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Iron deficiency anemia (IDA) and beta-thalassemia trait (BTT) are prevalent

causes of microcytic anemia, often presenting overlapping hematological

features that pose diagnostic challenges and necessitate prompt and precise

management. Traditional discrimination indices—such as the Mentzer Index,

Ihsan’s formula, and the England and Fraser criteria—have been extensively

applied in both research and clinical settings; however, their diagnostic

performance varies considerably across di�erent populations and datasets. This

study proposes a novel and interpretable diagnostic model, the Basrah Score,

developed using Elastic Net Logistic Regression (ENLR). This machine learning–

based approach yields a flexible discrimination function that adapts to variations

in clinical and environmental factors. The model was trained and validated

on a local dataset of 2,120 individuals (1,080 with IDA and 1,040 with BTT),

and was benchmarked against eight conventional indices. The Basrah Score

demonstrated superior diagnostic performance, with an accuracy of 96.7%,

a sensitivity of 95.0%, and a specificity of 98.6%. These results underscore

the importance of incorporating advanced pre-processing techniques, class

balancing, hyperparameter optimization, and rigorous cross-validation to ensure

the robustness of diagnostic models. Overall, this research highlights the

potential of integrating interpretable machine learning models with established

clinical parameters to improve diagnostic accuracy in hematological disorders,

particularly in resource-constrained settings.
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beta thalassemia, iron deficiency anemia, Elastic Net Logistic Regression (ENLR),
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1 Introduction

Anemia is a major global health problem distinguished by a deficiency of red blood

cells or hemoglobin that impairs oxygen delivery to tissues in the body. The World Health

Organization estimates that 1.6 billion people worldwide have anemia (McLean et al.,

2009). Its prevalence varies widely according to specific physiological factors such as age,

sex, race, residential elevation above sea level (altitude), smoking behavior, different stages

of pregnancy, and geographical distribution (World Health Organization, 2024, 2011).
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Iron deficiency anemia (IDA) is the most common form of

anemia, responsible for roughly 50% of all anemia worldwide (Yang

et al., 2023; Owaidah et al., 2020). IDA results from depleted

iron stores manifesting as microcytic, hypochromic erythrocytes.

Classical clinical features include fatigue, pallor, and dyspnea.

Diagnosis has traditionally depended on serum ferritin level and

iron tests, which are expensive and require sophisticated laboratory

facilities (McLean et al., 2009; Burz et al., 2019).

BTT is an inherited hemoglobinopathy that causesmicrocytosis

and mild anemia and tends to manifest masquerading as IDA.

HbA2 quantification using HPLC or electrophoresis is required for

confirmatory diagnosis, which is not affordable and not feasible

in resource-scarce settings (Singh et al., 2020; Aljebaly, 2024).

Thalassemia syndromes account for 75% of the documented cases

of hemoglobinopathy disorders in Iraq, highlighting a significant

public health concern. Recent local epidemiological studies

indicate considerable geographic disparities, with Basra province

bearing the highest burden, representing 67% of the region’s

total thalassemia cases. This increased prevalence is primarily

linked to the high rate of consanguineous marriages, which

persist at 60–70% across the country, facilitating the transmission

of recessive hemoglobin disorders through generations. The

observed epidemiological trends underscore the urgent need

for targeted genetic counseling and comprehensive screening

initiatives, particularly in areas with high prevalence, such as

southern Iraq (Lafta, 2023; Khaleel, 2020).

Distinguishing between IDA and BTT poses a considerable

clinical challenge, mainly because of their shared symptoms, such

as fatigue and microcytosis. The diagnostic process is further

complicated by similar laboratory results, including low mean

corpuscular volume (MCV) and mean corpuscular hemoglobin

(MCH), making it difficult for clinicians to differentiate between

these two conditions accurately. Physicians must differentiate

between IDA and beta thalassemia trait (BTT). Accurate diagnosis

is essential to prevent unnecessary iron supplementation and to

avoid misdiagnosing major beta thalassemia, particularly during

pre-marital consultations aimed at reducing the risk of having

children with this condition. This precise distinction safeguards

patient health and helps lower healthcare costs associated with

inappropriate treatments (Miri-Moghaddam and Sargolzaie, 2014).

Several discriminant indices have been developed to distinguish

between β-thalassemia trait (?TT) and IDA, including Mentzer

Index (MI), Ehsani (EI), England & Fraser (EF), Green & King

(GK), RBC count, RDW, RDWI, Ricerca (RI), Shine & Lal (SL),

Sirdah (SI), Srivastava (SVI), and M/H ratio. Most of all, they

do not achieve 100% sensitivity (Sen) or specificity (Spe), as their

diagnostic utility necessarily depends on well-optimized cutoff

values, which also vary among populations (Uzunoglu and Yilmaz

Keskin, 2024). Most formulas include an unbalanced consideration

of specific RBC parameters (e.g., MCV, RBC count) and neglect

others (e.g., hemoglobin content, reticulocyte indices). In contrast,

they might overlook significant diagnostic information (Aljebaly,

2024; Elshaikh et al., 2022). This methodological weakness and

wide inter-population variation in hematological parameters lead

to variable performance between ethnic groups. The applicability

of these indices is limited, as they are unsuitable for children,

pregnant women, or individuals with coexisting IDA and BTT.

This renders CBC and RBC indices unreliable for differentiating

between BTT and IDA. Additionally, these indices may yield false-

positive results in patients with conditions such as pregnancy,

malnutrition, rheumatoid arthritis, tuberculosis, kidney failure, and

malaria (Jahangiri et al., 2020; Ebrahimpour Sadagheyani et al.,

2022).

Integrating machine learning systems into clinical practice

represents a fundamental shift in contemporary healthcare systems,

offering unprecedented opportunities to enhance diagnostic

accuracy and improve the efficiency of treatment decision-

making. There is an urgent need for systematic research focused

on ensuring the fairness and transparency of algorithms, as

these factors are critical determinants for successfully adopting

these technologies across various clinical environments. Machine

learning systems possess exceptional analytical capabilities for

processing vast datasets, enabling the extraction of precise

statistical patterns and the development of dynamic predictive

models. These methodologies surpass traditional approaches in

terms of diagnostic accuracy and economic efficiency, while also

demonstrating adaptability to diverse demographic characteristics,

including racial, gender, and population variables (Alowais et al.,

2023).

In practical applications, machine learning-based intelligent

systems have developed advanced diagnostic solutions, providing

unprecedented support to medical teams in clinical assessment

and treatment decision-making processes (Saberi-Karimian et al.,

2021; Abdillahi et al., 2024). These technologies enable dynamic

adaptation to pathological patterns, ensuring both statistical

accuracy and clinical relevance. Machine learning (ML) offers a

cost-effective, rapid, and accurate alternative by extracting hidden

patterns from blood indices; it can integrate the impacts of multiple

variables (e.g., RBC count, RDW, MCV) to improve diagnostic

precision beyond traditional indices (Mahmood, 2025; Feng et al.,

2021).

This study aims to develop an accurate and cost-effective

diagnostic scoring model utilizing advanced machine learning

techniques to analyze the morphological features of red blood cells

(RBCs), with a focus on identifying the most influential features

in the diagnostic process. The proposed model is characterized

by its ability to extract complex data patterns from hematological

data, as it relies on an integrated research methodology that

includes a phase of pre-processing the raw data to ensure its quality

and exclude outliers. It offers a dynamic and adaptive diagnostic

solution that is more accurate, reaching 99% in some cases than

traditional methods, and can be integrated into RBC Analyzer

devices as an aid to the clinician to improve diagnostic accuracy

and optimal clinical decision making.

The study proposes employing Elastic Net Logistic Regression

(ENLR) within this research framework. This advanced machine

learning algorithm simultaneously addresses three critical

challenges: (1) effectively handling multicollinearity among

hematological parameters through its built-in regularization

properties, (2) achieving superior classification accuracy

compared to traditional discrimination indices, and (3)

maintaining model interpretability via SHAP (SHapley Additive

exPlanations) value analysis. This multivariate approach

significantly improves differentiation between IDA and BTT
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cases, outperforming conventional diagnostic indices across

multiple performance metrics.

This study makes a significant contribution by introducing

a new discrimination score that addresses the paradoxes

associated with CBC indices. Additionally, it provides a systematic

comparison of eight traditional discrimination indices against the

performance of the Basrah Score-developed model, positioning it

as a practical tool for application in low-resource environments.

The research methodology of this study comprises five

systematically organized components: The investigation

commences with an extensive Introduction establishing the

theoretical foundations and research significance, followed by a

comprehensive Literature Review that critically evaluates prior

studies and identifies the precise knowledge gap. A rigorous

Methodology section then details the experimental design,

data collection protocols, and advanced analytical techniques.

Subsequently, the Results and Discussion section presents robust

data interpretation, contextualizing the findings within the

current scholarly discourse. The study culminates in a substantive

conclusion that synthesizes key contributions and proposes future

research directions.

2 Materials and methods

This study developed a machine learning framework designed

to differentiate between IDA and BTT. Through initial statistical

analyses of the used dataset, we identified key parameters, including

hematological and demographic parameters. Our approach

involved several critical steps: meticulous data pre-processing,

the development of an ENLR model for feature selection and

regularization. The ENLR model was chosen for its proficiency

in determining parameter importance and its capacity to reduce

the impact of multicollinearity, thereby improving both predictive

accuracy and clinical significance. Comparative analysis with the

traditional Discrimination indices. Finally, a thorough evaluation

of performance in conjunction with clinical interpretation.

FIGURE 1

Shows sex distribution of IDA and BTT.

2.1 Dataset description

The data for this study were collected from the Basrah

Oncology and Hematology Center in Basrah, Iraq, between

2017 and 2020. A total of 2120 participants were included,

comprising 1,080 individuals diagnosed with IDA (167 male

and 913 female) and 1,040 individuals (569 male and 471

female) with BTT diagnoses, as shown in Figure 1. Patients with

anemia of inflammation, transfusion-dependent Thal, pregnancy,

or incomplete laboratory data were excluded. To exclude anemia

due to inflammation and pregnancy, a hematologist reviewed the

medical records to confirm IDA and BTT diagnoses and exclude

patients with inflammation and infection.

The dataset contained eight features: Sex, Age Class, Hb, RBC,

MCV, MCH, MCHC, and IDA. These parameters and their normal

values are described in Table 1.

2.2 Statistical analysis of the dataset

Before developing the ENLR model, comprehensive statistical

analyses were performed to thoroughly understand the data

distribution and identify key parameters that affect the diagnosis.

These preliminary analyses identify significant variables and assess

their relationships with each other, ultimately improving the

model’s accuracy.

TABLE 1 Hematological and demographic parameters used in this study.

Feature Description Normal
range

Sex Refers to the biological sex of an

individual (male or female).

Age-class Represents the classification of

individuals into age groups (e.g.,

0–10, 10–20, 20–30, . . . . ).

Hb (Hemoglobin) A protein in red blood cells that

carries oxygen.

Men: 13.8–17.2

g/dL

Women:

12.1–15.1 g/dL

RBC (red blood cell

count)

The number of red blood cells in

a volume of blood.

Men: 4.7–6.1

million cells/µL

Women: 4.2–5.4

million cells/µL

MCV (mean

corpuscular

volume)

Measures the average size of red

blood cells.

80–100 fL

(femtoliters)

MCH (mean

corpuscular

hemoglobin)

The average amount of

hemoglobin per red blood cell.

27–31 pg

(picograms) per cell

MCHC (mean

corpuscular

hemoglobin

concentration)

The average concentration of

hemoglobin in red blood cells.

32–36 g/dL

IDA (iron

deficiency anemia)

A type of anemia caused by

insufficient iron, leading to low

hemoglobin and impaired

oxygen transport.

IDA=1 for IDA,

IDA= 0 for BTT
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Table 2 shows the analysis of key demographic factors (sex, age)

and hematological parameters (Hb, RBC, MCV, MCH, MCHC),

revealing statistically significant differences (p < 0.001) with

moderate to substantial effect sizes (Cohen’s d ranging from

−2.583 to 0.904). Notably, the IDA group had a higher proportion

of females (mean = 0.845 compared to 0.453; d = 0.904),

consistent with established epidemiological patterns, and IDA

patients were generally younger (mean age = 31.85 vs. 40.26; d

= −0.527). Hemoglobin (Hb) demonstrated the most substantial

discriminative ability (IDA mean = 8.47 vs. BTT 11.87; d =

−2.583), followed by MCV (66.26 fL vs. 80.34; d = −1.581) and

MCH (d = −2.049), which are essential for identifying microcytic

hypochromic anemias. RBC (d = −0.672) and MCHC (d =

−0.823) contributed to the differentiation process. These results

underscore the diagnostic importance of the selected parameters.

Figure 2 shows a comparison of mean values by IDA and BTT.

2.3 General framework

Figure 3 illustrates the comprehensive framework for

developing a discrimination system. The objective is to create a

Machine Learning-Based Score for Differentiating Iron Deficiency

Anemia and Beta Thalassemia Trait Using RBC Indices. This is a

novel, adaptable score called the Basrah Score. The comprehensive

framework begins with collecting raw hematological data,

including MCV, MCH, Hb, RBC, and MCHC. This data undergoes

pre-processing to ensure quality, followed by feature engineering to

enhance data representation. Subsequently, a flexible ENLR model

is developed with optimized parameters, and its performance

is evaluated against eight traditional discrimination indices

(illustrated in Table 3) using multiple metrics. Finally, the model

is interpreted through SHAP analysis to provide actionable

clinical insights, ensuring readiness for deployment through a

comprehensive suite of reports and visualizations. This framework

effectively combines the precision of machine learning with

practical clinical requirements.

The upper section in Figure 3, depicted in blue, illustrates the

primary steps, whereas the lower section, shown in green, details

the sub-steps that extend from these main steps.

This section outlines the detailed methodology, which includes

both primary and secondary processing stages essential for creating

a high-performance discrimination system and formulating a

clinically relevant formula for differential diagnosis.

2.4 Data pre-processing

The dataset underwent careful processing to improve its

analytical reliability. Missing values, representing <1% of the

TABLE 2 Comparative statistical analysis of hematological and demographic parameters between IDA and BTT.

Feature IDA BT T-statistic P-value Cohen’s d

Mean SD Mean SD

Sex 0.845 0.362 0.45 0.498 21.118 0.001 0.909

Age-group 31.85 15.505 40.249 16.363 −12.245 0.001 −0.527

Hb 8.472 2.501 11.876 1.549 −60.36 0.001 −2.597

RBC 4.3 0.798 5.16 1.612 −15.721 0.001 −0.677

MCV 66.26 10.488 80.302 6.927 −36.713 0.001 −1.58

MCH 19.658 4.647 27.487 2.747 −47.659 0.001 −2.051

MCHC 29.479 7.808 34.139 1.349 −19.329 0.001 −0.832

FIGURE 2

Comparison of mean values by IDA and BTT.
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FIGURE 3

Workflow diagram for Basrah Score developing.

TABLE 3 The variance inflation factor (VIF).

Variable VIF VIF interpretation

Sex 1.406311 No multicollinearity

Age-group 1.122039 No multicollinearity

Hb 18.1872 Severe multicollinearity

RBC 5.369753 Moderate multicollinearity

MCV 68.39946 Severe multicollinearity

MCH 166.8724 Severe multicollinearity

MCHC 27.82363 Severe multicollinearity

total cases, were handled by imputing the median for continuous

variables. Outliers were identified and removed using Z-score

thresholding, explicitly focusing on values with an absolute Z-score

exceeding 3. Data validation included range checks and statistical

analyses, such as mean ± standard deviation, independent t-

tests, and Cohen’s d effect size. These analyses confirmed minimal

baseline differences between the IDA group (n = 1,080) and the

BTT group (n = 1,040), resulting in an IDA: BTT ratio of 1.04:1.

To mitigate potential class imbalance, the SMOTE resampling

technique was applied to achieve a balanced 1:1 ratio (Chawla et al.,

2002). Continuous features were standardized using the Python

StandardScaler() function, ensuring a mean of 0 and a standard

deviation of 1, which supports effective regularization. Finally, the

dataset was split using stratified sampling, maintaining an 80:20

train-test ratio.

2.5 Multicollinearity assessment and model
specification

Multicollinearity arises when independent variables are highly

correlated, potentially resulting in unstable coefficients and illogical

outcomes in any Generalized Linear Model (GLM), including

logistic regression. This instability complicates the interpretation

of coefficients, as their signs and magnitudes can fluctuate, leading

to misleading assessments of each variable’s effect. Furthermore,

multicollinearity amplifies the variance of coefficient estimates,

rendering hypothesis testing results, such as p-values, unreliable.

Therefore, assessingmulticollinearity among independent variables

is essential before employing any regression techniques. Variance

Inflation Factor (VIF) is a commonly used tool for measuring the

extent of multicollinearity in a regression model (Menard, 2011).

The VIF is subject to these conditions.

– A VIF value <10 indicates severe multicollinearity, which

may necessitate corrective measures such as removing or

redesigning variables.

– A VIF between 1 and 5 suggests moderate multicollinearity,

typically not seen as problematic, while

– A VIF below 1.5 indicates that significant multicollinearity is

absent among the variables.

2.6 ENLR model development

To mitigate multicollinearity effects, we employed ENRL

(Altelbany, 2021) with hyperparameter tuning through stratified

cross-validation (optimizing fold numbers between 5, 7, and 9). The

search space encompassed 20 regularization strengths [Cs= (−4, 2,

20)], 9-L1 mixing ratios (0.1, 0.9, 9), implemented via the “saga”

solver with extended convergence tolerance (10,000 iterations).

Model selection employed class-weighted ROC-AUC optimization,

using a fixed random seed (42) for reproducibility. This approach

simultaneously: (1) retains correlated but clinically relevant

predictors through L2 penalty, (2) performs feature selection via L1

penalty (mitigatingMCHCwith λ= 0.015), and (3) yields unbiased

odds ratios (95% CIs confirmed via bootstrap resampling). Below is
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a code snippet demonstrating ENLR hyperparameter tuning and

cross-validation.

Cs= np.logspace(-4, 2, 20) # “20 regularization strengths (10∧-4 to 10∧2)”

l1_ratios= np.linspace(0.1, 0.9, 9) # “9 L1 mixing ratios (0.1-0.9)”

cv= np.linspace(5, 7, 9) # “optimizing fold numbers between 5-9”

LogisticRegressionCV(

Cs=Cs, cv=CV,

class_weight=’balanced’, # “class-weighted”

penalty=’elasticnet’, # Elastic Net Model

scoring=’roc_auc’, # “ROC-AUC optimization”

solver=’saga’, # “via the ’saga’ solver”

l1_ratios=l1_ratios, scoring=’roc_auc’,

max_iter=10000, # “extended convergence tolerance”

random_state=42 # “fixed random seed”

n_jobs=-1

)

2.7 Traditional discrimination indices

Traditional discrimination indices are statistical mathematical

formulas that have been used extensively in distinguishing IDA

from BTT. They are providing simple and straightforward

thresholds for discrimination. In contrast, they have notable

limitations, including the inflexibility of fixed cut-off values that

do not consider population-specific variations, the oversight of

intricate relationships among hematological parameters due to

dependence on single-parameter thresholds, and a proven lack

of accuracy. These shortcomings arise from their univariate

approach, which fails to capture non-linear relationships. In

contrast, machine learning methods, such as our Elastic Net model,

effectively address these challenges by automatically optimizing

multi-feature weightings. This adaptability allows the model to

adjust to hematological and analytical variability through learned

parameters, resulting in improved performance with an AUC of

0.96± 0.03.

To ensure a fair comparison, all traditional discriminant

indices (Table 4) were implemented programmatically and

applied to the same dataset to compare with the proposed model.

The comparative assessment employed identical evaluation

metrics (AUC, accuracy, precision, sensitivity, and specificity).

Detailed results of this comparison are presented in Section 3.7,

accompanied by a critical analysis of the statistical and clinical

differences observed.

All indices were derived using standardized hematological

measurements, including MCV (fL), MCH (pg), RBC (1012/L), and

Hb (g/dL). The original cut-off values were maintained as validated

in Mediterranean populations for the differentiation between BTT

and IDA. Adjustments specific to the population may be necessary,

as indicated by Ebrahimpour Sadagheyani et al. (2022).

2.8 Evaluation metrics

The final phase thoroughly assesses the results from all

preceding stages, focusing on comparing model performance

through various metrics, including Accuracy, Precision, Recall, and

F1-score. These metrics widely employed to assess the effectiveness

ofmachine learning techniques (Géron, 2017). This evaluation used

to compare effectiveness of the new developed score, Basrah Score,

with the old ones. Notably, all scores implemented on the same

southern Iraq dataset.

• Accuracy refers to the proportion of accurately predicted

instances relative to the total number of cases, serving as a

measure of overall correctness.

Accuracy =

True Positive + True Negative

True Positive + True Negative + False Positive + False
(1)

• Precision measures the proportion of true positive predictions

relative to the total number of predicted positives, reflecting

the model’s effectiveness in minimizing false positives.

Precision =
TP

TP + FP
(2)

• Recall/sensitivity is defined as the proportion of true positive

predictions relative to the total number of actual positive

cases, serving as an indicator of the model’s effectiveness in

recognizing all pertinent instances.

TABLE 4 Traditional discrimination indices for IDA and BTT di�erentiation.

No. Name Abbr. Original source Formula, cut-o� point Interpretation

1 Mentzer Index MI Mentzer WC, 1973 MCV/RBC→13 Values >13 suggest BTT

2 Srivastava Index SI Srivastava PC, 1973 MCH/RBC→3.8 Values >3.8 suggest BTT

3 Ehsani Index EI Ehsani MA, 1999 MCV – (10× RBC)→ 15 Values >15 suggest BTT

4 England and Fraser EandF England JM and Fraser PM, 1979 MCV – (5×Hb) – RBC – 3→ 0 Values >0 suggest BTT

5 Kandhro I KI Kandhro AH, 2012 (MCV×MCH)/100→ 5.4 Values >5.4 suggest BTT

6 Sirdah Index SrI Sirdah MM, 2006 MCV – RBC – (3×Hb)→ 27 Values >27 suggest BTT

7 Keikhaei Index KeI Keikhaei B, 2007 (MCV×MCH)/100→ 5.8 Values >5.8 suggest BTT

8 Huber-Herklotz H-H Huber AR and Herklotz R, 2011 MCH/MCV→ 0.36 Values >0.36 suggest BTT
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TABLE 5 Presents the confusion matrix.

Predicted positive Predicted negative

Actual positive TP FN

Actual negative FP TN

Recall =
TP

TP + FN
(3)

• The F1_Score serves as the harmonic mean of precision

and recall, offering a comprehensive assessment of a

model’s effectiveness.

F1< uscore >Score = 2×
Precision× Recall

Precision+ Recall
(4)

• Specificity refers to the model’s capacity to accurately identify

True Negatives, which is determined using a specific formula.

Specificity =
TN

TN + FN
(5)

• The ROC-AUC, or Receiver Operating Characteristic Curve—

Area Under the Curve, evaluates classification effectiveness

across various decision thresholds by calculating the area

under the ROC curve (Fawcett, 2006).

True Positive Rate (TPR) =
TP

TP + FN
(6)

False Positive Rate (TPR) =
FP

FP + TN
(7)

AUC =

∫ 1

0
TPR

(

FPR−1 (x)
)

dx (8)

• The Confusion Matrix is a comprehensive table that

encapsulates the model’s performance across four

fundamental categories (as in Table 5)

Where:

• True Positives (TP) refer to the count of records that have been

accurately classified.

• True Negatives (TN) indicate the number of documents

correctly identified as not belonging to a particular category.

• False Positives (FP) represent the number of records

incorrectly classified as belonging to a category.

• False Negatives (FN) denote the proportion of records that

were misclassified and wrongly rejected.

2.9 SHAP explainable AI (XAI)

SHAP (SHapley Additive exPlanations) is recognized as one

of the most prevalent frameworks in the realm of Explainable

AI (XAI), grounded in robust mathematical principles derived

from game theory. It is considered the gold standard for

interpreting machine learning models when compared to other

XAI tools, such as LIME or Partial Dependence Plots, due

to its mathematical robustness, consistent results, and stable

explanations across different models. This framework effectively

allocates the relative contributions of each variable to the

model’s final predictions through the concept of Shapley values,

making it an indispensable tool in medical applications. Its

clinical significance in medical research stems from its ability

to provide transparent interpretations of decisions, accurately

identifying the most influential variables in diagnostics, thereby

enabling healthcare professionals to comprehend the decision-

making process. Additionally, it enhances user trust in the

model by offering explanations that align with clinical reasoning.

Importantly, SHAP can validate biological credibility by revealing

how well the model’s priorities align with established medical

principles and highlighting potential discrepancies between the

model’s predictions and existing clinical knowledge. Furthermore,

it can uncover hidden biases, identify variables that may lead to

undesirable bias, and ultimately support compliance with ethical

and regulatory standards (Wang et al., 2021; Juscafresa, 2022).

3 Results

The following sections present the study findings systematically

and sequentially. It is worth noting that all experiments were

conducted on a Dell machine equipped with a 12th-generation

Core i7 processor and running the Windows 11 operating system.

The proposed methodology was implemented using Python within

an Anaconda 3 (Python 3.12.3) environment. Various libraries,

including scikit-learn, TensorFlow, and Keras, were utilized for the

experimental analysis.

3.1 Check multicollinearity

Table 3 presents the findings from the multicollinearity

analysis conducted on the hematological variables using the

Variance Inflation Factor (VIF). The results indicate a significant

multicollinearity problem among the hematological variables (Hb,

MCV, MCH, MCHC), as their VIF values surpass the critical

threshold of 10. This suggests a strong interdependence among

these variables. Such multicollinearity can result in instability

in the estimates of traditional regression coefficients, ultimately

compromising the reliability of the developed score findings.

Preliminary analysis revealed significant multicollinearity

among CBC indices (VIF > 10 for Hb, MCV, MCH, and MCHC),

as shown in Table 3. This renders conventional logistic regression

unsuitable due to inflated coefficient variance and unreliable p-

values. While traditional solutions recommend complete removal

of correlated predictors, this process risks losing clinically

informative biomarkers. To solve this problem, Regularized
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Logistic Regression model was implemented using the Elastic

Net approach, which integrates both L1 (Lasso) and L2 (Ridge)

regularization techniques.

3.2 Elastic Net Logistic Regression
implementation

The ENLR model was implemented and optimized

through systematic hyperparameter tuning, identifying optimal

regularization parameters via stratified 5-to-7-fold cross-validation.

This dual regularization approach (L1/L2) demonstrated three key

advantages: (1) Multicollinearity Mitigation: Reduced variance

inflation among predictors from a maximum VIF of 68.4 to 4.2,

while retaining all hematological features through differential

weighting (Table 6). Feature Selection automatically excluded

non-hematological variables (sex, age-group) to derive a pure

CBC-based score.

The Clinical Translation is represented by generated

interpretable weights for direct new Basrah Score calculation

as a logit equation:

TABLE 6 Elastic net logistic regression coe�cients.

Variable Important Interpretation

MCV 3.3823 Strong positive association

MCH 5.5531 Strong positive association

MCHC 0.2578 Mild positive association

RBC −0.1959 Mild negative association

Hb −4.2282 Strong negative association

logit(p) = 0.974 + (3.382 × MCV) + (−5.553 × MCH) +

(0.258×MCHC)+ (−0.196× RBC)+ (−4.228×Hb) (1)

The cutoff point of this probabilistic equation is that if logit(p)

> zero, then IDA, else BTT.

The ENLR model demonstrated excellent stability (1 AUC <

0.01 across 100 bootstrap iterations) and outperformed traditional

discrimination indices in terms of discriminatory ability, as shown

in the following section.

3.3 Comparative analysis of discrimination
indices results

The comprehensive evaluation of indices results in Table 7

below demonstrates that the New Basrah Score significantly

outperformed others in differentiating between IDA and BTT.

The ENLR-Based Basrah Score achieved an impressive diagnostic

accuracy and precision of 96.7% and 98.6%, respectively,

demonstrating a remarkable balance between sensitivity at 95.0%

and specificity at 98.6%. Furthermore, its high area under the

curve (AUC) value of 0.990 ± 0.005 underscores its exceptional

discriminative power, which was statistically significantly superior

(p < 0.001) to all traditional models. In contrast, traditional

discrimination indices exhibited varied performance, with the

Mentzer, Srivastava, Ehsani, and Sirdah models demonstrating

notably low specificity (below 54.0%) while maintaining reasonable

sensitivity (ranging from 74.2% to 87.8%). This discrepancy

raises concerns about the potential for false-positive diagnoses.

Conversely, the Kandhro I and Keikhaei models achieved an

excessive sensitivity of 100%, yet they were unable to identify

negative cases, resulting in 0% specificity completely. Additionally,

the Huber-Herklotz model failed to detect any BTT cases, as

evidenced by its 0% sensitivity.

TABLE 7 Comparative performance metrics of Basrah Score and conventional scores for IDA vs. BTT discrimination.

Model Confusion
matrix

Accuracy Precision Recall (sensitivity) Specificity F1-score AUC

Basrah Score [[206 3]

[11 210]]

0.967 0.986 0.95 0.986 0.968 0.989

Mentzer [[24 185]

[51 170]]

0.451 0.479 0.769 0.115 0.59 0.442

Srivastava [[7 202]

[56 165]]

0.4 0.45 0.747 0.033 0.561 0.390

Ehsani [[14 195]

[57 164]]

0.414 0.457 0.742 0.067 0.566 0.404

England and Fraser [[81 128]

[7 214]]

0.686 0.626 0.968 0.388 0.76 0.677

Kandhro I [[0 209]

[0 221]]

0.514 0.514 1 0 0.679 0.5

Sirdah [[36 173]

[27 194]]

0.535 0.529 0.878 0.172 0.66 0.525

Keikhaei [[0 209]

[0 221]]

0.514 0.514 1 0 0.679 0.5

Huber-Herklotz [[187 22]

[221 0]]

0.435 0 0 0.895 0 0.447
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FIGURE 4

Confusion matrices for di�erent scores.

The following Figure 4 shows, in clear visualization, the

comparison illustrated in the confusion matrices, revealing varying

performance levels among different models in discriminating IDA

and BTT cases. Basrah Score outperformed others, achieving

correct classifications for 206 out of 209 IDA cases and 210 out of

221 BTT cases, indicating high accuracy. In contrast, the Ehsani

model demonstrated significant weaknesses, misclassifying 57 BTT

cases as IDA. Traditional scores such as Sirdah and England

& Fraser showed some improvement but remained less effective

than the new score. Additionally, the Keikhaei, Kandhro I, and

Huber-Herklotz scores exhibited inconsistent performance, failing

to classify one of the categories correctly, thereby underscoring

the superiority of machine learning-based Basrah Score in this

diagnostic task.

Figure 5 illustrates the ROC (Receiver Operating

Characteristic) curves for a range of discrimination scores.

The figure highlights the superiority of Basrah Score, which boasts

a high AUC (∼0.99), reflecting its excellent accuracy and robust

capability to differentiate between disease cases. In contrast,

traditional scores exhibit low AUC values (≤0.680), indicating

their limited discriminative power, akin to random guessing. This

comparison underscores the significant improvement offered

by machine learning Based Score, such as Basrah Score, over

traditional scores, thereby enhancing clinical diagnostic accuracy

and reducing the likelihood of misdiagnosis.

3.4 Check Basrah Score stability

The learning curve for Basrah Score is illustrated in Figure 6,

with training and cross-validation accuracy plotted on the vertical

axis against the size of the training dataset on the horizontal

axis. Initially, training accuracy is high with a small dataset

but tends to decline as the dataset expands, suggesting minimal

overfitting. Conversely, cross-validation accuracy begins lower

but improves with increased training data, indicating enhanced

model generalizability. As the dataset grows larger, both accuracies

converge, signaling stabilization of the model. These findings
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FIGURE 5

Comparative ROC curves: evaluating model performance in distinguishing IDA and BTT.

FIGURE 6

Illustrates the learning curve and stability of Basrah Score with cross-validation compared to its performance without cross-validation.

underscore the significance of selecting an appropriate dataset size

to reduce overfitting and optimize cross-validation performance,

ensuring accurate classification of unseen data.

3.5 Results explanation

The SHAP analysis results (Figure 7) highlight MCV, MCH,

MCHC, andHb as themost informative and discriminative features

for distinguishing between IDA and BTT. In contrast, RBC count

exhibits significant value overlap between the two conditions,

limiting its diagnostic utility when used in isolation. These findings

are consistent with established clinical understanding: patients with

BTT typically exhibit markedly reduced MCV and MCH values

that are disproportionately low relative to their Hb levels, while

individuals with IDA present with progressive reductions across

both Hb and red cell indices, including MCH, and RBC count.

3.6 The impact of a balanced and
outlier-removed dataset on performance

This study’s results highlight the importance of data pre-

processing in improving the performance of machine learning

models, especially in medical applications where diagnostic

accuracy and reliability are paramount. In the context of using

ENLR score to differentiate between IDA and BTT—two clinically
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FIGURE 7

SHAP value analysis: impact of blood parameters on Basrah Score predictions.

TABLE 8 The impact of balancing and outlier-removing of data on performance.

Approach Confusion
matrix

Accuracy Precision Recall (sensitivity) Specificity F1-score AUC

Original file without balance [[218 8]

[26 172]]

0.920 0.956 0.869 0.965 0.910 0.970

Balanced with SMOTE [[229 2]

[29 172]]

0.928 0.989 0.856 0.991 0.917 0.982

Balance and remove outliers [[206 3]

[11 210]]

0.967 0.986 0.950 0.986 0.968 0.990

similar conditions—it was found that selecting an effective data pre-

processing approach significantly enhanced performance metrics.

In Table 8, although the original imbalanced dataset exhibited

a strong discriminatory capability (AUC = 0.970), the class

imbalance led to a lower sensitivity (Recall = 0.869), indicating

that some positive cases were missed (False Negatives). Conversely,

when the dataset was balanced using the SMOTE technique,

there was a modest increase in accuracy (Accuracy = 0.928)

and specificity (Specificity = 0.991); however, this approach

unexpectedly resulted in a decrease in sensitivity (Recall = 0.856).

This reduction may be due to the bias introduced by generating

synthetic samples, which can compromise the model’s capacity to

differentiate between class boundaries accurately.

3.7 Comparison with another studies

Compared to other studies (Pullakhandam and McRoy, 2024;

Shahmirzalou et al., 2024; Al-Najafi et al., 2022) that employed

linear and logistic regression, as illustrated in Table 9 below, it

is evident that all these studies utilized imbalanced data, which

may influence decision bias or lead to overfitting. Furthermore,

our analysis demonstrates that this approach outperforms all other

methods across various performance metrics, except for achieving

comparable accuracy to the proposed model in Pullakhandam and

McRoy (2024).

4 Discussion

This research introduces a comprehensive machine learning

framework to distinguish between IDA and beta-thalassemia trait

(BTT) and develop a new discrimination score, Basrah Score,

effectively overcoming significant shortcomings of traditional

discrimination scores. Our results highlight three significant

advancements in this hematological diagnostic score. First,

the ENLR model exhibited outstanding discriminative ability,

achieving an area under the curve (AUC) of 0.990 ± 0.005,

which significantly surpassed all conventional indices. This

finding supports recent studies that advocate for regularized

regression techniques in contexts characterized by high collinearity.

Importantly, our model achieved a balanced sensitivity of 95.0%

and specificity of 98.6%, representing a substantial improvement

over traditional methods, which often displayed unacceptably low

specificity or failed to detect either class entirely.

In the context of distinguishing between IDA and the

genetic trait of BTT, the predictive performance of the new

Basra index was evaluated against traditional discrimination

indicators. The findings revealed a 67% improvement in predictive

accuracy compared to conventional, static methods, marking a

significant advancement in integrating data-driven approaches

into clinical decision-making. This progress underscores the

growing importance of employing advanced analytical techniques

and machine learning in healthcare research, given their ability
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TABLE 9 Comparison with other works.

Approach Used
methods

Dataset size Accuracy Precision Recall
(sensitivity)

Specificity F1-
score

AUC

Géron (2017) LR Balanced by

SMOTE

972 IDA,

19,203 non-IDA

97% 84% 58% Not explicitly

stated

Not

explicitly

stated

99%

Fawcett (2006) LR Imbalance

219 IDA,

73 BTT

93% Not explicitly stated 97% 72% Not

explicitly

stated

Not explicitly

stated

Wang et al.

(2021)

Binary LR Imbalance

802 IDA,

578 BTT

85.6 % Not explicitly stated 85 % 86 % Not

explicitly

stated

0.921

Basrah Score ENLR Balance

1080 IDA,

1080 BTT

96.7% 98.6% 95% 98.6% 96.8% 99%

to uncover complex patterns within clinical data and develop

highly accurate and efficient predictive models. Such systems

hold particular promise for enhancing diagnostic differentiation in

various clinical settings, including pediatric cases, anemia during

pregnancy, and chronic diseases.

Furthermore, Basrah Score’s decision-making process was

validated through SHAP analysis, revealing that mean corpuscular

volume (MCV), Mean Corpuscular Hemoglobin (MCH), and

hemoglobin (Hb) were the primary discriminators, aligning with

established thalassemia biomarkers. The red blood cell (RBC) count

had a lesser impact, underscoring its limited diagnostic value

when considered alone. Additionally, the automated exclusion of

demographic variables such as sex and age allowed for a more

focused clinical interpretation of complete blood count (CBC)

parameters. Our systematic evaluation of data pre-processing

techniques indicated that removing outliers had a more significant

effect on model performance than class balancing alone, with the

best results achieved through a combination of both methods,

leading to the highest accuracy and a balanced F1-score. This

finding challenges the prevailing notion that synthetic minority

over-sampling technique (SMOTE) consistently enhances minority

class detection.

The new scoring equation developed from this study offers a

practical tool for clinical laboratories, facilitating the differentiation

between IDA and BTT. The equation is expressed as logit(p) =

0.974 + 3.382 × MCV – 5.553 × MCH – 4.228 × Hb, providing a

straightforward implementation pathway for enhancing diagnostic

accuracy in clinical settings.

The main limitations of this work are the limited number

of features (laboratory tests) used in building the model, in

addition to the size of the data sample, as expanding the size

of the input data contributes to enhancing the model’s ability to

extract more generalized and accurate decisions due to its exposure

to a wider variety of clinical cases. Another limitation is that

application is limited to one local dataset as it would be ideal to

evaluate the model on multiple datasets from diverse environments

to assess its performance and effectiveness in a number of

real-world situations.

In light of the current limitations, several future prospects

exist for developing this work and enhancing its accuracy and

generalizability. The most important direction is to increase the

sample size by including data from multiple medical sites, local

and global, and classified as populations, including children,

expectant mothers, and individuals with long-term illnesses, across

different time periods. This will enhance the model’s dependability,

generalizability and, to validate its stability in different application

contexts is also an important step. It is also recommended to

include additional attributes in the model, such as advanced tests

(such as Ferritin and HbA2), genetic factors, and family history,

to increase the predictive power and discrimination accuracy.

Furthermore, developing a user interface as a web site that is easy to

integrate with medical systems is a practical step toward applying

the model in clinical settings. Model interpretation techniques

such as SHAP should continue to be emphasized to enhance

transparency and medical confidence. In addition, the potential of

Deep Learning models and hybrid systems can be explored and

compared to the current model, provided that interpretability is

maintained. Finally, it is recommended to conduct Prospective

Studies and test the integration of the model into Clinical Decision-

Support Systems (CDSS) to assess its effectiveness in real-world

clinical practice.

This research offers an important pathway to a new generation

of medical diagnostic tools that balance the accuracy of artificial

intelligence models with the transparency of clinical decision-

making processes. The evidence provided indicates that machine

learning-based models have considerable potential as clinical

decision support aids, given that these models have transparency,

interpretability and are perceivable for existing clinical workflows.

This allows clinical trust in the decision support tool to

develop with greater velocity, therefore accelerating the use

and implementation of machine learning-based models in actual

clinical practice.
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