jain and Singh, 2021; Kang et al., 2019; Pirgazi et al., 2019

Ovarian 253 15,154 Baliarsingh et al., 2020; Ganesh et al., 2023; Jain and Singh, 2021; Kang et al., 2019

CNS 60 7,129 Kang et al., 2019; Nematzadeh et al., 2019; Peng et al., 2021; Pirgazi et al., 2019; Saberi-Movahed et al., 2022

Prostate 102 12,600 Guha et al., 2020; Jain and Singh, 2021; Mandal et al., 2021; Peng et al., 2021; Pirgazi et al., 2019; Shukla et al.,
2019b,c; Tatwani and Kumar, 2019; Tavasoli et al., 2021; Zhou et al., 2021

DLBCL 77 7,129 Chatterjee et al., 2020; Dhal and Azad, 2021; Guha et al., 2020; Han et al., 2021; Hosseini and Moattar, 2019;
Kang et al., 2019; Mandal et al., 2021; Peng et al., 2021; Pirgazi et al., 2019; Saberi-Movahed et al., 2022; Shukla
et al., 2019b,c

Leukemia 72 7,129 Abdel-Basset et al., 2021; Baliarsingh et al., 2020; Das et al., 2022; Guha et al., 2020; Jain and Singh, 2021;
Mandal et al., 2021; Peng et al., 2021; Pirgazi et al., 2019; Qiu, 2019; Saberi-Movahed et al., 2022; Tatwani and
Kumar, 2019; Tavasoli et al., 2021

Colon 62 2,000 Abdel-Basset et al., 2021; Baliarsingh et al., 2020; Das et al., 2022; Ganesh et al., 2023; Guha et al., 2020; Han
et al., 2021; Hosseini and Moattar, 2019; Jain and Singh, 2021; Nematzadeh et al., 2019; Peng et al., 2021; Pirgazi
et al., 2019; Qiu, 2019; Saberi-Movahed et al., 2022; Shukla et al., 2019b,c; Tatwani and Kumar, 2019; Tavasoli
et al., 2021

TABLE 2 Multi-class dataset.

Dataset Sample Feature Class Where used

Leukemia 1 72 5,327 3 Shukla et al., 2019b; Sun et al., 2019; Zhou et al., 2021

Leukemia 2 72 11,225 3 Chatterjee et al., 2020; Shukla et al., 2019b; Zhou et al., 2021

MLL 72 12,582 3 Guha et al., 2020; Kang et al., 2019

SRBCT 83 2,308 4 Chatterjee et al., 2020; Dhal and Azad, 2021; Guha et al., 2020; Shukla et al., 2019b,c

GLIOMA 50 4,434 4 Climente-González et al., 2019; Saberi-Movahed et al., 2022

TOX-171 171 5,748 4 Climente-González et al., 2019; Kang et al., 2019; Saberi-Movahed et al., 2022

Brain Tumor 2 50 10,367 4 Dhal and Azad, 2021; Sun et al., 2019; Zhou et al., 2021

Brain Tumor 1 90 5,920 5 Dhal and Azad, 2021; Shukla et al., 2019b; Zhou et al., 2021

Lung(H) 203 12,600 5 Dhal and Azad, 2021; Jain and Singh, 2021; Shukla et al., 2019b; Zhou et al., 2021

9Tumor 60 5,726 9 Dhal and Azad, 2021; Shukla et al., 2019b; Zhou et al., 2021

Lymphoma 62 4,026 9 Kang et al., 2019; Peng et al., 2021; Saberi-Movahed et al., 2022

11Tumor 174 12,533 11 Dhal and Azad, 2021; Shukla et al., 2019b; Zhou et al., 2021

(Singh and Singh, 2021). This high dimensionality increases the
risk of overfitting and highlights the urgent need to select a
high-quality feature subset. Without effective feature selection,
analysis can produce inaccurate results and lead to unnecessarily
complex models. Feature selection simplifies analysis by reducing
data dimensionality, which not only makes analysis more effective
and efficient, but also improves prediction accuracy, increases
interpretability, reduces the risk of overfitting, and improves
computational efficiency.

Therefore, feature selection is a critical pre-processing step
before applying machine learning algorithms to simplify data by

eliminating irrelevant or redundant features. This improves model
accuracy, reduces computational load, and produces results that
are easier to interpret. In microarray analysis, the dimensionality
of the data is very high, so how to obtain the optimal feature
subset is particularly important (Lee et al., 2021). A good feature
subset will significantly affect the performance and interpretability
of the model (Yun et al., 2023). Each step in the feature selection
process is closely linked, so it is crucial to design and execute
these steps carefully. The feature selection process in microarray
analysis begins with an initial subset search to create an initial
subset of features that is evaluated and compared to previously
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Proportion of commonly used datasets.

considered subsets. If a new subset is found to be more suitable
under the given evaluation criteria, this subset is retained. This
iterative process continues until a predefined stopping condition is
met, marking the end of the feature selection process. The selected
feature subset is then used to verify the effectiveness of the feature
selection method. Among the most commonly used methods for
feature selection in microarrays are filter, wrapper, embedded, and
other methods.

The filter feature selectionmethod is characterized by simplicity
and effectiveness. It filters features to eliminate those features
that have the least impact on the target variable. This is usually
achieved by setting a threshold or selecting the top k features
based on statistical significance, this method can minimize the
computational overhead. Evaluate the importance of each feature
by calculating indicators such as information gain (IG), mutual
information (MI), chi-square test, correlation coefficient, minimum
redundancy, maximum correlation or Fisher score of the feature

(Gong et al., 2022), rank these features according to importance and
select those with the highest importance.

The wrapper method is a feature selection technique that
directly links the evaluation of feature subsets to the performance
of a machine learning model (Effrosynidis and Arampatzis, 2021).
Unlike filter methods that rely on general statistical measures,
wrapper methods are inherently more complex, as they involve
training the model multiple times with different subsets of features
and determining the most effective combination of features that
enhance model performance through an iterative process. Wrapper
methods can be divided into three core steps: the first step involves
generating various feature subsets; the second step is the evaluation
phase, where each subset is used to train the model to assess its
performance; the final step involves selecting the feature subset that
meets the criteria best, thereby effectively optimizing the model’s
predictive accuracy.

In the literature, the application of wrapper methods is usually
a combination of intelligent optimization algorithms to search as
many possible feature subsets as possible, and classifiers to identify
those features that maximize the performance of the classifier.
Subset. The role of the classifier is crucial as it evaluates the quality
of each feature subset in terms of prediction accuracy. Through
this collaborative interaction, wrapper methods exploit iterative
refinement of feature subsets, aiming to arrive at a near-optimal
set. Specifically, the effectiveness of wrapper methods depends
on their ability to fine-tune the feature selection process through
continuous feedback between subset evaluation and model training
stages. This feedback is crucial to obtain the most informative
subset of genes, thereby ensuring that the final subset of features
is selected to be the best suited for the specific prediction task of
the model.

The embedded feature selection is an important component
in machine learning and data analysis due to its integration
in the model training process. Unlike other techniques that
operate independently of the training process, embedded methods
make feature selection an inherent part of model learning. This
integration allows the method to evaluate feature importance
directly through the learning algorithm itself. During the training
phase, the embedded method automatically weighs the relevance
of each feature, allowing the model to focus on those features that
are most critical for the prediction task. This inherent capability
makes the model more effective in reducing the risk of overfitting
and improving overall prediction accuracy by focusing on the
most relevant features. The efficiency of the embedded approach
is further demonstrated by its simplified feature selection process,
which is directly embedded into the model’s training algorithm,
which simplifies the entire process and helps develop more efficient
and effective machine learning models.

Figure 4 illustrates the filter method, the wrapper method and
the embedded method. The filter method in Figure 4a can ensure
that the most influential features are retained, thus improving the
effectiveness of the predictive model while meeting the challenges
of high-dimensional datasets; the wrapper method in Figure 4b
outlines the sequential steps of subset generation, evaluation,
and final selection; and the embedded method in Figure 4c saves
computational resources by combining feature selection with
model training, and also enables feature selection to bemore closely
aligned with the specific goals of the model.
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FIGURE 4

Process of di�erent methods. (a) Process of filter method. (b) Process of wrapper method. (c) Process of embedded method.

In addition to the main feature selection methods such as filter,
wrapper and embedded methods, there are “other methods,” the
main ones being hybrid methods. Hybrid methods are particularly
important in microarray feature selection because of their ability to
combinemultiple techniques to optimize performance andmitigate
limitations inherent to individual methods. Since microarray data
are often rich in features, hybrid methods are more suitable for
such datasets, as these methods take advantage of various selection
methods to obtain subsets of features. There are multiple strategies
for implementing hybrid methods, each taking advantage of
different feature selection techniques to obtain more robust results.
One strategy is to integrate multiple feature selection algorithms.
This approach may include combining filters, wrappers, and
embedding methods, with the goal of leveraging the unique
strengths of each method to achieve a more comprehensive and
efficient feature selection process. Another popular implementation
strategy is the multi-stage feature selection method. In this
approach, the selection task is divided into multiple stages, with
different techniques applied at each stage. For example, filter
methods can be employed in the initial stage to quickly reduce
the size of the feature set. This reduced set can then be refined
into a highly correlated final subset using more computationally
expensive wrapper or embedded methods.

Table 3 provides a summary of the limitations and application
scope of each method. When choosing an appropriate feature
selection method, it is crucial to understand the characteristics
of the dataset, the requirements of the current problem, and
the available computing resources. It is crucial to recognize
the advantages and limitations of each method, as different
methods may be more suitable for different scenarios. In practical
applications, a comprehensive evaluation is required on a case-by-
case basis to determine the most effective feature selection method.
This decision-making process ensures that the chosen method is
a good fit with the goals and limitations of the study, ultimately
helping to obtain more precise and reliable results in microarray
data analysis.

2.4 Subset evaluation criteria

In microarray data analysis, evaluating feature subsets
effectively is crucial for building accurate and reliable predictive
models. This evaluation is conducted using a set of standards
and methods known collectively as Subset Evaluation Criteria.
A feature subset in this context refers to a selection of features
chosen from the original set based on their potential relevance to
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TABLE 3 Advantages and disadvantages of di�erent feature selection methods.

Method Advantages Disadvantages

Filter Fast calculation speed and good time performance. Independent of the
model and highly versatile. Select features through information calculation,
with high interpretability.

Classification accuracy is average. Cannot completely remove redundant
features. Determining an appropriate threshold can be a challenging task.

Wrapper Ability to fully consider the interrelationships between features and find
better feature subsets. Classification accuracy is high because it is closely
related to the performance of a specific model. Take full advantage of the
model’s performance metrics to select the most relevant features.

Computationally expensive and requires training the model multiple times
to evaluate performance on each feature subset. Easy to overfit, especially
when the data dimension is high. Poor interpretability of selected feature
subsets.

Embedded It combines the advantages of filter and wrapper, taking into account the
correlation of features and reducing computational overhead. Feature
selection for a specific model can usually improve the performance of the
model.

Multiple models need to be trained, so the computational overhead is
relatively high. The selected features may be too dependent on the selected
model and not applicable to other models.

Hybrid Take advantage of filter, wrapper and embedded feature selection methods.
It can improve the stability of feature selection and make it more general
and robust. By combining multiple methods, the risk of overfitting can be
reduced.

Multiple feature selection methods need to be rationally selected and tuned
to ensure synergy between them. Typically, require more computational
resources, as they involve the computation and integration of multiple
feature selection methods.

the analysis or predictive tasks at hand. Several key metrics are
commonly used to assess the performance of these feature subsets.
These criteria include accuracy, recall, precision, sensitivity,
and the F1 score, each serving a specific purpose in measuring
different aspects of model performance: the Accuracy criterion
measures the overall correctness of the predictions made by the
model. It is a general indicator of how well the model performs
across all classes. Recall (Sensitivity) measures the model’s
ability to correctly identify all positive samples. It is crucial for
scenarios where missing a positive instance could have serious
consequences. Precision evaluates the proportion of identified
positives that are correctly predicted. High precision indicates
that a model does not label negative samples as positive. F1-score
metric combines precision and recall into a single metric by
calculating their harmonic mean. The F1 score is particularly
useful when you need to balance precision and recall, which
is often the case in studies where both false positives and false
negatives carry significant costs. These criteria are fundamental
in assessing the quality of feature subsets and optimizing the
feature selection process. They help researchers understand not
just the effectiveness of the feature selection but also the potential
impact of selected features on the model’s ability to make accurate
predictions. Each of these criteria can be quantitatively assessed
using specific equations, outlined from Equations 1–4, which
detail how each metric is calculated based on the true positives,
false positives, true negatives, and false negatives derived from the
model output.

In addition to the general evaluation criteria, the analysis of
high-dimensional microarray data also relies on several specific
validation methods. These methods are particularly crucial due
to the challenges posed by the large number of features relative
to the number of samples, a common scenario in microarray
data (Alhenawi et al., 2022). These validation methods often
consider two critical factors, the final subset size and the time
required for the selection process. The final subset size is an
important metric because it directly affects both the complexity
of the model and its generalizability. A smaller subset can lead
to a simpler, more interpretable model that is less likely to
overfit, whereas a larger subset might capture more complex

patterns at the risk of overfitting. Balancing this size is crucial
for building robust predictive models. The time required for the
feature selection process is another vital consideration, especially
in high-dimensional data scenarios (Chen et al., 2020). Feature
selection in microarray data can be computationally intensive, and
the time spent selecting features can significantly impact the overall
efficiency of the data analysis pipeline. Faster methods that still
maintain high accuracy are preferable in scenarios where time is
a constraint or when dealing with very large datasets.

The proper application of these evaluation criteria allows for a
comprehensive assessment of feature subsets, guiding researchers
in refining their feature selection strategies to enhance model
accuracy and reliability. By using these metrics, researchers can
ensure that the chosen features contribute positively to the
overall performance of their models, particularly in the predictive
analysis of complex biological data such as that encountered in
microarray studies.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2× Precision× Recall

Precision+ Recall
(4)

Where TP is true positive, which denotes the number of
positive categories predicted correctly, TN is true negative, which
denotes the number of negative categories predicted correctly, FP
is false positive, which denotes the number of negative categories
misclassified as positive, and FN is false negative, which denotes the
number of positive categories misclassified as negative.

2.4.1 Cross validation
Cross-validation is designed to assess the generalization ability

of a model. By repeating training and evaluation on different
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training-validation set divisions, cross-validation helps us to reduce
the model’s dependence on specific data divisions and effectively
prevent overfitting. In addition, cross-validation plays a key role
in model selection by verifying the stability and accuracy of each
configuration and selecting the optimal model.

When evaluating different models using cross-validation, the
first step is to choose the appropriate method and set the relevant
parameters. Taking k-fold cross-validation as an example, the
dataset is usually divided into k subsets, and k experiments are
repeated, each time one of the subsets is selected as the validation
set, and the remaining k−1 subsets are used as the training set. This
process will result in k validation results, and finally the mean and
standard deviation of these k results are calculated as the overall
performance metrics of the model on this dataset.

The robustness and consistency of themodel can be understood
by observing the average performance and standard deviation
of the model across folds. Smaller standard deviations indicate
that the model’s performance is more stable across different data
divisions; while higher average performance values indicate that
the model has better generalization ability. Based on these results,
the reliability of the model can be further determined and the
best solution can be selected by comparing the cross-validation
performance of different models or parameter combinations.

2.5 Summary

This section provides a summary of the basic principles of
the microarray feature selection procedure. It covers important
topics such as microarray data, the feature selection method,
evaluation metrics for feature subsets, and the key components
of the feature selection process. Understanding and implementing
microarray feature selection based on these concepts is crucial for
researchers to make well-informed decisions when working with
microarray data.

3 Feature selection method on
microarray

The process of feature selection is crucial in data analysis as
it aims to identify the most relevant and informative features
from a dataset, especially in high-dimensional data like microarray
gene expression. By reducing the dimensionality of irrelevant
data, feature selection enhances the efficiency and accuracy of
subsequent analysis. This chapter offers a comprehensive overview
of different methods of feature selection.

3.1 Filter feature selection method on
microarray

In microarray data analysis, feature selection is a crucial step
that helps identify and select genes most relevant to specific
biological phenomena. The filter feature selection method is widely
popular as a main strategy because it is highly efficient and easy

to implement. This section explores the application of filter feature
selection methods in microarray data analysis.

Nematzadeh et al. (2019) proposed a filter method employing
the whale algorithm and Mutual Congestion to address this
issue. They initially set the number of whales equal to the
number of features and applied the whale algorithm to eliminate
irrelevant features. They then ranked the remaining features using
Mutual Congestion. While effective in selecting features with lower
interference frequencies, the non-deterministic specification of
the subset size using a threshold of 10 could benefit from an
adaptive value. In another study, Li and Xu (2019) focused on
obtaining effective gene expression data related to Hepatocellular
Carcinoma (HCC). They utilized the Fisher score algorithm to
identify characteristic HCC-related genes and performed various
functional enrichment analyses. Additionally, they conducted
a survival analysis to assess the relationship between selected
central genes and patient survival. Addressing class imbalance,
He et al. (2019) introduced the imRelief algorithm, demonstrating
superior performance in handling minority sample dispersion
across microarray datasets compared to various evaluation metrics.

Tavasoli et al. (2021) took measures to enhance classification
accuracy. They employed data shuffling to prevent overfitting and
utilized a soft-weighted ensemble mechanism with five criteria
for feature selection. The study highlighted the effectiveness
of combining improved algorithms and multi-mechanism soft
weighting in mitigating overfitting and instability issues. However,
its robustness was only tested on a limited number of benchmark
datasets, requiring further verification. Furthermore, Lee et al.
(2021) introduced the MB Ranking method, effectively addressing
data type inconsistency in microarray datasets by leveraging the
formal definition of Markov Blanket (MB) for multivariate feature
ranking. This technique outperformed other ranking methods due
to its inherent feature ranking advantages. In their pursuit of
addressing the computational complexity linked to wrapper-based
models in high-dimensional microarray datasets, Saberi-Movahed
et al. (2022) introduced the Dual Regularized Unsupervised
Feature Selection Based on Matrix Factorization and Minimum
Redundancy (DR-FS-MFMR). This approach efficiently combines
matrix factorization and subspace learning techniques to represent
datasets through a matrix factorization form, enhancing the
selection of more efficient features by capturing local and global
correlations within the feature space. The proficiency of DR-FS-
MFMRwas demonstrated across nine gene expression datasets, and
it was compared with nine methods using clustering accuracy and
normalized mutual information. However, as feature selection was
conducted via clustering, redundant features might exist within the
final subset.

Overall, these studies offer a range of approaches to tackle
specific challenges in feature selection in microarray datasets. Each
study provides unique insights and methodologies to enhance
accuracy and efficiency in selecting significant features. Filter
method ranks features by calculating statistical metrics or scoring
functions and does not rely on learning algorithms, the process
involves calculating the statistical metrics or scoring functions for
each feature, ranking the features, and selecting the top-ranked
subset of features as the final result. The advantages of this method
are high computational efficiency, not easy to overfitting and
simplicity, which is suitable for preliminary feature screening.
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However, the disadvantages of the filter method are that it ignores
the correlation between features, which may lead to the omission
of important features, the selected subset of features may not
be able to improve the model performance in some cases, and
the filter method has a limited generalization ability when facing
complex datasets.

3.2 Wrapper feature selection method on
microarray

The wrapper feature selection method is a commonly used
approach for finding the best feature subset using a specific
algorithm. In this chapter, we will explore the use of wrapper
feature selection methods in analyzing microarray data and
their connection with optimization algorithms. Wrapper feature
selection is closely tied to optimization algorithms. The objective
of wrapper feature selection is to minimize or maximize a
performance measure like classification accuracy or mean square
error, thus treating it as an optimization problem. Optimization
algorithms, such as genetic algorithms, simulated annealing, and
particle swarm optimization, offer efficient means of optimizing
wrapper feature selection methods.

In recent years, various optimization algorithms have been
used for feature selection in microarrays. Almugren and Alshamlan
(2019) introduced the innovative FireFly (FF) algorithm, while
Chatterjee et al. (2020) improved the Social Ski Driver (SSD)
algorithm by incorporating Late Acceptance Hill Climb (LAHC)
to enhance its local search capabilities. They transformed the
algorithm into a binary form using S-shaped and V-shaped
transfer functions. To address the limited local search capabilities
of the Whale Optimization Algorithm (WOA), Guha et al.
(2020) introduced the embedded chaotic whale survival algorithm
(ECWSA). This method introduced death and chaos mechanisms,
improving the description of whale predation. Agrawal et al.
(2020) proposed a feature selection method called QWOA, which
modified the mutation and crossover operators applied to the
quantum-inspired whale motion in WOA. Khamparia et al. (2020)
developed a pioneering feature selection and classification method
that utilized GA and a diverse ensemble of classifiers. They used
the Bhattacharya coefficient and GA to remove noise features and
derive the target feature set. Panda (2020) proposed an Elephant
Search Algorithm (ESA) and Deep Learning (DL) based wrapper
method for feature selection. Too and Mirjalili (2021) presented
the Hyper Learning Binary Dragonfly algorithm (HLBDA) based
on the Binary Dragonfly Algorithm (BDA). Abdel-Basset et al.
(2021) combined theHarris HawksOptimization algorithm (HHO)
with simulated annealing (SA) to create a new feature selection
approach. By using the HHO output as input for SA, they achieved
a seamless integration of both algorithms. They also employed
bitwise OR and bitwise AND operations to overcome limitations
in population diversity that could affect HHO’s performance.
Das et al. (2022) introduced a novel feature selection method
rooted in the Jaya optimization algorithm. By leveraging the Jaya
algorithm’s search technique, they streamlined the feature space
by updating the weakest features. Hu et al. (2022) improved the
slime mold algorithm (SMA) by employing V-shaped transfer

functions to obtain binary BDFSMA. Ganesh et al. (2023) utilized
the Weighted Superposition Attraction Optimization Algorithm
(WSA) for microarray feature selection. There are also efficient
Harmony search (HS) algorithms (Ye et al., 2023), the hybrid
method developed by Bae et al. (2021) based on HS also achieved
high accuracy in the colon cancer.

The wrapper method relies on a classifier to assess the
performance of different subsets of features. By analyzing how well
the classifier performs on a specific dataset, the wrapper method
can choose the best subset of features to improve the model’s
performance. Some commonly used classifiers in this method are
KNN, DT, RF, SVM, and others. KNN is especially popular among
researchers. For example, Chatterjee et al. (2020), Guha et al.
(2020), Too and Mirjalili (2021), Abdel-Basset et al. (2021), Hu
et al. (2022), and Ganesh et al. (2023) used SSD, WOA, BDA,
HHO, SMA, and WSA respectively in combination with the KNN
classifier to achieve feature selection in microarray datasets. Other
commonly used classifiers include SVM and deep learning (DL).
Almugren andAlshamlan (2019) used a combination of FireFly and
SVM, while Panda (2020) used ESA and DL for microarray dataset
classification.

There are also approaches that involve multiple classifiers. For
instance, Khamparia et al. (2020) developed a convolutional neural
network with multiple classifiers to create a multi-level ensemble
model for diagnosing neuromuscular samples. The ensemble
method, based on deep convolutional neural networks, showed
superior accuracy in disease diagnosis and prediction compared to
other classifiers. In addition to combining multiple classifiers, there
are cases where the same algorithm is used to test the classification
effect of different classifiers. Agrawal et al. (2020) and Das et al.
(2022) usedmultiple classifiers, such as KNN, LDC, SVM, C4.5, and
RT, to compare their classification effects.

Table 4 provides a comprehensive summary of the
methodologies, algorithms, and their performance in feature
selection and classification across various studies.

Wrapper method microarray feature selection evaluates and
selects a subset of features by using the performance of a learning
algorithm, and the process involves starting with an initial set of
features, gradually adding or removing features, and evaluating the
effect of different subsets of features based on the performance
metrics of the learning algorithm, and ultimately selecting the
subset of features with the best performance as the result. The
advantage of this approach lies in the direct optimization objective,
which can better optimize the performance of the final model
by directly using the performance of the learning algorithm to
evaluate the feature subset. In addition, the wrapper method is
flexible and can be combined with multiple learning algorithms
to adapt to different data and tasks, and is usually capable of
selecting a relatively small, but superior performance feature
subset. However, the drawbacks of this method are the high
computational cost and the need to train the learning algorithms
multiple times to evaluate the performance of different feature
subsets, which is computationally expensive. In addition, due to
multiple evaluations on the training data, the wrapper method

is susceptible to overfitting, which may reduce the generalization

ability of the model on test data, and as the number of features
increases, evaluating all the possible combinations of features
becomes infeasible.
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TABLE 4 Summary of wrapper methods.

References Algorithms Classifier Dataset Evaluation
criteria

Key findings

Almugren and
Alshamlan
(2019)

FF SVM Leukemia2, SRBCT Lung,
Leukemia1, Colon

ACC, Num-F Comparing the advantages and
disadvantages of wrapper method and
hybrid method. The algorithm has good
stability on different datasets.

Chatterjee
et al. (2020)

SSD KNN Breastcancer, BreastEW, Exactly,
Exactly2, HeartEW, M-of-n,
DLBCL, SRBCT, Leukemia2

ACC, Num-F SSD was first used in feature selection. It
is verified that the effect of the S-type
transfer function is slightly better than
that of the V-type.

Guha et al.
(2020)

ECWSA KNN Breast, BreastEW, Exactly,
Exactly2, HeartEW, AMLGSE2191,
Colon, DLBCL, Leukaemia,
Prostate, MLL, SRBCT

ACC, Num-F Improved the weak local search ability
of the whale algorithm. Due to the
mechanism of local search, the
computational complexity will increase.

Khamparia
et al. (2020)

Bhattach arya-GA KNN, DT, LDA,
QDA, RF, SVM

E-GEOD-3307 are divided into two
datasets

ACC,
computational time

Using multi-level ensemble methods to
use different model results as input to
deep networks. Another attempt of
neural network in feature selection.

Agrawal et al.
(2020)

QWOA K-NN, LDC,
SVM, and C4.5

GLI-85, LA_BRA180 9Tumor,
GCM

ACC, AUC,
F-value, Num-F

Use a clustering step for
high-dimensional datasets to reduce
feature input before feature selection.
Compared with the classic algorithm
WOA, the performance of the quantum
algorithm QWOA is better and has been
verified.

Panda (2020), ESA DL Prostate, Leukemia, Colon,
DLBCL, Ovarian, Breast, CNS,
Lung-Harvard, MLL, SRBCT

ACC, Num-F,
running time

Use One way ANOVA and Post hoc

Tukey HSD Test to verify algorithm
suitability. Verified the effectiveness of
using DL models as classifiers.

Too and
Mirjalili
(2021)

HLBDA KNN TOX_171, Colon, Leukemia ACC, Num-F Compared with many methods, HLBDA
obtained the best fitness and average
fitness.
The classification accuracy results of
HLBDA in high-dimensional datasets
are higher than other methods.

Abdel-Basset
et al. (2021)

HHO and SA KNN Colon, Leukemia ACC, Num-F,
F-value, running
time

Using bitwise OR and bitwise AND
operations to overcome LO and low
population diversity. In
high-dimensional datasets, the fitness
value is not the best of the comparison
methods.

Das et al.
(2022)

Jaya NB, KNN, LDA
and RT

Brest Cancer, SPECTF heart,
Colon, Leukemia

ACC, Num-F Get the final subset by removing
features. Comparing the performance of
NB, KNN, LDA and RT four classifiers.

Hu et al.
(2022)

SMA KNN Leukemia, Brain, Lung_Cancer,
Prostate, CNS, 11Tumors,
9Tumors, Brain2, DLBCL,
Leukemia1, Leukemia2,
Tumors_14

ACC, Num-F,
F-value, running
time

After continuous space verification,
apply it to MA feature selection. This
method has the disadvantage of long
running time.

Ganesh et al.
(2023)

WSA KNN Ovarian, Colon ACC, Num-F WSA was first used in feature selection.
WSA is only compared with the original
version of other algorithms.

3.3 Embedded feature selection method
on microarray

The essence of embedded feature selection lies in its integration
with the model training process. This means that the selection
of features is inherently tied to the learning algorithm. This
approach allows for the concurrent optimization of both the model
parameters and the feature subset, with the aim of enhancing the

model’s efficacy on both the training and validation datasets. In this

section, we delve into contemporary embedded feature selection
techniques. We examine their foundational principles, procedural

frameworks, and their respective merits and limitations when

applied to microarray data analysis. Furthermore, we showcase
the practical utility of these methods through their application to
real-world datasets. We analyze their performance across various
contexts and highlight their comparative strengths.
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Sun et al. (2019) addressed issues of data distribution
in the error-correcting output coding (ECOC) algorithm by
leveraging Data Complexity theory. Their algorithm optimized
ECOC encoding matrices and consistently outperformed state-
of-the-art algorithms across microarray datasets. Lopez-Rincon
et al. (2019) proposed an integrated feature selection strategy
that utilized multiple techniques and classifiers. Their approach
aimed to discover robust miRNA signatures and demonstrated
high classification accuracy across diverse datasets and platforms.
Climente-González et al. (2019) developed Block HSIC Lasso, a
feature selection method adept at handling ultra-high-dimensional
data. This method showcased enhanced performance with larger
datasets and required fewer features to achieve comparable
classification accuracy to other methods. Tang et al. (2019) tackled
non-IID features through latent representation learning and graph-
based manifold regularization (LRLMR). Despite not excelling
in one dataset, this innovative unsupervised feature selection
method exhibited robust intrinsic data structure characterization
in microarray datasets. Kang et al. (2019) proposed rL-GenSVM
for high-dimensional tumor datasets. This method combined
Relaxed Lasso for feature selection with GenSVM as the classifier.
The approach effectively selected and classified features in tumor
datasets. Jeon and Oh (2020) introduced the Hybrid-RFE ensemble
algorithm, which amalgamated SVM-RFE, RF-RFE, and GBM-
RFE methods. This method, validated on UCI and NCBI gene
expression datasets, showcased improved performance over single
RFE methods. This improvement was mainly due to weight
summation, which significantly reduced the number of features
while enhancing accuracy. In their pursuit of minimal yet
informative gene combinations, Peng et al. (2021) introduced
the multi-layer iterative feature selection method, MGREF. Their
GA-REF algorithm, a fusion of Genetic Algorithm (GA) and
Recursive Feature Elimination (REF), operated in a multi-layer
fashion, dividing datasets and proceeding through three distinct
stages. While effectively retaining optimal features, this method
preserved a slightly larger feature set than existing selection
methods. The method proposed by Hamla and Ghanem (2024)
selects the top ranked features obtained from the Fisher score to
provide a candidate subset for the embedding stage. Then Support
Vector Machine Recursive Feature Elimination is utilized and
applied to the candidate subset to find the best subset. To achieve
better classification accuracy of Lasso in DNA microarray data
classification, Vatankhah and Momenzadeh (2024) used a method
to automatically find the optimal regularization parameters. Results
on four commonly used datasets demonstrate the effectiveness of
the method.

Embedded feature selection methods can tightly integrate
feature selection and model parameter optimization with the
model training process, thereby improving model performance on
training and validation datasets. This approach allows automatic
selection of the most relevant feature subsets within the framework
of a learning algorithm, avoiding a separate feature selection step.
The advantage is that feature selection is embedded in model
training, which can process data efficiently. It can also optimize
model parameters and feature subsets at the same time, improving
the overall performance of the model. Feature selection and model
training are performed simultaneously, which reduces the process

TABLE 5 Summary of embedded methods.

References Key
algorithm
and classifier

Key findings

Sun et al.
(2019)

DC theory,
Gaussian SVM, NB

Consistently superior performance
among ECOC algorithms.

Lopez-Rincon
et al. (2019)

Multiple feature
selection and many
classifiers

High classification accuracy,
cross-platform applicability.

Climente-
González et al.
(2019)

Block HSIC Lasso,
Random Forest

Better performance with larger
datasets with fewer features
required.

Tang et al.
(2019)

LRLMR, KNN propose a robust unsupervised
feature selection method with
latent representation learning and
graph embedding.

Kang et al.
(2019)

Relaxed Lasso,
GenSVM

Use regularization term to avoid
overfitting and achieves better
accuracy.

Jeon and Oh
(2020)

SVM-RFE, RF-RFE,
GBM-RFE

Enhance performance over single
RFE methods.

Peng et al.
(2021)

GA-REF, t-test,
MIC

A multi-layer recursive feature
elimination method based on the
embedded integer coding genetic
algorithm MGRFE.

of manual intervention and improves the overall performance.
However, this approach relies on specific learning algorithms that
increase the complexity and training time of the model, and some
embedded methods may only be applicable to specific types of data
or tasks and may not be as effective as specialized feature selection
methods in some cases.

From the distribution of publication years, it is evident
that most articles concerning embedded feature selection are
concentrated in the year 2019. This trend may be correlated
with the robustness of embedding methods and the advancement
of alternative techniques. The robustness of embedding methods
hinges upon the chosen machine learning models, the selection
of an inappropriate model for a specific dataset or problem
may result in unstable feature selection outcomes. Among
alternative methods, hybrid methods are predominantly utilized.
These methods effectively enhance model generalization by
amalgamating the outcomes of various feature selection techniques.
By integrating multiple approaches, hybrid methods better capture
genuine patterns within the data and mitigate the risk of
overfitting, thereby enhancing the predictive capacity of models on
novel samples.

The studies examined various embedded feature selection
methods, each offering unique strategies to optimize feature
subsets within datasets. Table 5 is a comprehensive summary table
that encapsulates the key methodologies, algorithms, and their
performance in feature selection and classification across various
studies. These embedded feature selection methodologies catered
to diverse dataset complexities. They offered strategies to optimize
feature subsets efficiently while addressing specific challenges in
data distribution and dimensionality.
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3.4 Hybrid feature selection method on
microarray

In addition to classic methods, a variety of alternative
strategies have emerged in the field of feature selection. Among
these, hybrid methods have become one of the most popular
methods, commonly involving a combination of filter and wrapper
methods. When filter and wrapper methods are used together for
microarray feature selection, the filter method initially eliminates
irrelevant features quickly based on specific criteria or statistical
metrics. Subsequently, the wrapper method selects features that
significantly impact prediction accuracy under the guidance
of model performance. Intelligent optimization algorithms are
often employed for efficient subset search, and classifiers are
typically used for evaluation. For instance, Shukla et al. (2019b)
introduced the TLBOSA method, combining Teaching Learning-
based Optimization and Simulated Annealing algorithms, utilizing
SVM as a fitness function. Alanni et al. (2019) employed
Information Gain (IG) and Gene Expression Programming for
initial feature selection, followed by SVM-based fitness function
for further refinement. Loey et al. (2020) proposed an intelligent
decision support system utilizing IG for initial gene selection and
Gray Wolf Optimization algorithm (GWO) for feature reduction,
coupled with SVM for classification. Moreover, Alomari et al.
(2021) introduced rMRMR-MGWO, combining mRMR and GWO
methods, leveraging SVM for classification. Houssein et al. (2021)
utilized IG in conjunction with Barnacles Mating Optimizer
Algorithm (BMO) and SVM for feature selection. Mahesh et al.
(2024) developed a newmethod for predicting leukemiamicroarray
gene data based on a new technique of hybrid ant lion mutant
colony optimization as well as PSO. Dabba et al. (2021b)
proposed MIM-mMFA, employing MIN-MAX, Maximum Mutual
Information (MIM), and a modified Moth Flame Algorithm for
feature selection alongside SVM. Additionally, Dabba et al. (2021a)
introduced another approach where mRMR is used in the first
stage, and in the second stage, a quantum moth flame optimization
algorithm (QMFOA) and SVM are employed to achieve similar
effects.

Random Forest (RF), k-Nearest Neighbors (KNN), and Naive
Bayes (NB) are also widely used. For example, Shukla et al.
(2019c) proposed a feature selection framework, and the specific
implementation steps are called Filter-Wrapper Feature Subset
Selection (FWFSS). This hybrid method uses a conditional mutual
information maximization-based filter method and GA algorithm-
based wrapper method to enhance the overall classification
performance, using the NB classifier as the fitness function
during the wrapper method. This hybrid method outperforms the
compared many existing filter algorithms in both classification
accuracy and optimal number of features. Ali and Saeed (2023)
also developed a hybrid method based on GA. Pashaei and
Pashaei (2019) incorporated RF into their approach. Initially,
they employed RF ranking to remove noise and redundant
features. Subsequently, they applied the Intelligent Dynamic
Genetic Algorithm (IDGA) and a RF-based wrapper method
for Microarray feature selection. Tatwani and Kumar (2019)
introduced a method termed Master-slave Genetic Algorithms
(GAs) for feature selection. Their approach begins with an

initial preprocessing stage utilizing IG to eliminate redundant
features. Subsequently, employing the Master-slave GA and RF
for feature selection. Additionally, it needs more comparison with
other algorithms, necessitating further research to ascertain its
effectiveness comprehensively. Alhenawi et al. (2023) developed a
hybrid method based on improved intelligent water drop algorithm
and filter method. Sahu and Dash (2024) developed amethod based
on Jaya algorithm and IG. Sucharita et al. (2024) applied moth-
flame optimization and extreme learning machine for Microarray
feature selection. Dash et al. (2022) employed statistical measures
to select the top 100 features. They improved the Shuffled Frog
Leaping Algorithm (SFLA) by adjusting the frog jumping step
size and combined it with KNN for microarray feature selection.
Experimental comparison results on binary classification datasets
indicate certain advantages of this method, demonstrating its
effectiveness.

There are also some studies that use different classifiers for
comparison. Gangavarapu and Patil (2019) proposed a hybrid
greedy ensemble approach optimized using the GA to reduce
the dimensionality of high-dimensional biomedical datasets. This
method uses different information measures in the filter stage
and compares the efficiency of KNN, DT and RF classifiers
in the wrapper stage. Shukla et al. (2019a) introduced various
methods of methodology. Initially, they utilized Conditional
Mutual InformationMaximization (CMIM) for the primary feature
selection stage. Subsequently, the Binary Genetic Algorithm (BGA)
served as the fitness evaluator for the features. Furthermore,
classifiers such as KNN, SVM, DT and RF were employed to
compute the subset’s fitness value. Shukla et al. (2020) take
advantage of the advantages of teaching learning-based algorithm
(TLBO) and gravitational search algorithm (GSA) algorithms to
develop a new high-search efficiency algorithm, TLBOGSA, and

introduce a new encoding strategy to convert its continuous search
space into a binary search space. Before using TLBOGSA for feature
selection, mRMR is first used to select a feature subset, and then the
wrapper method based on TLBOGSA is used for feature selection,
they compared the effects of four classifiers, SVM, KNN, DT and
NB, and finally confirmed that NB classifier is the most effective.

Some other microarray feature selection methods are hybrids

of the two methods. To capture the interaction of features and
solve the classification problem of data imbalance, Hosseini and
Moattar (2019) proposed a hybrid feature selection method called
mutual information and Monte Carlo-based feature selection

(MIMCFS). The technique is divided into two stages: mutual
information to select main features and the Monte Carlo tree
search technique to eliminate redundant features. However, in

this method, some parameters are set based on an empirical
basis. Finding a better method for setting these parameters
may lead to better experimental results. Kilicarslan et al. (2020)
employed the ReliefF and Stacked AutoEncoder (SAE) methods
for dimensionality reduction. Subsequently, they utilized SVM
and Convolutional Neural Networks (CNN) for classification.
The dimensionality reduction and classification techniques were
combined pairwise to validate the accuracy of feature selection.
Jain and Singh (2021) proposed a fast, general-purposed, influential
hybrid feature selection approach with an adaptive classification
method for chronic disease datasets that can enhance the classifier’s
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efficiency and decrease computation cost and time. This approach
outperforms the traditional SVM classifier regarding all significant
performance measures and shows outstanding results. The critical
aspect of the approach is the selection of an appropriate threshold
for selecting relevant features from the dataset. Dash (2021)
combined the Harmony Search and Pareto Optimization methods
to develop a new hybrid MA feature selection method. The first 100
features are generated using the adaptive harmony search based
gene selection (AHSGS) method in the first stage. In the second
stage, a bi-objective Pareto optimization method was employed
to reduce the gene subset further through evaluation using four
different classifiers, including KNN, NB, ANN, and SVM. It was
found that when paired with the SVM classifier, it outperforms
other classifiers. Zare et al. (2023) achieved the maximum relevance
criterion by integrating a supervised Laplace eigenmap and a
matrix, and then minimized the redundancy between the selected
features by applying a Pearson correlation coefficient.

Furthermore, some studies combine multiple methods for
feature selection. Prabhakar and Lee (2020) proposed a tri-level
feature selection method to boost prostate cancer classification
accuracy. Initially, discrete wavelet transformation reduces feature
count. Subsequent steps involve employing various selection
methods on the simplified feature set. Experimentation highlighted
the best accuracy achieved by combining the MA feature selection
method, Signal Noise Ratio (SNR), and Whale Optimization
Algorithm (WOA), utilizing an Artificial Neural Network (ANN)
as the classifier. Mandal et al. (2021) introduced a Tri-
Stage Wrapper-Filter Feature Selection Framework for Disease
Classification. In the initial stage, multiple filter methods (MI,
CS, RFF, XV) and classification algorithms (KNN, SVM, NB) are
combined to ensure high accuracy for each feature regardless of the
filter method used. In the second stage, correlation analysis (PCC)
removes highly correlated features from the top k features obtained
in the first stage, aiming for a maximally informative yet minimally
redundant subset. Following these stages, XGBoost further refines
the feature set. Lastly, a WOA-based wrapper approach finalizes
the optimal feature subset. This innovative framework effectively
merges wrapper and filter methods, enhancing classification
accuracy while reducing computational complexity. Overall, this
approach provides a novel method for disease classification,
potentially improving diagnostic and therapeutic outcomes.

Each study presented in this collection highlights innovative
strategies that incorporate a combination of feature selection
techniques. This underscores the substantial importance of
employing hybrid methods to improve accuracy and efficiency
in microarray data analysis. In the landscape of microarray data
analysis, the evolution of hybrid feature selection methods has
proven instrumental in surmounting challenges inherent to high-
dimensional datasets. Through a fusion of filter, wrapper, and
ensemble techniques, these methodologies have navigated the
complexities of feature selection, attaining heightened accuracy,
reduced redundancy, and improved computational efficiency.
While each approach brings unique insights and strengths,
their convergence into hybrid methodologies reflects a pivotal
stride in advancing the accuracy and applicability of microarray
data analysis.

TABLE 6 Summary of hybrid methods.

References Key algorithm and
classifier

Evaluation
criteria

Shukla et al. (2019b) CFS-TLBOSA-SVM ACC, Num-F

Alanni et al. (2019) IG-GEP-SVM ACC, Num-F,
Running time

Loey et al. (2020) IG-GWO-SVM ACC, Robustness

Alomari et al.
(2021)

mRMR-GWO-SVM ACC

Houssein et al.
(2021)

IG-BMO-SVM ACC

Dabba et al. (2021a) MIN-MAX/MIM-mMFA-SVM ACC, Num-F

Dabba et al. (2021a) mRMR-QMFOA-SVM ACC, Num-F

Shukla et al. (2019c) MIM-GA-NB ACC, Num-F

Pashaei and Pashaei
(2019)

RF-IDGA-RF ACC

Tatwani and Kumar
(2019)

IG-GAs-RF ACC

Dash et al. (2022) Statistical measures, SFLA-KNN ACC

Gangavarapu and
Patil (2019)

IG/PCC/mRMR/oneR/
Correlation-GA-KNN/DT/RF

ACC, Robustness

Shukla et al. (2019a) CMIM-BGA-SVM/KNN/NB/DT ACC, Num-F

Shukla et al. (2020) mRMR-TLBOGAS-
NB/SVM/KNN/DT

ACC

Kilicarslan et al.
(2020)

ReliefF-SAE-SVM/CNN ACC

Jain and Singh
(2021)

Adaptive classification method ACC

Dash (2021) HS and Pareto Optimization ACC

Prabhakar and Lee
(2020)

Tri-level approach for classification ACC

Mandal et al. (2021) Tri-Stage Wrapper-Filter
Framework

ACC, running
time

Hybrid methodmicroarray feature selection combines multiple
feature selection techniques and classifiers to improve the
effectiveness of feature selection and model performance by
combining the advantages of different methods. The strength of
this method lies in its versatility and robustness. By combining
multiple methods, it is possible to capture data features more
comprehensively, improve the robustness of feature selection,
and typically achieve higher classification accuracy than a single
method. In addition, hybrid method feature selection has the
flexibility to adapt to specific problems and data characteristics by
flexibly adjusting the combined methods. However, its drawbacks
include increased complexity, the need to evaluate multiple
combinations, high computational cost and time-consuming, and
the difficulty of optimization, which requires careful adjustment
and optimization of the combinations of individual methods and
classifiers, which is more difficult. For a comprehensive overview of
Hybrid methods articles, refer to Table 6.
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3.5 Other feature selection method on
microarray

In addition to these methods, Multi-objective algorithms also
play an important role in feature selection, especially when
competing objectives need to be balanced. The prediction accuracy
of the model and the size of the feature subset are two key
objectives in the feature selection task. Traditional single-objective
optimization methods usually focus on a single objective, such
as maximizing the accuracy of the model, which may result in
selecting too large a subset of features, increasing the computational
cost and complexity of the model. The other extreme is to
oversimplify the feature subset, which reduces the computational
cost but may also impair the predictive performance of the
model. Multi-objective algorithms are able to generate a set of
Pareto-optimal solutions by simultaneously optimizing multiple
objectives, each of which represents the equilibrium point where
one objective cannot be further improved without degrading
the other. In the process of feature selection, accuracy and
feature subset size are often the two most critical and competing
objectives. Multi-objective algorithms are able to consider these
two factors simultaneously, providing researchers with a set of
different solutions. By analyzing the Pareto frontier, researchers
can achieve a better balance by choosing the most suitable
feature subset among these solutions based on specific application
scenarios and requirements. For instance, Cao et al. (2019)
proposed a feature selection method that considers classification
error, number of features, and redundancy among features
based on the Distributed Parallel Collaborative Coevolutionary
Multi-Objective Large-Scale Evolutionary Algorithm. To reduce
calculation time, they introduced feature number constraints
respectively to reduce feature input. A distributed parallel strategy
is adopted to parallelize the evolution process. Adopt sample-
level parallelism strategies to parallelize the testing process. Qiu
(2019) developed an innovative feature selection method, MSPSO,
utilizing a multi-swarm PSO algorithm. This approach subdivided
the population into sub-swarms to maintain diversity, with an elite
learning strategy facilitating information exchange among these
sub-swarms. The experiments highlighted MSPSO’s superiority
over traditional PSO-based methods and popular filters in feature
subset size and classification accuracy. Zhang et al. (2020) proposed
a multi-objective feature selection algorithm based on binary
differential evolution incorporating self-learning strategies. This
algorithm embedded novel operators like binary mutation and
One-bit Purifying Search to balance local exploitation and global
exploration, showcasing improved performance in reducing initial
feature sets’ complexity. Baliarsingh et al. (2020) presented a
framework called C-HMOSHSSA for gene selection in cancer
classification using multi-objective meta-heuristic and machine
learning methods. The proposed framework utilizes the multi-
objective spotted hyena optimizer and slap swarm algorithm for
gene selection, with the goal of finding a minimum subset of genes
while maximizing classification accuracy. The authors conducted
experiments using seven different microarray datasets to evaluate
the performance of the proposed technique and compared it
with existing state-of-the-art techniques. Aljarah et al. (2020) used
two operators, a dynamic time-varying strategy and local fittest

solutions, to improve the performance of multi-objective SSA for
feature selection and used the S-shaped function to convert the
improved SSA into MODSSA-Ibest, which can achieve feature
selection. It can achieve faster convergence speed while avoiding
local optimal solutions. Judging from the performance on both
microarray datasets, features were reduced by more than 40%, and
significant results were also achieved in terms of average error
rate and g-mean. Dhal and Azad (2021) present a multi-objective
hybrid binary version of the FS approach based on two evolutionary
approaches, PSO and GWO. The approach can efficiently learn
from a smaller number of samples and high-dimensional data
and simultaneously considers two objectives: classification error
rate and the number of features. The paper introduces a novel
concept, population factor, for generating the population and a
modified version of the velocity update equation based onNewton’s
second law of motion. The search space is divided into two phases,
global and local search, and the efficacy of the method is evaluated
using benchmark high-dimensional datasets. Han et al. (2021)
proposed a new feature selection method based on an adaptive
strategy multi-objective particle swarm optimization algorithm
called MOPSO-ASFS. MOPSO-ASFS uses the PBI decomposition
method to adaptively provide different penalty values for each
weight vector so that more optimal solutions are retained on the
Pareto front. Zhou et al. (2021) proposed an evolutionary multi-
objective optimization framework of discretization-based feature
selection for classification. Many heuristic search methods can
be used in this framework; they take PSO, for example, as the
search method; to obtain the Pareto solutions, a flexible cut-
point PSO is introduced to help better explore relevant subsets
of features. Moslemi and Ahmadian (2023) developed a new

feature selection method based on rank constrained and dual
regularized nonnegative matrix factorization, which outperforms
the latest unsupervised feature selection techniques in multiple

mediums in terms of clustering accuracy and normalized mutual
information. Analogously, Samareh-Jahani et al. (2024) developed
a low-redundancy unsupervised feature selection method based on
data structure learning and feature orthogonalization, which first
uses QR decomposition to obtain an orthogonal representation
of the feature space, and then determines the distance between

the feature set and the orthogonal set obtained from the original
features based on a matrix decomposition. Also, Saberi-Movahed
et al. (2024) proposed a deep non-negative matrix factorization

method by combining global and local structures that preserves
both global and local structures in the data space. Furthermore,
regularization terms that promote sparsity by exploiting the notion
of inner product are applied to represent matrices of lower
dimensions as a way to preserve the underlying data structure
while discarding less important features. Sheikhpour et al. (2025)
proposed a feature selection method expressed in the form of
trace ratios, which utilizes the discriminative information of labeled
data to maximize class separability, as well as the hypergraph
Laplace operator to capture geometric structure and higher-order
relationships in labeled and unlabeled data. Lv et al. (2021)
proposed an innovative framework, SFAM, that combines adaptive
global structure learning and stream shape learning with the
aim of improving the effectiveness of semi-supervised multi-label
feature selection. The framework overcomes the limitations of
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existing methods in dealing with label correlation by utilizing
both local and global data structures. The authors also develop
an efficient iterative optimization algorithm to address the non-
smooth objective function of the model.

The multi-objective method to feature selection finds the
best subset of features by simultaneously optimizing multiple
objectives (for example, classification accuracy and number of
features). It is characterized by multi-objective optimization,
which provides more comprehensive feature selection results
and efficiently handles conflicts and trade-offs between different
objectives through the optimization algorithm. This approach
is widely applicable and can be applied to a variety of data
types and tasks with strong adaptability. The advantages of
the multi-objective approach include the ability to optimize on
multiple performance metrics at the same time, providing more
comprehensive and effective results than the single-objective
approach. It is flexible and applicable to complex tasks that
need to balance multiple performance requirements, and can
adjust the optimization objectives according to different needs. In
addition, through search methods such as evolutionary algorithms,
the multi-objective approach may find the global optimal or
near-optimal subset of features. However, the computational
complexity of this approach is high, especially when dealing
with high-dimensional data, which requires larger computational
resources and time. Implementation complexity is also a major
challenge, requiring a deep understanding of the principles and
methods of multi-objective optimization. In addition, multi-
objective optimization produces a potentially large set of solutions
(Pareto front), and selecting the best solution and interpreting its
significance may be more difficult.

Besides, there are also some less commonly used methods.
Zhang et al. (2021) proposed a feature selection method based on
information-theoretic lower bounds of feature inner correlations
for high-dimensional data. The authors introduce two lower
bounds for feature redundancy and complementarity, which
have simple forms and are closer to the optima than existing
lower bounds used by some state-of-the-art information-theoretic
methods. They then propose a simple and effective feature
selection method based on these lower bounds and verify its
effectiveness with a wide range of real-world datasets. Xie et al.
(2024) proposed a graph neural network-based feature selection
algorithm with a classification model to achieve feature selection.
They use a multidimensional graph to represent interactions
between genes, utilize link prediction techniques to enrich existing
graph structure relationships, and use a multidimensional node
evaluator and a spectral clustering-based supernode discovery
algorithm to achieve initial screening of nodes. Subsequently, we
further screen the nodes using downsampling-based hierarchical
graph pooling techniques to achieve feature selection and build
classification models.

3.6 Summary of di�erent methods

This section will present some summaries on microarray
feature selection, including the number of articles on different
methods in recent years, the classifiers used by different methods
and the classification accuracies of various methods.

3.6.1 Comparison of di�erent methods
Filter method is a model-independent feature selection

technique that performs feature selection by calculating the
correlation or amount of information between the features and
the target variable. The main advantage of this method is that
it is computationally efficient and suitable for large-scale datasets
because it does not require model training for each feature
combination. Meanwhile, the filter method is highly interpretable,
and the feature selection process is intuitive and easy to understand
and implement. However, the disadvantage of the filtering method
is that it tends to ignore the interrelationships between features
and relies only on the correlation of individual features with the
target variable, which may leave out certain important features.
This neglect may result in compromising the performance of the
model in cases where there are important interactions between
features, thus limiting its predictive power in practical applications.

Wrapper method is better able to capture the complex
relationships between features by training themodel while selecting
features and considering the interactions between features. This
method typically provides superior feature selection results because
it evaluates the effectiveness of feature combinations based on
the performance of the model. However, the computational
overhead of the wrapper method is high because the model
needs to be trained for each feature selection, especially on large
datasets, which can significantly increase the consumption of
computational resources. In addition, repeatedly evaluating the
model performance may lead to overfitting. The reason is that it
evaluates the performance of feature combinations by repeatedly
training the model. During the feature selection process, the
wrapper method constantly adjusts the feature subset based on the
performance of the training set, and this high-frequency model
evaluation may result in a model that overfits the noise and features
of the training data, thus performing well on the training set
but having reduced generalization ability on new, unseen data.
Especially in the case of a small sample size of the training set,
the model’s over-reliance on a specific combination of features may
make the selected features not representative, thus decreasing the
prediction accuracy in real-world applications.

Embedded method combines the advantages of the filter and
wrapper methods by automatically selecting features during the
model training process. This method takes into account the
interactions between features and is relatively efficient because
feature selection is synchronized with model training. The
embedded method is able to reduce the computational complexity
and usually yields better feature selection results. However, its
drawback is that it strongly depends on the selected model, this is
because it integrates the feature selection process directly into the
training of the model, making the assessment of the importance of
features dependent on the model algorithm used. Different models,
use different criteria to assess the importance of features, which
means that the feature selection results can vary from model to
model. In addition, the effectiveness of the embedded method is
closely linked to the generalization ability of the model, and if
the selected model performs well on a specific dataset but poorly
on other datasets, the results of feature selection may also lack
generalization. This dependency not only affects feature selection,
but also requires that when faced with a new problem or dataset,
feature selection may need to be redone to accommodate the
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new model configuration. As well, embedded methods usually
require tuning the hyperparameters of the model to optimize
performance, and different hyperparameter settings can also lead
to variations in the feature selection results. Therefore, when using
embedding methods, researchers and practitioners need to have
a deep understanding of the characteristics and behaviors of the
models used to ensure that the selected features can effectively
support model learning and prediction, and to avoid performance
degradation or improper selection due to model dependency.

Hybrid method combines the advantages of the filter and
wrapper methods by first performing initial feature screening
through the filter method to quickly exclude irrelevant features, and
then performing refined selection through the wrapper method.
The advantage of this approach is that it increases both the
efficiency of feature selection and the accuracy of the final feature
set. However, the hybrid approach is more complex to implement
and requires coordinating the implementation of the two methods,
which can lead to misconfigurations. In addition, the use of
wrapper methods may still consume significant computational
resources on large datasets, despite the fact that the initial screening
reduces the number of features. The complex implementation
process may lead to irrational feature selection, which affects the
performance of the model, especially when the features are poorly
selected, which may result in the model not being able to learn the
structure of the data efficiently.

3.6.2 Method selection guidelines
In real-world biomedical applications, the choice of an

appropriate feature selection method strongly depends on the
dataset characteristics and practical constraints. For example,
filter-based methods are usually preferred when dealing with
high and small sample datasets due to their simplicity and
scalability. Wrapper methods, while usually yielding higher
accuracy, may not be suitable for large datasets due to their high
computational cost. Embedded methods provide a compromise
by integrating model training and feature selection, making
them more popular in scenarios where classifier performance
is critical. Hybrid methods are especially valuable when both
selection quality and computational feasibility are required.
These practical considerations are crucial when applying feature
selection to tasks such as personalized medicine or early cancer
diagnosis.

When selecting an appropriate feature selection method for
microarray datasets, which typically exhibit high dimensionality,
low sample size, and class imbalance, it is essential to make targeted
decisions based on the specific characteristics of the data. For
datasets with extremely small sample sizes and extremely high
feature dimensions, such as Leukemia, Colon, and Prostate, the
Filter method is recommended. This method is computationally
efficient, relatively robust to small samples, and can quickly
eliminate a large number of redundant features. Additionally, the
Filter method does not depend on specific learners and is suitable
as a pre-screening step in the first phase to reduce the difficulty of
subsequent modeling.

In datasets with significant class imbalance, such as Leukemia1,
MLL, and CNS, Hybrid methods or Wrapper methods with
class-aware mechanisms perform more stably. Especially under

feature score bias caused by class imbalance, Hybrid methods
can effectively mitigate bias by combining independent scoring
with model feedback. For multi-class datasets, such as SRBCT,
Lymphoma and Leukemia2, it is important to consider the
method’s support for multi-class discrimination capabilities. In
such tasks, embedded methods like LASSO and tree models are
more suitable. These methods can dynamically adjust feature
importance during training based on the objective function and
effectively account for inter-class differences, adapting to multi-
class structures.

In summary, different feature selection methods have their
own advantages on different types of microarray datasets.
Filter methods are suitable for datasets with high feature
redundancy and severe small sample problems; Hybrid and
Wrapper methods demonstrate high adaptability when dealing
with class imbalance, and Embedded methods are suitable for
multi-class classification or tasks with high requirements for feature
interdependencies. By reasonably combining different methods,
more stable and interpretable results can be achieved in various
data scenarios.

3.6.3 Number of papers with di�erent methods
The number of papers for every year can be found in

Figure 5. The research on feature selection for microarray data has
experienced a trend of first decline and then rise in the number of
articles, mainly due to the fact that initially researchers focused on
simple feature selection methods, while with the maturity of the
technology and the rise of deep learning and integration methods,
the research has gradually shifted to more complex techniques,
which led to a decline in the number of studies on traditional
methods. However, in recent years, with the improvement of
computational power and the increase of data complexity, the
research on feature selection has become active again, and the
number of related literatures has risen rapidly, especially driven by
new technologies. This change is attributed to technology iteration,
data complexity, and cross-fertilization between fields such as
bioinformatics and computer science. Studying feature selection
can not only significantly improve model performance, reduce
computational resource consumption and risk of overfitting, but
also help to extract biologically significant and important features,
facilitate the understanding of disease mechanisms, and promote
the development of new algorithms and models. Therefore, the
study of feature selection is of great significance for the progress
and innovation in the field of microarray data analysis.

In conclusion, while hybrid methods dominate the landscape
of microarray feature selection, challenges remain in achieving
comprehensive and interpretable results. Continued research
efforts focused on improving classification accuracy, reducing
dimensionality, and enhancing interpretability are essential to
unlock the full potential of microarray feature selection in
biomedical applications.

3.6.4 Classification results
Classifiers play a pivotal role in feature selection by serving as

the core component for evaluating and selecting feature subsets.
They aid in identifying which features are most conducive to
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Number of articles using di�erent classifiers.

predicting the target variable by training on the training set
and assessing their performance. The performance of classifiers
frequently serves as a criterion for selecting feature subsets,
and they are also utilized to guide the optimization of feature
subsets. This ensures that the chosen feature subset enhances
performance of the model and generalization capabilities. We have
summarized the frequency with which different methods employ
various classifiers, as depicted in Figure 6. The figure illustrates that
KNN and SVM are frequently employed as classifiers, likely due
to their robustness and generalization capabilities, making them
effective in handling high-dimensional data. The KNN classifier is

known for its simplicity and ease of implementation. It operates
by identifying the K instances in the training dataset that are
closest to the new sample and making predictions based on their
majority class. This method is particularly suitable for processing
nonlinear data and scenarios with numerous outliers. On the
other hand, SVM stands out as a powerful supervised learning
algorithm that excels in separating different categories of data by
identifying a hyperplane that maximizes the classification margin.
It is adept at handling both linearly separable and inseparable
problems, and can be extended to address nonlinear challenges
through kernel techniques. Given these attributes, KNN and SVM
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TABLE 7 Classification accuracy on binary class datasets.

References Breast Ovarian CNS Prostate DLBCL Leukemia Colon cancer

Tavasoli et al. (2021) 98.2 (7) – – 100 (10) – 100 (6) 99.3 (7)

Saberi-Movahed et al. (2022) – – 68.10 (40) 68.62 (10) 91.59 (70) 31.94 (10) 88.06 (40)

Nematzadeh et al. (2019) – – 80.00 (–) – – – 90.00 (–)

Abdel-Basset et al. (2021) – – – – – 93.30 (–) 84.60 (–)

Das et al. (2022) 99.12 (–) – – – – 96.36 (–) 76.59 (–)

Ganesh et al. (2023) – 100 (–) – – – – 100 (–)

Almugren and Alshamlan (2019) – – – – – 99.50 (11) 93.50 (19)

Panda (2020) 73.43 (4) 99.21 (14,771) 56.67 (5,603) 88.24 (8,334) 91.49 (2,310) 100 (4,667) 79.03 (1,429)

Guha et al. (2020) – – – 96.30 (9) 100 (24) 100 (4) 100 (30)

Peng et al. (2021) – – 100 (7) 98.10 (4) 100 (3) 100 (2) 98.50 (6)

Shukla et al. (2019c) – – – 95.32 (20) 90.01 (20) – 90.15 (18)

Shukla et al. (2019c) – – – 99.13 (8) 99.52 (11) – 99.01 (12)

Jain and Singh (2021) – 89.33 (5,432) – 83.33 (6,333) – 80.95 (3,394) 71.43 (812)

Pirgazi et al. (2019) 88.17 (10.2) – 95.64 (6.7) 94.18 (7.8) 99.21 (6.8) 99.62 (5.2) 94.72 (5.3)

Dabba et al. (2021a) 100 (150) 100 (200) 100 (150) 100 (80) 100 (100) 100 (10) 100 (80)

Dabba et al. (2021a) 77.53 (27.73) 99.37 (20.60) 100 (31.27) 99.87 (32.60) – 100 (36.47) 100 (30.67)

Dash (2021) 93.00 (–) – – – 88.00 (–) 96 (–) 74 (–)

Shukla et al. (2020) – – – 98.42 (7) 99.62 (17) – 98.87 (16)

Alomari et al. (2021) – 100 (3.56) 99.38 (17.46) – – – 95.86 (9.8)

Shukla et al. (2019c) – – – 96.15 (21) 89.91 (25) – 85.24 (23)

Qiu (2019) – – – – – 71.24 (–) 81.63 (–)

Aljarah et al. (2020) – – – – – 98.90 (–) 97.90 (–)

Baliarsingh et al. (2020) 88.88 (20) 100 (150) – – – 99.21 (40) 95.06 (100)

Han et al. (2021) – – – – 85.13 (–) – 78.56 (–)

Bold values indicate the best accuracy among all methods.

have become staples in microarray feature selection. They assist
researchers in extracting valuable insights from intricate gene
expression data, consequently enhancing prediction accuracy and
the biological interpretability of models. Their versatility and
effectiveness make them indispensable tools in the pursuit of
understanding and leveraging genetic information for various
applications in biomedicine and beyond.

The classification results obtained from microarray datasets
hold significant implications for disease diagnosis, biomarker
discovery, drug development, understanding disease mechanisms,
and advancing personalized medicine. Accurate classification
of microarray data unveils the relationship between gene
expression patterns and biological states, furnishing a scientific
foundation for medical decision-making, fostering precision
medicine development, and facilitating profound biomedical
research endeavors. Thus, ensuring the precision of classification
outcomes for microarray datasets is imperative for research and
clinical applications in related domains. This study compiled
data on the classification accuracy of various methods applied
to microarray feature selection, utilizing commonly employed
datasets. The statistical classification accuracy of microarray feature

selection methods is delineated in Tables 7, 8. In both tables, “–”
means that the feature selectionmethod is not tested on this dataset.
Furthermore, in addition to assessing classification accuracy, some
methods use the dimensionality of the selected feature subset
as an evaluation criterion for the feature selection process. The
entries highlighted in bold in the tables represent the methods that
produce the highest performance on the corresponding dataset.
These tables are valuable resources for researchers and practitioners
to gain insight into the efficacy of different feature selection
methods in accurately classifying microarray data. By utilizing
this information, informed decisions can be made regarding the
selection and implementation of feature selection techniques to
advance the field of microarray data analysis and its diverse
applications in biomedical and other fields.

This chapter explores different feature selection methods for
microarray data analysis, including filter, wrapper, embedded,
hybrid and other methods, evaluating their strengths and
weaknesses. Hybrid methods, combining various techniques, have
emerged as powerful tools, enhancing model performance
and interpretability. With technology advancements and
increasing data volume, hybrid methods are expected to play
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TABLE 8 Classification accuracy on multi-class datasets.

References MLL Leukemia
1

Brain
tumor 2

11
Tumor

Brain
tumor
1

9
Tumor

Leukemia
2

Lung
cancer

(Harvard)

SRBCT

Lee et al.
(2021)

98.61 (130) – – – – – – 96.55 (110) 100 (10)

Panda (2020) 80.56
(12,392)

– – – – – – 94.10 (8,056) 93.98 (1,540)

Almugren and
Alshamlan
(2019)

– – – – – – 92.58 (19) – 97.50 (12)

Guha et al.
(2020)

100 (8) – – – – – – – 100 (30)

Peng et al.
(2021)

100 (3) – – – – – – 100 (5)

Shukla et al.
(2019c)

– 95.35 (12) – 92.23 (13) 96.98 (12) 73.51 (11) 99.57 (7) 99.87 (10) 99.91 (5)

Shukla et al.
(2019c)

– – – – – – – 98.18 (22) 89.31 (17)

Shukla et al.
(2020)

– 94.15 (16) – 93.04 (13) 96.92 (15) 70.88 (12) 98.84 (12) 99.61 (13) 99.17 (11)

Alomari et al.
(2021)

100 (8.4) – – – – – – 97.91 (15.8) 100 (12.3)

Houssein et al.
(2021)

– – – – – – 100 (6) – 100 (4)

Dabba et al.
(2021a)

100 (130) – 100 (150) 100 (130) 100 (150) 100 (150) 100 (50) 100 (130) 100 (80)

Dabba et al.
(2021a)

– – 100 (34.73) 100 (40.73) 100

(35.40)

100

(39.27)

100 (35.53) 100 (26.60) 99.44 (28.27)

Alanni et al.
(2019)

– 100 (–) 99.90 (–) 99.88 (–) 99.80 (–) 98.88 (–) 100 (–) 100 (–) 100 (–)

Shukla et al.
(2019c)

– – – – – – – 98.32 (24) 89.02 (19)

Zhou et al.
(2021)

– 94.83 (45.2) 76.92
(172.7)

88.16
(473.6)

74.83
(133.4)

50.02
(64.4)

97.30 (171.4) 84.18 (454.4) 99.63 (52.2)

Dhal and Azad
(2021)

– – 100 (10) 97.85 (52) 97.95 (37) 86.67 (37) – 99.83 (38) 100 (10)

Bold values indicate the best accuracy among all methods.

a key role in future research, offering adaptable solutions to
address evolving challenges in microarray data analysis and
biomedical research.

4 Microarray feature selection
application

Microarray feature selection technology holds a central position
in disease classification and diagnosis. By scrutinizing patient
gene expression data through feature selection, it markedly
enhances early diagnostic precision, identifies disease subtypes,
discovers biomarkers, and predicts drug sensitivity. The successful
application of this high-throughput analysis method, notably in
cancer research, has significantly influenced both medical research
and clinical practice.

In real-world biomedical research, feature selection methods
are often chosen with more than just classification accuracy

concerns. Researchers must also balance the computational
efficiency of the algorithm, the cost of implementation, and the
interpretability of the results. For example, in time-sensitive clinical
environments such as cancer subtype prediction or diagnostic
screening, the ability to obtain results quickly may be more
important than small improvements in accuracy. Therefore, an
algorithm that can provide acceptable accuracy in a shorter period
of time may be preferred to some complex but computationally
expensive methods.

Data distribution is also a key consideration in real-world
applications, especially in scenarios with small sample sizes or
severe category imbalances. For example, in disease prediction
tasks, the number of positive cases is usually small. In such cases,
distance-based feature selection methods may perform poorly
due to neighborhood structure bias. In contrast, some hybrid or
embedded methods that incorporate category prior information
or regularization strategies tend to have better stability. Therefore,
in specific applications, in addition to the method category, its
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robustness to sample bias is also an important criterion for
method selection.

Therefore, the adoption of feature selection methods in the
real application often requires a trade-off between algorithm
complexity, selection accuracy and scalability. This trade-off is
especially critical when translating computational research results
into clinical practice, where clinical environments often have
practical constraints on time, interpretability, and compatibility
with downstream analysis tools. Taking these factors into account
can help in choosing feature selection methods that have both
theoretical strengths and practical needs.

Several advanced methodologies have been proposed for
microarray feature selection and classification. Rochayani et al.
(2020) introduced a two-stage method employing the Lasso
regularization method followed by Classification and Regression
Trees for further refinement and classification. Xie et al.
(2022b) proposed a feature selection algorithm and classification
model grounded in graph neural networks, overcoming existing
method limitations by enriching graph structural relationships
via link prediction techniques. Wu et al. (2022) utilized
XGBoost followed by the gray wolf algorithm to pinpoint the
optimal gene subset for cancer classification. Wang et al. (2020)
devised a novel feature selection approach within the ensemble
learning framework, corroborating its robustness through multiple
aggregation methods. Zare et al. (2023) advocated a supervised
feature selection approach based on manifold learning, integrating
Supervised Laplacian eigenmaps and matrices for comprehensive
feature selection. Prajapati et al. (2023a) employed ant colony
optimization in tandem with logistic regression, decision tree, and
random forest for exhaustive feature selection and classification
accuracy comparison. Prajapati et al. (2023c) used a genetic
algorithm for feature selection in combination with classification
algorithms such as logistic regression, decision tree, and random
forest to detect cancer, tumors and various other diseases. Sahu
and Dash (2024) proposed a hybrid FS model based on the Jaya
optimization algorithm and information gain, which verified the
effectiveness of IG technology in feature selection. Additionally,
there are many cases where microarray feature selection has been
used in disease subtype diagnosis. Mehrabani et al. (2022) used
microarray gene expression data from 72 patients with acute
myeloid leukemia (AML) and lymphoblastic leukemia (ALL), and
the RF and SVM classifiers correctly classified all AML and
ALL samples.

Disease subtypes play a significant role in disease classification
and treatment choice. Understanding disease subtypes supports
personalized medicine and tailored treatment strategies. Maulik
et al. (2013) demonstrated the effectiveness of feature selection
and transductive SVM in predicting cancer subtypes. Roberts et al.
(2018) distinguished clinically relevant cancer subtypes using a
differential variance classifier, with combined methods yielding
superior results.Wang et al. (2023b) validated the efficacy of feature
selection and Bayesian networks in identifying protein biomarkers
for cancer subtypes.

Biomarkers serve as crucial indicators in disease diagnosis,
monitoring, and assessing treatment effectiveness. Trevizan
and Recamonde-Mendoza (2021) proposed Ensemble Feature
Selection for identifying potential breast cancer biomarkers.

Colombelli et al. (2022) developed a hybrid ensemble feature
selection design to enhance the reproducibility of genomic
biomarker discovery. Xie et al. (2022a) introduced a novel
biomarker selection method, demonstrating its effectiveness
in feature reduction and classification accuracy improvement.
Alzubaidi et al. (2022) addressed challenges in breast cancer
staging by developing a deep learning-based feature extraction
module for identifying robust biomarkers. Ge (2023) proposed
FSRL for identifying potential biomarkers for various high-
mortality cancers, demonstrating superior classification accuracy
and computational efficiency.

Drug sensitivity prediction employs various methods and
techniques to anticipate an individual’s response to specific
medications, leveraging their biological characteristics, genomic
information, or other biomarkers. This predictive approach serves
the goal of personalized medicine in the medical field, striving
to maximize drug treatment efficacy while minimizing adverse
reactions. Microarray technology plays a crucial role in this
endeavor by collecting gene expression data from individual
samples and scrutinizing the correlation between this data and
drug responses. For instance, Chen and Sun (2017) devised a novel
method for high-dimensional dual-layer feature selection, utilizing
a set of response variables that share a standard set of predictive
variables. Simulation results indicate heightened sensitivity and
specificity compared to existing methods. Meanwhile, Ahmed
et al. (2020) described a network-based approach for identifying
features in drug response prediction. They employed a gene
co-expression network to pinpoint representative features and
proposed a graph neural network model integrating gene network
information for outcome prediction. Koras et al. (2020) introduced
a prior-knowledge-driven feature selection method grounded in
drug targets, target pathways, and gene expression features.
Validation underscored the importance of selecting appropriate
feature selection strategies, particularly for drugs targeting specific
genes, pathways, or affecting general mechanisms such as immune
response and DNA replication. These models show promise in
guiding treatment design. Ataei et al. (2021) initially employed
gene fuzzy score and principal component analysis to reduce
data dimensions, followed by SVM classification of sensitive and
resistant data samples. Subsequent Wilcoxon Rank Sum tests
determined differentially expressed genes, contributing to the
understanding of drug sensitivity mechanisms. Yang et al. (2022)
proposed a cancer drug sensitivity prediction model based on
multi-omics data constructed using stacked ensemble learning
methods. Through functional annotation and enrichment analysis
of feature genes, they elucidated potential resistance mechanisms
of tumors to sorafenib, substantiating the model’s interpretability
from a biological perspective. This model holds promise in guiding
clinical drug usage.

Given the diverse application scenarios outlined above,
selecting an appropriate feature selection strategy must be tailored
to the specific goals and data characteristics of each task. In
microarray data analysis, the objective of feature selection is
not singular but closely tied to the problem being addressed.
For disease subtype classification, classification accuracy and
generalization capability are critical, especially as the model
needs to capture subtle yet important expression differences.
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FIGURE 7

Word cloud of application areas.

Hence, wrapper or embedded methods are commonly adopted,
as they can adaptively optimize feature subsets based on model
performance feedback. These approaches are better suited for
capturing nonlinear relationships and dealing with the challenges
of high dimensionality and limited sample sizes. Some studies
have further enhanced performance by incorporating transfer
learning and graph-based structures to model complex biological
dependencies.

In contrast, biomarker discovery emphasizes the stability,
reproducibility, and biological interpretability of selected features.
In such cases, filter methods are often favored due to their
reduced dependency on specific classifiers and increased robustness
across datasets. Recently, ensemble strategies and multi-criteria
fusion techniques have gained popularity. These combine multiple
scoring metrics or selection algorithms to ensure that the resulting
biomarkers are both statistically significant and biologically
meaningful.

For drug sensitivity prediction, the goals extend beyond
classification accuracy to include interpretability and
generalizability across diverse biological conditions. Since
drug responses often involve intricate molecular mechanisms
and multi-omics interactions, this domain frequently employs
network-based analysis, embedding methods, and automated
feature engineering techniques. These are often combined with
ensemble learning or multi-layer integration models to enhance
predictive performance. Furthermore, dimensionality reduction
techniques such as PCA are commonly used during preprocessing,
followed by supervised feature evaluation, to maintain both model
robustness and biological interpretability.

In conclusion, microarray feature selection is integral to disease
diagnosis, biomarker discovery, and drug sensitivity prediction.
Its application in disease subtype diagnosis, biomarker discovery,

and drug sensitivity prediction underscores its significance
in advancing personalized medicine and improving treatment
outcomes. Figure 7 illustrates a schematic diagram of a word cloud
generated by the application of microarray feature selection in
various fields. The prominent keywords include “gene,” “feature
selection,” “identify,” “disease,” and “biology.” This visualization
underscores the significance of microarray feature selection in
bioinformatics research. It plays a pivotal role in selecting valuable
information from complex gene expression data, thereby advancing
biomedical research and contributing to the understanding and
treatment of diseases.

The application trends in microarray feature selection are
primarily characterized by the integration of deep learning
technologies, the incorporation of multi-modal data integration,
standardization and annotation, the pursuit of interpretability and
biological relevance, the expansion into clinical applications, and
the emphasis on privacy protection and security. These trends
highlight the rapid evolution and shifting research focus within
the field of microarray feature selection, foreshadowing both
opportunities and challenges ahead. As technology advances and
data volumes grow, these trends are expected to continue evolving,
bringing forth more innovations and breakthroughs in the field of
microarray data analysis.

5 Summary and future work

This study systematically reviews the literature on microarray
feature selection and explore its significance in both academic
and practical fields. By integrating existing studies, we aim
to help readers gain a comprehensive understanding of the
overall development of microarray feature selection, including
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the strengths and weaknesses of different approaches and their
applicability scenarios. We identify gaps in current research and
point out areas that have not yet been fully explored to provide clear
directions for subsequent research, thus stimulating the academic
community to explore new techniques and applications.

In addition, this review provides a comprehensive assessment
of various feature selection methods, aiming to provide researchers
with theoretical foundations and practical guidance in selecting
methods suitable for their specific research questions, in order
to promote the optimization of existing techniques and the
development of new methods. We emphasize the importance
of fostering communication and collaboration between multiple
fields, including bioinformatics, computer science, and statistics, to
help researchers draw on best practices from other disciplines to
further advance microarray analysis techniques.

Finally, by emphasizing the importance of feature selection
in real-world applications such as personalized medicine,
cancer diagnosis, and drug discovery, we hope to enhance the
understanding of the value of these techniques among industry
practitioners, and thus promote their implementation in practice.
In summary, this review not only provides theoretical support for
the academic community, but also provides practical guidance
for the practical field, significantly contributing to the overall
improvement of microarray data analysis techniques.

With the development of technology, the field of microarray
feature selection is facing unprecedented innovation opportunities,
and its future development will focus on the dual breakthroughs
of technological innovation and practical applications. At the
technical level, the deep integration of deep learning and feature
selection will become an important breakthrough. By building
a deep feature selection framework with adaptive capability,
researchers can automatically capture high-order nonlinear feature
interactions in the data and significantly improve the accuracy and
efficiency of feature selection. Meanwhile, the optimization
innovation of integrated learning methods will promote
the establishment of multi-algorithm collaborative selection
mechanism, which will realize the synergistic enhancement of the
stability and generalization of the feature selection results through
intelligent weighted fusion and dynamic voting strategies. It should
be noted that, while performing performance breakthroughs,
interpretability has become a key bottleneck in the development
of this field. The “black-box” nature of the current deep feature
selection model severely restricts its application in clinical practice,
so there is an urgent need to develop new algorithms with both
high performance and interpretability, as well as a framework
for evaluating the importance of features by integrating causal
reasoning, to provide a transparent and traceable scientific basis
for biomedical decision-making.

In application expansion, microarray feature selection will play
a greater role in the future in the fields of precision medicine,
drug discovery and multi-omics analysis. As research shifts
from static classification to dynamic prediction and mechanism
exploration, feature selection will help model disease processes
and develop individualized treatment strategies. The fusion of
multi-omics data will promote the systematic understanding of
complex disease mechanisms, while in drug development, feature
selection will accelerate target identification and drug response

prediction. In addition, the technology will be expanded to systems
biology, environmental monitoring and other emerging fields to
support the in-depth analysis of complex biological systems and
ecological factors. In the future, microarray feature selection is
expected to become an important tool for data-driven knowledge
discovery, promoting the transformation of life science research
into intelligent and systematic.

It is worth noting that in recent years, with the rapid
development of reinforcement learning (RL) and large language
models (LLMs), their potential in microarray feature selection
has gradually attracted attention. Reinforcement learning models
feature selection as a sequential decision-making process, where
an agent dynamically adjusts the selected feature subset based
on feedback. This not only improves selection efficiency and has
strong generalization capabilities. For example, the reinforcement
learning-based automated feature selection framework proposed
by Liu et al. (2021) demonstrates better robustness and selection
stability on multiple high-dimensional datasets. Fan et al.
(2020)’s AutoFS design integrates diversity reward mechanisms
and interactive reinforcement learning strategies, enhancing
interpretability while maintaining performance. Additionally,
multi-agent collaborative selection methods have also achieved
outstanding results in feature subspace exploration (Liu et al.,
2019).

On the other hand, the combination of large language models
and structured data analysis also shows great potential. The
CAAFE framework proposed by Hollmann et al. (2023) integrates
LLM with tabular predictors to achieve an integrated process of
feature construction, model guidance, and interpretation. This
framework can combine biological background knowledge with
natural language instructions in practical applications, assisting
researchers in efficiently identifying biologically meaningful
features from complex gene expression data. The integration
of these technologies not only provides smarter and more
automated tools for feature selection, which also expands new
possibilities for cross-modal data analysis and human-machine
collaborative modeling.

While this review systematically compares and synthesizes
experimental results reported in previous literature, we
acknowledge that this study has not yet conducted new empirical
benchmarking experiments. As this paper is a literature-focused
review, its scope and focus dictate that we primarily rely on
existing experimental results to draw comparative conclusions.
However, we recognize the importance of standardized, unified
benchmarking across different datasets and methods and plan to
incorporate such comparative assessments in future research. By
conducting research under consistent experimental conditions,
we aim to provide a more objective assessment of the strengths
and weaknesses of each method, thereby offering deeper empirical
insights into microarray feature selection techniques.

In the future, microarray feature selection technology will
continue to develop under the dual-wheel drive of algorithm
innovation and application expansion. On the one hand, with the
introduction of cutting-edge technologies such as interpretable AI
and causal inference, the feature selection process will be more
transparent and reliable; on the other hand, its in-depth application
in the fields of precision medicine and drug discovery will continue
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to promote the transformation of biomedical research into a new
paradigm of data-driven and knowledge discovery. These advances
will significantly enhance the analytical value of microarray data,
and will revolutionize human health research and clinical practice.
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