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Secure aggregation of sufficiently 
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Secure aggregation of distributed inputs is a well-studied problem. In this study, 
anonymity of inputs is achieved by assuring a minimal quota before publishing 
the outcome. We design and implement an efficient cryptographic protocol that 
mitigates the most important security risks and show its application in the cyber 
threat intelligence (CTI) domain. Our approach allows for generic aggregation 
and quota functions. With 20 inputs from different parties, we can do three 
secure and anonymous aggregations per second, and in a CTI community of 
100 partners, 10, 000 aggregations could be performed during one night. 
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1 Introduction 

The secure aggregation of data is a common problem when data from different sources 
need to be combined. Although single inputs are often sensitive, either from a privacy or a 
commercial point of view, their aggregation often no longer is. This is especially true when 
sufficiently many inputs have been added, such that the outcome does not leak information 
about the single inputs anymore. 

In this study, we describe a cryptographic solution for this problem that is applicable in 
many different domains. For example, when sensor information needs to be accumulated 
in a network base station to measure traffic flows. Also in smart metering when energy 
consumption of a community needs to be aggregated over different households. Other 
examples are the combination of data from telemetry devices in medical research, and more 
general population polling and statistical surveys. 

We have implemented our solution for usage in Cyber Threat Intelligence (CTI) 
where organizations combine sightings of indicators of compromise to build a joined CTI 
dashboard that provides the latest information of relevant cyber threats (MISP, 2022). 

1.1 Problem statement and contribution 

We state the aggregation problem in a more formal way. There are n parties, each 
having a sensitive input xi, and one aggregator that is securely adding up all inputs. 
Inputs have integer values, cannot be negative, and consist of at most m bits, i.e., xi ∈ 
{0, 1, . . . 2m − 1}. If party i does not have a contribution, then it sets xi = 0, i.e., we want 
all parties to provide an input, because we do not want to reveal which parties did actually 
contribute, as this information could be sensitive. In the CTI use case, parties set their 
input to zero when the indicator of compromise has not been sighted during a certain 
time period. The requirements that have been derived with the CTI use case in mind are 
as follows: 
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1. Individual inputs (some of them could be zero) should remain 
private. 

2. The sum should only be published by the aggregator, if 
sufficiently many (at least threshold k) positive inputs have been 
added. 

3. Malicious parties could collude with each other, or with the 
(potentially malicious) aggregator. Our solution should be 
secure with honest majority. 

4. The n parties cannot communicate directly (not scalable) and 
should use the aggregator for that. 

5. The solution should be efficient and scalable for large n. 

We have designed and implemented a cryptographic protocol 
based on Shamir secret sharing that fulfills these requirements. 
The protocol is secure in the semi-honest model and mitigates a 
couple of additional security risks. In particular, we want to avoid 
parties pretending to have a contribution when they actually do 
not. That would allow them to learn inputs from other parties 
(by maliciously achieving the contribution threshold k) without 
disturbing correctness of the outcome. For many applications, 
it is important that the output is correct, because, e.g., in the 
CTI use case, the outcomes are used by the aggregator (CTI 
community manager) to present statistics on current important 
threats. Although we use an aggregator to publish the results, which 
is required for certain applications, our solutions work just as well 
without an aggregator. In that case, the sum is revealed to all parties 
instead of one aggregator. 

Even though our solution fulfills all practical requirements 
mentioned, at least from a theoretical perspective it is interesting 
to investigate how an actively secure solution would look like. 
Therefore, we sketch in Appendix A how to extend the protocol 
such that it becomes secure in the malicious model. That means that 
parties are no longer assumed to follow the rules of the protocol and 
may try to actively learn private inputs from other parties. 

1.2 Related work 

There is a lot of related work on the area of secure aggregation. 
However, they do not take into account that the sum can only be 
revealed if there are sufficiently many contributions, which is the 
main part of our contribution. The metric we use for preserving 
privacy is similar to k-anonymity, parameter k being our threshold. 

One exception is Bonawitz et al. (2017), who present secure 
aggregation solutions (both actively and passively secure ones) for 
dynamic environments, where parties are not required to submit an 
input. The sum is revealed when sufficiently many inputs have been 
received. However, they do not hide the identity of contributing 
users. On the other hand, our solution is not suitable for dynamic 
environments: Users might come and go over different aggregations 
but not during one secure aggregation protocol. 

A similar problem was studied by the seminal paper by Shi et al. 
(2011) on privacy-preserving aggregation. The secure aggregation 
problem is also a well-studied problem within federated learning, 
where local model parameters need to be aggregated securely (Liu 
et al., 2022). 

Xu et al. (2020) present a method to securely compute 
arbitrary aggregation functions of multiple inputs using lightweight 

cryptography. Given that maximally k participants can collude, they 
achieve n − k source anonymity, i.e., the identity of only one of 
the n − k non-colliders is leaked to the aggregator. We avoid that 
leakage, and more importantly, we check whether sufficiently many 
parties have contributed. We also facilitate arbitrary aggregation 
functions and different contribution thresholds, by going through 
the bits (see Section 2). 

A recent solution by Bozdemir et al. (2024) solves the problem 
by using threshold homomorphic encryption and additive secret 
sharing with two aggregators. Instead of one aggregator, they 
assume two aggregators that are not allowed to collude. The 
inputs are easily added with homomorphic encryption, and the 
threshold question is resolved by secure two-party computations, 
using additive secret sharing, between the two aggregators. The 
main problem with this solution is the risk of collusion between 
the two aggregators, who jointly act as a trusted third party. 

2 Sufficiently many positive inputs 

In the semi-honest model, an easy solution is to have each party 
compute the additional indicator ni, which is one, if xi > 0, and 
zero, otherwise, and then securely aggregating the ni. We use the 
Iverson bracket notation [.] for binary indicator ni. 

1. Each party i inputs xi and ni, such that ni = [xi > 0]. 
2. The parties securely compute and reveal 


i ni. 

3. If 


i ni ≥ k, then the parties securely compute and reveal 


i xi. 

However, we want to avoid parties misbehaving by setting ni = 
1 (or even a larger positive value) in case xi = 0 to learn other 
sensitive inputs (through their revealed sum). 

The secure addition of inputs can be easily implemented with 
(Shamir) secret sharing or additively homomorphic encryption. 
The challenge is to find an efficient solution for counting the 
number of positive inputs. To be able to check consistency between 
the inputs xi and the non-zero counters ni, we split the inputs 
into bits: 

xi = 
m−1  

j=0 

2jxi,j, 

such that the non-zero counter ni can be computed by 

ni = 1 − 
m−1  

j=0 

(1 − xi,j). 

Although entering the inputs as bits is not the only way to 
assure consistency with the non-zero indicator1 , it is a convenient 
way for computing additional constraints that need to be fulfilled 
before the sum, or another function of the inputs, is allowed to 
be computed. 

2.1 Multiplication 

To compute the non-zero indicators ni, we need to be able to 
compute the product of m secret (binary) values. As homomorphic 

1 One could also verify that ni(1 − ni) = 0, xi(1 − ni) = 0, and  xi + 1 − ni = 0. 
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encryption takes quite some computational and communication 
effort, we prefer to arrange this with secret sharing techniques. 
We choose Shamir secret sharing, which is known to efficiently 
compute secure inner products. We set secret-sharing threshold 
t = (n − 1)/2 (t is the degree of the secret-sharing polynomial), 
such that we need t + 1 out of n shares to reconstruct a secret, 
and the eventual solution will be secure with honest majority (see 
third requirement). 

A Shamir secret-sharing with threshold t of secret x is denoted 
by xt . A well-known way to compute and reveal the inner 
product of two secret vectors (x1, . . . , xk) and (y1, . . . , yk), given 
their secret sharings with threshold t, is as follows (de Hoogh, 2012, 
Protocol 4.10): 

1. The parties locally multiply their shares of xi and yi to obtain a 
secret-sharing xi · yi2t . 

2. The parties locally generate a zero secret-sharing 02t (see 
Appendix B). 

3. They reconstruct the inner product 


i xi·yi from 0+
i xi·yi2t 

by Lagrange interpolation. 

The outcome is revealed in step 3 by combining 2t + 1 ≤ 
n shares of the inner product. The additional secret-sharing of 
zero is needed for security reasons and can be generated without 
communication through pseudo-random functions and replicated 
secret sharing (de Hoogh, 2012, Protocol 4.7) (see Appendix B for 
the main ideas). 

Therefore, when m = 2, we can compute and reveal the number 
of non-zeros 


i ni with this secure inner product protocol, because 

then ni = 1 − (1 − xi,0) · (1 − xi,1). However, for larger m, we  
have a problem. We could use a secure multiplication protocol 
without revealing the product, but this would require additional 
communication between the parties, which we want to avoid for 
scalability reasons. 

Therefore, we introduce yi = 
m−1 

j=0 xi,j, being the sum of the 
bits of input xi. We know that xi = 0, if and only if, yi = 0, and 
more importantly, the size of yi is only log2 m instead of m. With 
two variables, xi and yi, we can compute [yi > 0], if yi has at most 
two bits (and is at most three), i.e., xi has at most three bits (and is 
at most seven). And by adding another variable zi (of two bits), we 
can even extend that further to xi ≤ 27 − 1 = 127, such that 

ni = [xi > 0] = [yi > 0] = [zi > 0] = 1 − (1 − zi,0) · (1 − zi,1). 

Given the zi, we can compute 


i ni by revealing one secure 
inner product (see Equation 1 below). If the inputs xi are at most 
27 − 1 = 127, we can suffice with having only three variables xi, yi, 
and zi per input. With one more layer, we can even cope with inputs 
xi of size 2127 − 1. To avoid forgery with the ni, we have to check  
whether the bits of x, y, up to  z are consistent with each other. 

2.2 Consistency checks 

Although formally not required for passive security, we want to 
avoid a number of straightforward attacks, such that party i cannot 
set ni = 1 when xi = 0. We consider two types of checks, to be 
performed without revealing the inputs: 

(a) Check the consistency between xi, yi, and eventually zi. E.g., to 
check the consistency between xi and yi, we need to verify that 

 

j 

xi,j =
 

j 

2jyi,j. 

This is done by local computation of αit , where αi = 
j xi,j −


j 2

jyi,j, revealing αi (through broadcasting t + 1 
shares) and checking αi = 0. 

(b) We need to assure that all supposed bits (xi,j, yi,j, up to  zi,j) are 
actually bits. E.g., to check the j-th bit of xi, we need to verify that 

xi.j · (1 − xi,j) = 0, 

which can be done with the secure inner product protocol from 
Section 2.1: locally compute βi,j2t = xi,jt · 1 − xi,jt , add a 
fresh 02t , reveal  βi,j + 0 (through broadcasting 2t + 1 shares), 
and check βi,j = 0. 

If one of the αi or βi,j is not zero, the corresponding input is not 
valid. 

Since each separate check requires additional communication, 
we found a way to combine them all into two zero-check protocols 
(one for each of the two types) to reduce communication efforts (in 
line with requirement five). The idea is that each check value αi, 
e.g., αi =


j xi,j −


j 2

jyi,j, is multiplied with a random weight wi, 
such that we only need to check whether 

 

i 

αi · wi = 0. 

It is important that the weights wi are not revealed before the 
input shares of xi, yi, up to  zi, have been distributed among the 
players, such that they cannot influence the check outcome. The 
probability of forging the combined zero-check will be 1/p, where 
p is the (large) prime of our finite field. A way to generate the 
weights is: 

1. The parties locally generate the secret sharing rt of a random 
secret number r. 

2. They reveal r (through broadcasting t + 1 shares) and use it for 
generating random weights. Each party computes weight wi as 
follows: 

(a) ω ← PRF(r, i) { Use a pseudorandom function to create a 
fresh random number ω. }  

(b) Set wi ← 1 + (ω mod (p − 1)) { wi ∈R {1, 2, . . . , p − 1} } 
The input shares should be distributed before r 

is revealed. The secret-sharing of r in step 1 can be 
generated without communication through pseudo-random 
functions (de Hoogh, 2012, Protocol 4.6) (similar to 
Appendix B). When r is revealed, each player can generate 
the weights locally. 

We can combine all first type checks, being secret 
sharings αit of degree t into one, and similarly all 
second type checks, being secret sharings βi,j2t of degree 
2t, although one zero-sharing 02t needs to be added 
there (as before, see Appendix B how to generate it) for 
security reasons. 
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3 Overview of passively secure 
solution 

For completeness, we present the entire cryptographic 
protocol for the passively secure model that assures 
consistency between the inputs xi and the non-zero 
indicators ni. All communication between the parties 
goes via the aggregator (according to requirement four). 
We assume a Public Key Infrastructure (PKI) is used to 
enable confidential and authenticated communication. 
The parties (excluding the aggregator) in particular create 
pairwise-secure communication channels that are private 
and authenticated. 

Inputs xi ∈ {0, 1, . . . , 2m − 1}, 1  ≤ i ≤ n 

First output 
n

i= 1 ni , such that ni = [xi > 0]
Second output 

n
i=1 xi

Condition The second output is only computed if 
n 

i=1 ni ≥ k 

1. Each party i computes the bits xi,j, 0  ≤ i < m, of its input xi, 
and consequently the bits yi,j of 


j xi,j, etc. up to the bits zi,j (see 

Section 2.1). 
2. Each party i generates Shamir secret-sharings xi,jt , yi,jt , up to  

zi,jt , 0  ≤ j < m and sends the shares through the aggregator to 
the proper parties. 

3. The parties generate the weights that are needed for all 
consistency checks (see Section 2.2). 

4. The parties check consistency of all inputs by revealing 
two combined checks, one for each consistency type (see 
Section 2.2). 

(a) Locally compute i αi · wit , reveal it through broadcasting 
t + 1 shares, and verify it is zero. 

(b) Locally compute i βi · wi2t + 02t , reveal it through 
broadcasting 2t + 1 shares, and verify it is zero. 

If a check fails, the protocol aborts. 
5. The parties locally compute their share of the total number of 

non-zero inputs and reveal 

 

i 

ni = n −


i 

(1 − zi,0) · (1 − zi,1) (1) 

using the secure inner product protocol from Subsection 2.1. 
6. If there are not sufficiently many (at least k) non-zero inputs, the 

protocol aborts. 
7. The parties locally compute (their share of) a secret-sharing of 

the sum of all inputs 

 

i 

m−1  

j=0 

2jxi,jt , 

and reveal it by broadcasting t + 1 shares. 

Because we check the consistency between inputs and non-
zero indicators, parties cannot set ni = 1, if xi = 0. We 
implemented this protocol; for details and performance, see 
Section 5. 

4 Security evaluation 

The protocol is secure with honest majority, achieving 
statistical security (forgery succeeds with probability 1/p) with 
abort. This easily follows because we use standard subprotocols 
for Shamir secret sharing that are known to be secure in the 
semi-honest model (de Hoogh, 2012). 

As explained at the start of Section 2, our solution is more 
complex than strictly necessary for this security model, because we 
want to avoid a couple of easy attacks that are attractive within a 
CTI community, and potential other use cases. To clearly explain 
which attacks have been mitigated, and which have not, we evaluate 
the security of our passively secure protocol from Section 3 and list 
most attacks an adversary could attempt, and the reason why they 
fail, or must be regarded out-of-scope. 

We assume any outside attacker has no access to private PKI 
keys and will not be able to send authenticated messages or decrypt 
intercepted messages. Therefore, we restrict the evaluation to inside 
players that are malicious, including the aggregator. 

4.1 Malicious players 

Here, we consider possible attacks by players, other than the 
aggregator, not following the rules of the protocol. 

1. Dishonest participants inserting fake inputs other than zero. 
Although each input bit is checked, an erroneous input cannot 
be prevented in any protocol; participants’ values must be 
treated as is. This does not reveal data of honest parties but will 
result in erroneous output. 

2. A dishonest minority of the participants trying to retrieve 
honest parties’ inputs from the distributed shares. This part 
of the solution is even unconditionally secure; its security is 
information-theoretic, based on Shamir secret sharing. It takes 
at least (n − 1)/2 players to reconstruct data with Lagrange 
interpolation. 

3. A dishonest minority sending in zeroes and trying to disguise 
this by cheating with bits of the y or z values This is not possible 
because all bits of the y and z values are jointly checked for 
consistency with the x and y values, respectively. 

4. A dishonest minority trying to manipulate the revealing 
process of the checks to be able to carry out the previous attack 
anyhow. This will be detected, provided that after Lagrange 
interpolation, it is checked that the contribution of each of the 
participants is on the fitted polynomial (see Subsection A.2). If 
one or more of the contributions are not consistent with the 
polynomial, the protocol will abort. 

5. After all checks are done, a dishonest minority sending in not 
the shares of the sum, but a different value. This is possible, but 
will be detected, provided that after Lagrange interpolation, it is 
checked that the contribution of each of the participants is on the 
fitted polynomial (see Subsection A.2). If not, the protocol will 
abort. 

The final two risks can be mitigated quite easily by checking 
the consistency of all revealed shares. In that case, revealing a secret 
value requires broadcasting all shares, instead of only t +1. This has 
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not been implemented in our passively secure protocol, although 
it would only result in a minor increase in communication and 
computation and not affect the order of complexity. 

More sophisticated attacks are possible on certain subprotocols 
such as random secret generation, multiplication, and zero-
check, for which the direct gain of an adversary is less clear. In 
Appendix A, we sketch a way to mitigate these and make the 
protocol actively secure with dishonest minority. 

4.2 Misbehaving aggregator 

Here, we consider specific attacks by the aggregator. 

1. The aggregator trying to reveal the output even though the 
non-zero quota was not reached. The honest parties will not 
sent in their shares if the quota was not reached. Even if the 
aggregator colludes with a dishonest minority and receives all 
their shares, he cannot retrieve the data, because the Lagrange 
interpolation will not succeed if there is too little input. 

2. The aggregator trying to reveal the input (shares) of 
individual parties. This is not possible, because all shares are 
encrypted and can only be decrypted by the rightful recipient. 

3. The aggregator enforcing a dishonest majority. Supposing 
that the aggregator initializes a protocol run, and controls the 
admission of (malicious) parties, then a dishonest majority could 
be created and sensitive inputs could be learned. This is out of 
scope for our setting, as we assume the number of players n is 
known to all players, and they create shares with threshold t that 
assures security against dishonest minority only. 

4. The aggregator disturbing the communication between 
players Because all messages between players are routed through 
the aggregator, he could easily mess up the communication by 
delaying or destroying messages. He cannot create authenticated 
messages himself, but he could replay older messages. The 
aggregator is not able to change origin or destination of messages 
because of the PKI. There are two steps where the protocol might 
abort (see Section 3). If we require all parties to broadcast an 
“Ok” message before the protocol can proceed, and introduce 
a session ID, we can circumvent these attacks. A malicious 
aggregator could then have the protocol abort but not reveal 
sensitive information. 

5 Performance 

The passively secure protocol has been incorporated into 
Malware Information Sharing Platform (MISP), a well-known 
CTI open source platform (MISP, 2022; COSSAS, 2022). The 
experiments were run on a machine with an Intel Core i7-
9850H CPU with six cores and 12 threads, clocking at a base 
frequency of 2.6GHz and with a maximal turbo frequency of 
4.6GHz, equipped with 32GB of RAM, and running Ubuntu 20.04. 
Aggregator and participants were simulated on this machine as 
distinct processes. 

Our complexity order for growing number of parties, i.e., linear 
increase in communication and quadratic increase in computation, 
is identical to Bonawitz et al. (2017), the most similar related 

work we found. Exploratory tests have indicated that the choice of 
cryptographic algorithms in the PKI has a negligible effect on the 
protocol’s performance. 

5.1 Running time 

Two shell-scripts have been written, which spawn the 
desired number of parties, generate random input values, 
execute the protocol, and measure its running time. For 
each used parameter set, the process was repeated 10 times, 
to correct possible fluctuations due to the randomization 
of the process, or to other tasks requiring usage of the 
computer resources. The CPU frequency was not manually 
set to a fixed value. The first script kept the number of 
participants fixed, while letting the number of Indicators 
Of Compromise (IOCs) increase; the second one kept the 
number of IOCs fixed, while letting the number of simulated 
participants increase. 

The results of the experiments are reported in Figure 1 (for 
three parties, one aggregator, and increasing number of IOCs) and 
Figure 2 (for 1, 000 IOCs and increasing number of participants). 
We report here the median times, as we believe these can give 
a more accurate picture compared to average results, since they 
reduce the impact of outliers; however, the results are quite 
consistent across the different repetitions of each parameter set, 
with a standard deviation of at most 0.7. 

The number of Indicators of Compromise (IOCs) applies to 
the CTI use case and represents the number of different aggregates 
that need to be performed. All these instances can, in theory, be 
executed in parallel, minimizing the communication overhead. We 
expected a linear dependency between the number of instances and 
the running time, which is confirmed by the dashed linear line. We 
can run roughly 200 secure aggregations per second. 

Second, we investigated the scalability for growing number 
of parties, as shown for 1, 000 aggregations in Figure 2. The  
performance decreases from 200 aggregations per second for three 
parties to 1, 000/350 ≈ 3 aggregations for 20 parties. Extrapolating 
the graph yields 4, 000 s for 100 parties, which means that 10, 000 
aggregations with 100 parties would take 40, 000 s which is roughly 
half a day. In our CTI use case, where typically 10, 000 IOCs are 
reported each day within a community consisting of 100 partners, 
these could be computed securely overnight. 

If n parties join the protocol run, every submitted value will 
be split into n shares. The amount of information a party must 
process increases linearly with the number of participants. Since we 
are simulating n parties, we would expect a quadratically increasing 
runtime. However, the polynomial approximation shown in 
Figure 2 indicates a faster expansion. 

This may be due to deficiencies in the code, the limited number 
of parallel processes, or clogging in the machine’s processing unit. 
In our case, we made use of a CPU with 6 cores and 12 threads, 
meaning that with more than 12 parties, it is impossible for each 
simulated party to fully utilize the maximum CPU potential for the 
entire length of the computation. As such, we believe this more-
than-quadratic scalability to be the result of the limitations of the 
testing set-up, rather than of the solution itself. 
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FIGURE 1 

Running time for many IOCs. 

FIGURE 2 

Running time for many parties. 

5.2 Communication 

In theory, the number of communication rounds stays the same 
with increasing number of parties. However, a simulation on a 
single machine does not suffer from communication delays that will 
occur in distributed simulations. 

Furthermore, when running multiple instances of our protocol, 
the individual aggregation protocols could, in theory, be run in 
parallel, hence maintaining the running time constant. However, 
due to physical limitations in bandwidth (for the time spent 
sending/receiving values, i.e., the communication overhead) and in 
processing power (for the local computations to be performed), this 
would not scale. We therefore decided to simply use a sequential 
execution of the protocol for each instance. 

6 Conclusion  

Private inputs can be aggregated securely with the help of secret 
sharing. By going through the input bits, we presented a generic 
platform for securely computing statistics of sensitive inputs, the 
result only being revealed under specific conditions that guarantee 
anonymity of inputs. 

To demonstrate this, we developed a protocol with robust 
security and realistic run-times for communities of 100 participants 
and 10, 000 instances. Although a full extension to the malicious 
security model has not (yet) been achieved, we are confident that 
this is within reach. In this way, we show that secure aggregation 
can be applied broadly. It will support CTI communities to increase 
their awareness of cyber risks and improve their resilience. 
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