
TYPE Methods
PUBLISHED 10 September 2025
DOI 10.3389/fdata.2025.1638307

OPEN ACCESS

EDITED BY

Vassil Roussev,
New Orleans University, United States

REVIEWED BY

Abdul Muhammed Rasheed,
Noorul Islam University, India
Yu Xia,
University of Edinburgh, United Kingdom

*CORRESPONDENCE

Thijs Veugen
thijs.veugen@tno.nl

RECEIVED 30 May 2025
ACCEPTED 15 August 2025
PUBLISHED 10 September 2025

CITATION

Veugen T, Spini G and Muller F (2025) Secure
aggregation of sufficiently many private
inputs. Front. Big Data 8:1638307.
doi: 10.3389/fdata.2025.1638307

COPYRIGHT

© 2025 Veugen, Spini and Muller. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Secure aggregation of sufficiently
many private inputs

Thijs Veugen1,2*, Gabriele Spini3 and Frank Muller1

1 Unit ICT, Strategy and Policy, TNO, The Hague, Netherlands, 2 Department of Semantics,
Cybersecurity and Services, University of Twente, Enschede, Netherlands, 3 Department of Cyber
Security, Austrian Institute of Technology (AIT), Vienna, Austria

Secure aggregation of distributed inputs is a well-studied problem. In this study,
anonymity of inputs is achieved by assuring a minimal quota before publishing
the outcome. We design and implement an efficient cryptographic protocol that
mitigates the most important security risks and show its application in the cyber
threat intelligence (CTI) domain. Our approach allows for generic aggregation
and quota functions. With 20 inputs from different parties, we can do three
secure and anonymous aggregations per second, and in a CTI community of
100 partners, 10, 000 aggregations could be performed during one night.

KEYWORDS

secure multi-party computation, secure aggregation, Shamir secret sharing, cyber threat
intelligence, security model

1 Introduction

The secure aggregation of data is a common problem when data from different sources
need to be combined. Although single inputs are often sensitive, either from a privacy or a
commercial point of view, their aggregation often no longer is. This is especially true when
sufficiently many inputs have been added, such that the outcome does not leak information
about the single inputs anymore.

In this study, we describe a cryptographic solution for this problem that is applicable in
many different domains. For example, when sensor information needs to be accumulated
in a network base station to measure traffic flows. Also in smart metering when energy
consumption of a community needs to be aggregated over different households. Other
examples are the combination of data from telemetry devices in medical research, and more
general population polling and statistical surveys.

We have implemented our solution for usage in Cyber Threat Intelligence (CTI)
where organizations combine sightings of indicators of compromise to build a joined CTI
dashboard that provides the latest information of relevant cyber threats (MISP, 2022).

1.1 Problem statement and contribution

We state the aggregation problem in a more formal way. There are n parties, each
having a sensitive input xi, and one aggregator that is securely adding up all inputs.
Inputs have integer values, cannot be negative, and consist of at most m bits, i.e., xi ∈
{0, 1, . . . 2m − 1}. If party i does not have a contribution, then it sets xi = 0, i.e., we want
all parties to provide an input, because we do not want to reveal which parties did actually
contribute, as this information could be sensitive. In the CTI use case, parties set their
input to zero when the indicator of compromise has not been sighted during a certain
time period. The requirements that have been derived with the CTI use case in mind are
as follows:

Frontiers in Big Data 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2025.1638307
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2025.1638307&domain=pdf&date_stamp=2025-09-10
mailto:thijs.veugen@tno.nl
https://doi.org/10.3389/fdata.2025.1638307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2025.1638307/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

1. Individual inputs (some of them could be zero) should remain
private.

2. The sum should only be published by the aggregator, if
sufficiently many (at least threshold k) positive inputs have been
added.

3. Malicious parties could collude with each other, or with the
(potentially malicious) aggregator. Our solution should be
secure with honest majority.

4. The n parties cannot communicate directly (not scalable) and
should use the aggregator for that.

5. The solution should be efficient and scalable for large n.

We have designed and implemented a cryptographic protocol
based on Shamir secret sharing that fulfills these requirements.
The protocol is secure in the semi-honest model and mitigates a
couple of additional security risks. In particular, we want to avoid
parties pretending to have a contribution when they actually do
not. That would allow them to learn inputs from other parties
(by maliciously achieving the contribution threshold k) without
disturbing correctness of the outcome. For many applications,
it is important that the output is correct, because, e.g., in the
CTI use case, the outcomes are used by the aggregator (CTI
community manager) to present statistics on current important
threats. Although we use an aggregator to publish the results, which
is required for certain applications, our solutions work just as well
without an aggregator. In that case, the sum is revealed to all parties
instead of one aggregator.

Even though our solution fulfills all practical requirements
mentioned, at least from a theoretical perspective it is interesting
to investigate how an actively secure solution would look like.
Therefore, we sketch in Appendix A how to extend the protocol
such that it becomes secure in the malicious model. That means that
parties are no longer assumed to follow the rules of the protocol and
may try to actively learn private inputs from other parties.

1.2 Related work

There is a lot of related work on the area of secure aggregation.
However, they do not take into account that the sum can only be
revealed if there are sufficiently many contributions, which is the
main part of our contribution. The metric we use for preserving
privacy is similar to k-anonymity, parameter k being our threshold.

One exception is Bonawitz et al. (2017), who present secure
aggregation solutions (both actively and passively secure ones) for
dynamic environments, where parties are not required to submit an
input. The sum is revealed when sufficiently many inputs have been
received. However, they do not hide the identity of contributing
users. On the other hand, our solution is not suitable for dynamic
environments: Users might come and go over different aggregations
but not during one secure aggregation protocol.

A similar problem was studied by the seminal paper by Shi et al.
(2011) on privacy-preserving aggregation. The secure aggregation
problem is also a well-studied problem within federated learning,
where local model parameters need to be aggregated securely (Liu
et al., 2022).

Xu et al. (2020) present a method to securely compute
arbitrary aggregation functions of multiple inputs using lightweight

cryptography. Given that maximally k participants can collude, they
achieve n − k source anonymity, i.e., the identity of only one of
the n − k non-colliders is leaked to the aggregator. We avoid that
leakage, and more importantly, we check whether sufficiently many
parties have contributed. We also facilitate arbitrary aggregation
functions and different contribution thresholds, by going through
the bits (see Section 2).

A recent solution by Bozdemir et al. (2024) solves the problem
by using threshold homomorphic encryption and additive secret
sharing with two aggregators. Instead of one aggregator, they
assume two aggregators that are not allowed to collude. The
inputs are easily added with homomorphic encryption, and the
threshold question is resolved by secure two-party computations,
using additive secret sharing, between the two aggregators. The
main problem with this solution is the risk of collusion between
the two aggregators, who jointly act as a trusted third party.

2 Sufficiently many positive inputs

In the semi-honest model, an easy solution is to have each party
compute the additional indicator ni, which is one, if xi > 0, and
zero, otherwise, and then securely aggregating the ni. We use the
Iverson bracket notation [.] for binary indicator ni.

1. Each party i inputs xi and ni, such that ni = [xi > 0].
2. The parties securely compute and reveal


i ni.

3. If


i ni ≥ k, then the parties securely compute and reveal


i xi.

However, we want to avoid parties misbehaving by setting ni =
1 (or even a larger positive value) in case xi = 0 to learn other
sensitive inputs (through their revealed sum).

The secure addition of inputs can be easily implemented with
(Shamir) secret sharing or additively homomorphic encryption.
The challenge is to find an efficient solution for counting the
number of positive inputs. To be able to check consistency between
the inputs xi and the non-zero counters ni, we split the inputs
into bits:

xi =
m−1 

j=0

2jxi,j,

such that the non-zero counter ni can be computed by

ni = 1 −
m−1 

j=0

(1 − xi,j).

Although entering the inputs as bits is not the only way to
assure consistency with the non-zero indicator1 , it is a convenient
way for computing additional constraints that need to be fulfilled
before the sum, or another function of the inputs, is allowed to
be computed.

2.1 Multiplication

To compute the non-zero indicators ni, we need to be able to
compute the product of m secret (binary) values. As homomorphic

1 One could also verify that ni(1 − ni) = 0, xi(1 − ni) = 0, and xi + 1 − ni = 0.

Frontiers in Big Data 02 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

encryption takes quite some computational and communication
effort, we prefer to arrange this with secret sharing techniques.
We choose Shamir secret sharing, which is known to efficiently
compute secure inner products. We set secret-sharing threshold
t = (n − 1)/2 (t is the degree of the secret-sharing polynomial),
such that we need t + 1 out of n shares to reconstruct a secret,
and the eventual solution will be secure with honest majority (see
third requirement).

A Shamir secret-sharing with threshold t of secret x is denoted
by xt . A well-known way to compute and reveal the inner
product of two secret vectors (x1, . . . , xk) and (y1, . . . , yk), given
their secret sharings with threshold t, is as follows (de Hoogh, 2012,
Protocol 4.10):

1. The parties locally multiply their shares of xi and yi to obtain a
secret-sharing xi · yi2t .

2. The parties locally generate a zero secret-sharing 02t (see
Appendix B).

3. They reconstruct the inner product


i xi·yi from 0+
i xi·yi2t

by Lagrange interpolation.

The outcome is revealed in step 3 by combining 2t + 1 ≤
n shares of the inner product. The additional secret-sharing of
zero is needed for security reasons and can be generated without
communication through pseudo-random functions and replicated
secret sharing (de Hoogh, 2012, Protocol 4.7) (see Appendix B for
the main ideas).

Therefore, when m = 2, we can compute and reveal the number
of non-zeros


i ni with this secure inner product protocol, because

then ni = 1 − (1 − xi,0) · (1 − xi,1). However, for larger m, we
have a problem. We could use a secure multiplication protocol
without revealing the product, but this would require additional
communication between the parties, which we want to avoid for
scalability reasons.

Therefore, we introduce yi =
m−1

j=0 xi,j, being the sum of the
bits of input xi. We know that xi = 0, if and only if, yi = 0, and
more importantly, the size of yi is only log2 m instead of m. With
two variables, xi and yi, we can compute [yi > 0], if yi has at most
two bits (and is at most three), i.e., xi has at most three bits (and is
at most seven). And by adding another variable zi (of two bits), we
can even extend that further to xi ≤ 27 − 1 = 127, such that

ni = [xi > 0] = [yi > 0] = [zi > 0] = 1 − (1 − zi,0) · (1 − zi,1).

Given the zi, we can compute


i ni by revealing one secure
inner product (see Equation 1 below). If the inputs xi are at most
27 − 1 = 127, we can suffice with having only three variables xi, yi,
and zi per input. With one more layer, we can even cope with inputs
xi of size 2127 − 1. To avoid forgery with the ni, we have to check
whether the bits of x, y, up to z are consistent with each other.

2.2 Consistency checks

Although formally not required for passive security, we want to
avoid a number of straightforward attacks, such that party i cannot
set ni = 1 when xi = 0. We consider two types of checks, to be
performed without revealing the inputs:

(a) Check the consistency between xi, yi, and eventually zi. E.g., to
check the consistency between xi and yi, we need to verify that



j

xi,j =


j

2jyi,j.

This is done by local computation of αit , where αi = 
j xi,j −


j 2

jyi,j, revealing αi (through broadcasting t + 1
shares) and checking αi = 0.

(b) We need to assure that all supposed bits (xi,j, yi,j, up to zi,j) are
actually bits. E.g., to check the j-th bit of xi, we need to verify that

xi.j · (1 − xi,j) = 0,

which can be done with the secure inner product protocol from
Section 2.1: locally compute βi,j2t = xi,jt · 1 − xi,jt , add a
fresh 02t , reveal βi,j + 0 (through broadcasting 2t + 1 shares),
and check βi,j = 0.

If one of the αi or βi,j is not zero, the corresponding input is not
valid.

Since each separate check requires additional communication,
we found a way to combine them all into two zero-check protocols
(one for each of the two types) to reduce communication efforts (in
line with requirement five). The idea is that each check value αi,
e.g., αi =


j xi,j −


j 2

jyi,j, is multiplied with a random weight wi,
such that we only need to check whether



i

αi · wi = 0.

It is important that the weights wi are not revealed before the
input shares of xi, yi, up to zi, have been distributed among the
players, such that they cannot influence the check outcome. The
probability of forging the combined zero-check will be 1/p, where
p is the (large) prime of our finite field. A way to generate the
weights is:

1. The parties locally generate the secret sharing rt of a random
secret number r.

2. They reveal r (through broadcasting t + 1 shares) and use it for
generating random weights. Each party computes weight wi as
follows:

(a) ω ← PRF(r, i) { Use a pseudorandom function to create a
fresh random number ω. }

(b) Set wi ← 1 + (ω mod (p − 1)) { wi ∈R {1, 2, . . . , p − 1} }
The input shares should be distributed before r

is revealed. The secret-sharing of r in step 1 can be
generated without communication through pseudo-random
functions (de Hoogh, 2012, Protocol 4.6) (similar to
Appendix B). When r is revealed, each player can generate
the weights locally.

We can combine all first type checks, being secret
sharings αit of degree t into one, and similarly all
second type checks, being secret sharings βi,j2t of degree
2t, although one zero-sharing 02t needs to be added
there (as before, see Appendix B how to generate it) for
security reasons.

Frontiers in Big Data 03 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

3 Overview of passively secure
solution

For completeness, we present the entire cryptographic
protocol for the passively secure model that assures
consistency between the inputs xi and the non-zero
indicators ni. All communication between the parties
goes via the aggregator (according to requirement four).
We assume a Public Key Infrastructure (PKI) is used to
enable confidential and authenticated communication.
The parties (excluding the aggregator) in particular create
pairwise-secure communication channels that are private
and authenticated.

Inputs xi ∈ {0, 1, . . . , 2m − 1}, 1 ≤ i ≤ n

First output
n

i= 1 ni , such that ni = [xi > 0]
Second output

n
i=1 xi

Condition The second output is only computed if
n

i=1 ni ≥ k

1. Each party i computes the bits xi,j, 0 ≤ i < m, of its input xi,
and consequently the bits yi,j of


j xi,j, etc. up to the bits zi,j (see

Section 2.1).
2. Each party i generates Shamir secret-sharings xi,jt , yi,jt , up to

zi,jt , 0 ≤ j < m and sends the shares through the aggregator to
the proper parties.

3. The parties generate the weights that are needed for all
consistency checks (see Section 2.2).

4. The parties check consistency of all inputs by revealing
two combined checks, one for each consistency type (see
Section 2.2).

(a) Locally compute i αi · wit , reveal it through broadcasting
t + 1 shares, and verify it is zero.

(b) Locally compute i βi · wi2t + 02t , reveal it through
broadcasting 2t + 1 shares, and verify it is zero.

If a check fails, the protocol aborts.
5. The parties locally compute their share of the total number of

non-zero inputs and reveal



i

ni = n −


i

(1 − zi,0) · (1 − zi,1) (1)

using the secure inner product protocol from Subsection 2.1.
6. If there are not sufficiently many (at least k) non-zero inputs, the

protocol aborts.
7. The parties locally compute (their share of) a secret-sharing of

the sum of all inputs



i

m−1 

j=0

2jxi,jt ,

and reveal it by broadcasting t + 1 shares.

Because we check the consistency between inputs and non-
zero indicators, parties cannot set ni = 1, if xi = 0. We
implemented this protocol; for details and performance, see
Section 5.

4 Security evaluation

The protocol is secure with honest majority, achieving
statistical security (forgery succeeds with probability 1/p) with
abort. This easily follows because we use standard subprotocols
for Shamir secret sharing that are known to be secure in the
semi-honest model (de Hoogh, 2012).

As explained at the start of Section 2, our solution is more
complex than strictly necessary for this security model, because we
want to avoid a couple of easy attacks that are attractive within a
CTI community, and potential other use cases. To clearly explain
which attacks have been mitigated, and which have not, we evaluate
the security of our passively secure protocol from Section 3 and list
most attacks an adversary could attempt, and the reason why they
fail, or must be regarded out-of-scope.

We assume any outside attacker has no access to private PKI
keys and will not be able to send authenticated messages or decrypt
intercepted messages. Therefore, we restrict the evaluation to inside
players that are malicious, including the aggregator.

4.1 Malicious players

Here, we consider possible attacks by players, other than the
aggregator, not following the rules of the protocol.

1. Dishonest participants inserting fake inputs other than zero.
Although each input bit is checked, an erroneous input cannot
be prevented in any protocol; participants’ values must be
treated as is. This does not reveal data of honest parties but will
result in erroneous output.

2. A dishonest minority of the participants trying to retrieve
honest parties’ inputs from the distributed shares. This part
of the solution is even unconditionally secure; its security is
information-theoretic, based on Shamir secret sharing. It takes
at least (n − 1)/2 players to reconstruct data with Lagrange
interpolation.

3. A dishonest minority sending in zeroes and trying to disguise
this by cheating with bits of the y or z values This is not possible
because all bits of the y and z values are jointly checked for
consistency with the x and y values, respectively.

4. A dishonest minority trying to manipulate the revealing
process of the checks to be able to carry out the previous attack
anyhow. This will be detected, provided that after Lagrange
interpolation, it is checked that the contribution of each of the
participants is on the fitted polynomial (see Subsection A.2). If
one or more of the contributions are not consistent with the
polynomial, the protocol will abort.

5. After all checks are done, a dishonest minority sending in not
the shares of the sum, but a different value. This is possible, but
will be detected, provided that after Lagrange interpolation, it is
checked that the contribution of each of the participants is on the
fitted polynomial (see Subsection A.2). If not, the protocol will
abort.

The final two risks can be mitigated quite easily by checking
the consistency of all revealed shares. In that case, revealing a secret
value requires broadcasting all shares, instead of only t +1. This has

Frontiers in Big Data 04 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

not been implemented in our passively secure protocol, although
it would only result in a minor increase in communication and
computation and not affect the order of complexity.

More sophisticated attacks are possible on certain subprotocols
such as random secret generation, multiplication, and zero-
check, for which the direct gain of an adversary is less clear. In
Appendix A, we sketch a way to mitigate these and make the
protocol actively secure with dishonest minority.

4.2 Misbehaving aggregator

Here, we consider specific attacks by the aggregator.

1. The aggregator trying to reveal the output even though the
non-zero quota was not reached. The honest parties will not
sent in their shares if the quota was not reached. Even if the
aggregator colludes with a dishonest minority and receives all
their shares, he cannot retrieve the data, because the Lagrange
interpolation will not succeed if there is too little input.

2. The aggregator trying to reveal the input (shares) of
individual parties. This is not possible, because all shares are
encrypted and can only be decrypted by the rightful recipient.

3. The aggregator enforcing a dishonest majority. Supposing
that the aggregator initializes a protocol run, and controls the
admission of (malicious) parties, then a dishonest majority could
be created and sensitive inputs could be learned. This is out of
scope for our setting, as we assume the number of players n is
known to all players, and they create shares with threshold t that
assures security against dishonest minority only.

4. The aggregator disturbing the communication between
players Because all messages between players are routed through
the aggregator, he could easily mess up the communication by
delaying or destroying messages. He cannot create authenticated
messages himself, but he could replay older messages. The
aggregator is not able to change origin or destination of messages
because of the PKI. There are two steps where the protocol might
abort (see Section 3). If we require all parties to broadcast an
“Ok” message before the protocol can proceed, and introduce
a session ID, we can circumvent these attacks. A malicious
aggregator could then have the protocol abort but not reveal
sensitive information.

5 Performance

The passively secure protocol has been incorporated into
Malware Information Sharing Platform (MISP), a well-known
CTI open source platform (MISP, 2022; COSSAS, 2022). The
experiments were run on a machine with an Intel Core i7-
9850H CPU with six cores and 12 threads, clocking at a base
frequency of 2.6GHz and with a maximal turbo frequency of
4.6GHz, equipped with 32GB of RAM, and running Ubuntu 20.04.
Aggregator and participants were simulated on this machine as
distinct processes.

Our complexity order for growing number of parties, i.e., linear
increase in communication and quadratic increase in computation,
is identical to Bonawitz et al. (2017), the most similar related

work we found. Exploratory tests have indicated that the choice of
cryptographic algorithms in the PKI has a negligible effect on the
protocol’s performance.

5.1 Running time

Two shell-scripts have been written, which spawn the
desired number of parties, generate random input values,
execute the protocol, and measure its running time. For
each used parameter set, the process was repeated 10 times,
to correct possible fluctuations due to the randomization
of the process, or to other tasks requiring usage of the
computer resources. The CPU frequency was not manually
set to a fixed value. The first script kept the number of
participants fixed, while letting the number of Indicators
Of Compromise (IOCs) increase; the second one kept the
number of IOCs fixed, while letting the number of simulated
participants increase.

The results of the experiments are reported in Figure 1 (for
three parties, one aggregator, and increasing number of IOCs) and
Figure 2 (for 1, 000 IOCs and increasing number of participants).
We report here the median times, as we believe these can give
a more accurate picture compared to average results, since they
reduce the impact of outliers; however, the results are quite
consistent across the different repetitions of each parameter set,
with a standard deviation of at most 0.7.

The number of Indicators of Compromise (IOCs) applies to
the CTI use case and represents the number of different aggregates
that need to be performed. All these instances can, in theory, be
executed in parallel, minimizing the communication overhead. We
expected a linear dependency between the number of instances and
the running time, which is confirmed by the dashed linear line. We
can run roughly 200 secure aggregations per second.

Second, we investigated the scalability for growing number
of parties, as shown for 1, 000 aggregations in Figure 2. The
performance decreases from 200 aggregations per second for three
parties to 1, 000/350 ≈ 3 aggregations for 20 parties. Extrapolating
the graph yields 4, 000 s for 100 parties, which means that 10, 000
aggregations with 100 parties would take 40, 000 s which is roughly
half a day. In our CTI use case, where typically 10, 000 IOCs are
reported each day within a community consisting of 100 partners,
these could be computed securely overnight.

If n parties join the protocol run, every submitted value will
be split into n shares. The amount of information a party must
process increases linearly with the number of participants. Since we
are simulating n parties, we would expect a quadratically increasing
runtime. However, the polynomial approximation shown in
Figure 2 indicates a faster expansion.

This may be due to deficiencies in the code, the limited number
of parallel processes, or clogging in the machine’s processing unit.
In our case, we made use of a CPU with 6 cores and 12 threads,
meaning that with more than 12 parties, it is impossible for each
simulated party to fully utilize the maximum CPU potential for the
entire length of the computation. As such, we believe this more-
than-quadratic scalability to be the result of the limitations of the
testing set-up, rather than of the solution itself.

Frontiers in Big Data 05 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

FIGURE 1

Running time for many IOCs.

FIGURE 2

Running time for many parties.

5.2 Communication

In theory, the number of communication rounds stays the same
with increasing number of parties. However, a simulation on a
single machine does not suffer from communication delays that will
occur in distributed simulations.

Furthermore, when running multiple instances of our protocol,
the individual aggregation protocols could, in theory, be run in
parallel, hence maintaining the running time constant. However,
due to physical limitations in bandwidth (for the time spent
sending/receiving values, i.e., the communication overhead) and in
processing power (for the local computations to be performed), this
would not scale. We therefore decided to simply use a sequential
execution of the protocol for each instance.

6 Conclusion

Private inputs can be aggregated securely with the help of secret
sharing. By going through the input bits, we presented a generic
platform for securely computing statistics of sensitive inputs, the
result only being revealed under specific conditions that guarantee
anonymity of inputs.

To demonstrate this, we developed a protocol with robust
security and realistic run-times for communities of 100 participants
and 10, 000 instances. Although a full extension to the malicious
security model has not (yet) been achieved, we are confident that
this is within reach. In this way, we show that secure aggregation
can be applied broadly. It will support CTI communities to increase
their awareness of cyber risks and improve their resilience.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

TV: Writing – review & editing, Conceptualization, Writing –
original draft, Funding acquisition, Project administration, Formal
analysis, Methodology, Supervision. GS: Writing – original draft,
Visualization, Resources, Software, Formal analysis, Validation,
Methodology, Conceptualization, Data curation, Writing – review

Frontiers in Big Data 06 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Veugen et al. 10.3389/fdata.2025.1638307

& editing. FM: Methodology, Writing – review & editing,
Investigation, Writing – original draft, Formal analysis, Data
curation, Validation.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This project
has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 780701.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.2025.
1638307/full#supplementary-material

References

Beerliová-Trubíniová, Z., and Hirt, M. (2008). “Perfectly-secure MPC with linear
communication complexity," in TCC 2008, LNCS 4948 (Berlin: Springer), 213–230.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S.,
et al. (2017). “Practical secure aggregation for privacy-preserving machine learning," in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17) (New York, NY: Association for Computing Machinery), 1175–1191.
doi: 10.1145/3133956.3133982

Bozdemir, B., Özdemir, B. A., and Önen, M. (2024). “PRIDA: PRIvacy-preserving
data aggregation with multiple data customers," in ICT Systems Security and Privacy
Protection. SEC 2024. IFIP Advances in Information and Communication Technology,
Vol 710 (Cham: Springer). doi: 10.1007/978-3-031-65175-5_4

Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., et al.
(2018). “Fast large-scale honest-majority MPC for malicious adversaries," in Advances
in Cryptology - CRYPTO 2018 (Berlin: Springer).

COSSAS (2022). SACTI Source Code. Available at Github through COSSAS. Available
online at: https://github.com/COSSAS/sacti (Accessed August 26, 2025).

Cramer, R., Damgård, I., and Ishai, Y. (2005). “Share conversion, pseudorandom
secret-sharing and applications to secure computations, TCC 2005," in Lecture
Notes in Computer Science Theory of Cryptography (Cham: Springer), 342–362.
doi: 10.1007/978-3-540-30576-7_19

Damgård, I., Pastro, V., Smart, N., and Zakarias, S. (2012). “Multiparty computation
from somewhat homomorphic encryption," in Advances in Cryptology –RYPTO 2012.
CRYPTO 2012. Lecture Notes in Computer Science, Vol 7417, eds. R. Safavi-Naini, and
R. Canetti (Berlin: Springer). doi: 10.1007/978-3-642-32009-5_38

de Hoogh, S. (2012). Design of Large Scale Applications of Secure Multiparty
Computation: Secure Linear Programming [PhD Thesis]. Mathematics and Computer
Science, Eindhoven University of Technology, Eindhoven.

Genkin, D., Ishai, Y., Prabhakaran, M. M., Sahai, A., and Tromer, E. (2014).
“Circuits resilient to additive attacks with applications to secure computation," in STOC
2014: Proceedings of the Forty-Sixth Annual ACM symposium on Theory of Computing
(New York, NY: ACM), 495–504.

Lindell, Y., and Nof, A. (2017). “A framework for constructing fast MPC over
arithmetic circuits with malicious adversaries and an honest-majority," in CCS ’17:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (New York, NY: ACM), 259–276. doi: 10.1145/3133956.31339

Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.-Y., and Zhao, J. (2022). Privacy-
Preserving Aggregation in Federated Learning: A Survey. IEEE Trans. Big Data
1–20.doi: 10.1109/TBDATA.2022.3190835

MISP (2022). Secure Aggregation of Cyber Threat Intelligence (SACTI). Available
online at: https://www.misp-project.org/2022/10/27/SACTI_Secure_aggregation_of_
cyber_threat_intelligence.html/ (Accessed August 26, 2025).

Shi, E., Chan, H. T. H., Rieffel, E., Chow, R., and Song, D. (2011). “Privacy-
preserving aggregation of time-series data," in The 18th Annual Network & Distributed
System Security Symposium (NDSS) (San Diego, CA: Internet Society).

Xu, C., Zhang, L., Zhu, L., Zhang, C., Du, X., Guizani, M., et al., (2020).
Aggregate in my way: privacy-preserving data aggregation without trusted authority
in ICN. Future Gener. Comput. Syst. 111, 107–116. doi: 10.1016/j.future.2020.
04.021

Frontiers in Big Data 07 frontiersin.org

https://doi.org/10.3389/fdata.2025.1638307
https://www.frontiersin.org/articles/10.3389/fdata.2025.1638307/full#supplementary-material
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-031-65175-5_4
https://github.com/COSSAS/sacti
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1145/3133956.31339
https://doi.org/10.1109/TBDATA.2022.3190835
https://www.misp-project.org/2022/10/27/SACTI_Secure_aggregation_of_cyber_threat_intelligence.html/
https://www.misp-project.org/2022/10/27/SACTI_Secure_aggregation_of_cyber_threat_intelligence.html/
https://doi.org/10.1016/j.future.2020.04.021
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Secure aggregation of sufficiently many private inputs
	1 Introduction
	1.1 Problem statement and contribution
	1.2 Related work

	2 Sufficiently many positive inputs
	2.1 Multiplication
	2.2 Consistency checks

	3 Overview of passively secure solution
	4 Security evaluation
	4.1 Malicious players
	4.2 Misbehaving aggregator

	5 Performance
	5.1 Running time
	5.2 Communication

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

