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Background: The use of machine learning (ML) in surgery till date has largely 
focused on predication of surgical variables, which has not been found to 
significantly improve operating room efficiencies and surgical success rates 
(SSR). Due to the long surgery wait times, limited health care resources and 
an increased population need, innovative ML models are needed. Thus, the 
Framework for AI-based Surgical Transformation (FAST) was created to make real 
time recommendations to improve OR efficiency. 
Methods: The FAST model was developed and evaluated using a dataset of 
n=4796 orthopedic cases that utilizes surgery and team specific variables (e.g. 
specific team composition, OR turnover time, procedure duration), along with 
regular positive deviance seminars with the stakeholders for adherence and 
uptake. FAST was created using six ML algorithms, including decision trees and 
neural networks. The FAST was implemented in orthopedic surgeries at a hospital 
in Canada’s capital (Ottawa). 
Results: FAST was found to be feasible and implementable in the hospital 
orthopedic OR, with good team engagement due to the PD seminars. FAST led 
to a SSR of 93% over 23 weeks (57 arthroplasty surgery days) compared to 39% at 
baseline. Key variables impacting SSR included starting the first surgery on time, 
turnover time, and team composition. 
Conclusions: FAST is a novel ML framework that can provide real time feedback 
for improving OR efficiency and SSR. Stakeholder integration is key in its success 
in uptake and adherence. This unique framework can be implemented in different 
hospitals and for diverse surgeries, offering a novel and innovative application of 
ML for improving OR efficiency without additional resources. 

KEYWORDS 

operating room, prescriptive analytics, artificial intelligence, surgical data science, 
clinical translation 

1 Introduction 

The use of machine learning (ML) to optimize surgical efficiency is an opportunity 
to bridge the gap between care required and current capacity without adding additional 
resources. Surgery waitlist times are currently higher than pre-pandemic statistics, 
especially for orthopedic surgery (Canadian Institute for Health Information, 2024a,b). 
With the surgery needs predicted to increase as the population ages, the current 43% 
productivity level of the healthcare system must be improved (Fairley et al., 2019). This 
need is especially prominent for surgeries such as knee replacement, which has already 
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seen an increase of 22.5% for knee replacement and 20.1% for 
hip replacement procedures, between 2014 and 2019 (Cram et al., 
2018). With stretched healthcare budgets and the addition of more 
resources not being possible for most, optimizing operating room 
(OR) time and space which alone has been reported to inflate 
surgical costs by 30%, is needed (Fairley et al., 2019). 

The use of ML models for surgeries is not new. Current 
approaches to improving surgical efficiencies in hospitals, and 
reducing wait times includes using ML to analyse hospital 
data, increased government funding, increasing number of joint 
operating room (OR) days, and overlapping swing rooms (Beaulé 
et al., 2015; Waly et al., 2020). However, the OR output or Surgical 
Success Rate (SSR), which is the rate of surgeries completed on time 
remained low (39%) with current approaches, with close to 60% 
of surgery days having overtime (Gold et al., 2023). Current non-
clinical ML algorithms focus on data to predict a certain aspect of 
an operation; this can be predicting an event before surgery, after 
surgery, or even the duration of the surgery itself (Maheshwari 
et al., 2017; Schiele et al., 2021; Bartek et al., 2019). Of the three 
categories of predictions, procedure duration is the most common. 
However, these approaches do not capture the multifaceted nature 
of OR efficiency in terms of actual performance or provide real-time 
recommendations tailored to the team and surgery department, 
rendering them incomplete (Jain et al., 2020; Sculley et al., 
2015). There is a need for an individualized and iterative ML 
framework that can improve OR efficiency by providing real-time 
recommendations, using existing data, resources and personnel. 
It is also essential to assess the feasibility of integrating such 
a framework in a clinical setting, to assess the clinical teams’ 
acceptance and adherence to the ML recommendations. 

The Framework for AI-based Surgical Transformation (FAST) 
is designed to go beyond mere metric forecasting, by directly 
impacting OR throughput, such as surgery duration. The FAST 
model is unique in that it not only captures OR target predictions, 
but also specific recommendations that can lead to them. This 
framework is equipped with decision support systems for the 
non-clinical settings and is designed to be flexible and adaptable, 
allowing for repurposing across various surgical procedures and 
healthcare environments. The overall aim of FAST is to assist 
diverse healthcare institutions and professionals in identifying 
the most suitable optimization framework for their needs. These 
institutions rely on ML models with varying data input streams, 
creating a versatile set that caters to a wide range of healthcare 
settings. This flexibility allows institutions to utilize the framework 
leveraging the data they currently possess even if a healthcare 
institution has access to only one aspect of data, such as patient 
metrics or specific steps in surgical procedures. 

2 Overview of FAST 

FAST was designed to improve Operating Room output with 
the use of data and a Prescriptive Analytics System (PAS), which 
serves as a decision support system. 

This section provides a comprehensive elucidation of each 
component of FAST, including the input, output, building modules, 
and the necessary elements for each component to constitute a 

fully functional FAST. Figure 1 illustrates the fundamental modules 
involved in constructing the FAST (Al Zoubi, 2024). The process 
initiates with the Data Module, followed by the PAS Module and 
ending by the Decision Support System (DSS) module. 

2.1 The data module 

The Data Module (DM) are comprised of two primary 
components, the institution’s database and data preprocessing 
component. The institution’s database [e.g. Surgical Information 
Management Systems (SIMS)] contains the necessary data (e.g. 
patient information, time metrics) for the framework module. The 
data preprocessing component extracts the essential data for each 
the framework module, cleans it, and performs feature engineering 
when necessary. The output of the data module is refined, ready-
to-use, and selected metrics for the framework module. The role of 
the framework database is to manage and store the processed and 
categorized data provided by the DM. 

2.2 The PAS module 

Once the DM completes the data preparation, it is 
subsequently sent to the PAS Module (PM), which consists 
of three components: the ML engine, the framework database, and 
the recommendation system. 

The ML engine component houses all the ML models necessary 
for the PM. The output of these models includes the predicted OR 
throughput and the specific values for the categories (e.g., surgery 
time, patient info) required to attain specific OR throughput. 

The recommendation system component function is 
to implement a recommendation which contributes to 
transforming the framework into a prescriptive analytics decision 
support system. 

2.3 Decision support system module 
(DSSM) 

The creation of FAST into a fully developed product, requires 
a well-functioning framework with a tested and implemented 
recommendation system, and additional components. These 
include a user interface, a dashboard, and database integration for 
both the input/output data of the machine learning model and the 
output of the system after each run. 

The user interface serves to streamline the clinical teams’ 
interaction with the FAST. As users utilize the dashboard to 
monitor the progression of surgery over time, they gain the 
capability to intervene in real-time. This involves allowing 
administrators to manually modify inputs, adjust scheduling, 
modify benchmarks, and either accept or reject suggestions from 
the system. The framework database also serves as a repository 
for ML output data, what-if scenarios, selected recommendations, 
and the actual data received at the completion of each stage by the 
Decision Support System Module (DSSM). 
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FIGURE 1 

FAST components and building blocks. 

3 FAST implementation 

To assess FAST in a real-world clinical environment it was 
deployed with orthopedic surgeries, focusing on arthroplasty 
procedures in Ottawa, Canada, REB was not required as this 
was a quality improvement project under the Ottawa University 
REB. This version of FAST was named as Workflow Monitoring 
FAST (WM-FAST). 

3.1 Overview of arthroplasty surgeries: 
from pre-op to post-op 

This is a short overview to provide a better understanding about 
the Canadian surgery scheduling and pre/post operation (OP). 

Patients are referred from family physicians, and undergo 
evaluations from physiotherapists and surgeons prior to scheduling 
surgeries. Surgery waitlists vary from 6-weeks to 8-months, and are 
organized based on time of consenting as well as priority level based 
on degree/severity of pain and disability. 

The surgeon is allocated several surgery days per month to 
perform surgeries within the public hospital which ultimately 
dictates the wait time for the patient’s surgery. The surgery booking 
is done 6–8 weeks before. There is an anesthesia assessment 2 
weeks ahead of the surgery as well as an education session with a 
physiotherapist to prepare for post-op which is often the same day 
as the surgery. The patient arrives to the in the surgical day care 
unit (SDCU) 2 h before the surgery. They receive pre-operative pain 
medications as well as antibiotics and then anesthesia in the OR 
suite. After the surgery is completed, the patient is brought to the 
post anesthesia care unit (PACU) to be monitored for 1–2 h, and 
then transferred back to surgical day care unit to be mobilized with 
physiotherapy and ensure they can transfer independently. Further 
instructions are provided for self-monitoring for complications as 
well as when to follow-up with their surgeon. 

In respect to clinical staff allocation, circulator “nurses” in 
the SDCU, OR suites and PACU are trained and specialized for 
their areas of work. In other words, a nurse working in SDCU 
is not necessarily trained/qualify to work in PACU. Nurses in the 
OR suite require specialized training that take several months. 
The anesthesiologists are randomly assigned to the OR suite 1– 
2 days ahead of the surgery and are not necessarily the same 
anesthesiologist that assessed the patient in the PACU. 

The four categories of data input to the AI-driven framework 
include (1) time metrics (anesthesia preparation time (APT), 
Anesthesia (start, ready, stop and finish) time, time in room, 
surgical preparation time, case start/finish, surgery procedure and 
finish time, turnover, time out of the room, case number, date); (2) 
Staff (team) metrics (Surgeon, anesthesiologist, circulator nurse); 
(3) Patient Metrics (campus, type of surgery and anesthesia, sex, 
age, BMI, ASA); and (4) Safety metrics (90-day readmission, reason 
for readmission, length of stay). 

3.2 WM-FAST: data module 

The goal of the WM-FAST is to improve efficiency and achieve 
a higher OR throughput by monitoring and optimizing the time 
taken by each step of a well-defined healthcare process/procedure. 
The data for the WM-FAST is collected from four joint ORs 
which is defined as a scheduled 8-h day (7:30 AM−3:30 PM) 
where four unilateral joint replacements are performed by the same 
surgeon (Al Zoubi et al., 2023a). A surgical day having delays and 
moving into overtime (i.e. past 3:30 PM) negatively affects the SSR. 
Shown in Table 1 are the patient-specific surgery demographics 
and statistics, including indicators such as the American Society 
of Anesthesiologists (ASA) Physical Status Classification System 
(American Society of Anesthesiologists, 2020). We used the same 
data as in that was collected from the SIMS at our institution, please 
refer to this manuscript for more details about the methodology 
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TABLE 1 Patient-specific surgery demographics and statistics. 

Personnel and 
procedure 

Sample 
size 

Patient 
metrices 

Count 

Surgeons 5 Females 2,461 

Circulating nurses 44 Males 2,335 

Anesthesiologists 152 Average age 64.1 

Four joint days 1,199 Age Range 17–99 

Cases 4,796 Average BMI 29.93 

Total hip arthroplasties (THA) 1,461 BMI range 17.1–51.4 

Total knee arthroplasties (TKA) 1,496 Average ASA∗ 2.45 

Hip resurfacing (HR) 652 ASA range 1–4 

Unicompartmental knee 
arthroplasties (UKA) 

242 

Other procedures 
(combination) 

945 

∗ASA: Is the American society of anesthesiologists physical status classification system, which 
provides an overview of the patient clinically, from 1–6, where 1 is the most medically fit. 

and data collection, as well as descriptive analysis (Al Zoubi et al., 
2023a,b). 

The arthroplasty procedures we compiled data on had the 
following workflow steps, for more information please see our 
previous publication (Al Zoubi et al., 2023a): 

1. Surgical preparation time (SPT) 
2. Anesthesia ready 
3. Surgical procedure duration (Procedure start time stamp to 

Procedure finish time stamp) 
4. Anesthesia finish time (AFT) 
5. Procedure finish to patient out of room time (OR specific 

time variables like cleanup, communication, post-surgery 
reflections, etc.) 

6. Overall turnover time (It’s governed by both internal and 
external factors, like delays in preparing the next patient for 
surgery that takes place outside the OR). 

These six time-specific numerical inputs are logged by a 
circulating nurse in the SIMS of the hospital, which pre-emptively 
removes part of the bias associated with obtaining these variables 
(i.e., objective observer). These inputs are also what makes 
this framework procedure agnostic, as virtually every surgical 
procedure can be divided into multiple time-bound steps to identify 
the outliers. 

The responsibility of generating the required time metrics 
as input for the ML models lies with the Data Preprocessing 
component in the Data module. The calculation occurs each time 
there is an updated value for any of the timestamps. The system’s 
default values are set as our baseline values, corresponding to the 
77% SSR benchmarks explained in (Al Zoubi et al., 2023a). 

3.3 WM-FAST: PAS Module 

3.3.1 ML engine component 
The ML engine component houses all the ML models necessary 

for each framework. We chose six machine learning algorithms to 

compare their performance. The algorithms are: logistic Regression 
(LR), (Sculley et al., 2015) Support Vector Machine (SVM), (Al 
Zoubi et al., 2023a) Random Forest (RF), (Al Zoubi et al., 2023b) 
Deep Neural Network-Artificial Neural Networks with multiple 
hidden layer (DNN-ANN), (Belle and Papantonis, 2021) Extreme 
Gradient Boosting (XGBoost): gradient-Boosted Decision Tree 
(GBDT), (Al Zoubi et al., 2023c) Decision Tree (DT) (Al Zoubi 
et al., 2024). The rationale behind choosing different models 
(i.e., parametric, non-parametric, ensembling, Interpretable, deep 
learning) was to conduct a comprehensive ML analysis from 
various perspectives to identify the best model outputs. 

To tune hyperparameters, we employed the grid search option. 
The parameters of the estimator underwent optimization through 
cross-validated grid search across a parameter grid. 

For models’ evaluation, we chose six metrics to cover different 
ML performance evaluation aspects. AUC-ROC: is our measure 
of a model’s performance from a classification perspective, and 
it evaluates performance for all possible classification thresholds. 
Cross Validation (CV): multiple cross-validation iterations (6 folds) 
were completed on the data subsets to generate valid CV accuracy 
numbers, and it serves as the primary measure of the overall 
performance of a model. Sensitivity and specificity, for per-class 
performance. Sensitivity or recall is how well (how frequently) 
a model recognizes true positives “successful days” out of total 
instances. While specificity is a ML model’s ability to identify a true 
negative “unsuccessful day” and is often used in conjunction with 
sensitivity to evaluate how accurate a model is. Precision shows the 
classifier’s performance for class imbalanced data. Precision allows 
us to evaluate the quality of a ML model’s positive predictions, 
successful days. From an OR perspective, this means that when a 
model predicts a day to be successful, precision is assessing how 
frequently the model’s predictions align with the actual successful 
days. Overfitting: the difference between training and testing 
accuracies was measured as an indicator of the future error when 
the model undergoes a new dataset. If the model is overfitted, it 
may have trouble generalizing and adapting to the new data, which 
may result in inaccurate classifications and predictions, presented 
in Tables 2, 3. 

Limited number of supervised machine learning models offer 
explainability (Belle and Papantonis, 2021). The decision tree 
model was opted for, to illuminate the outputs of the models. It is 
crucial to emphasize that the decision tree (DT) may not necessarily 
be the best-performing model for each framework. This choice of 
the DT model is solely for illustration purposes, and to enhance 
comprehension of the inter-relationships among various elements. 

The outputs generated by the ML engine component comprises 
predictions regarding the likelihood of a day being successful 
(i.e., completing four surgeries before 3:30 pm) along with the 
benchmarks necessary to attain specific SSR goals during a surgical 
day. Table 2 presented below demonstrates that when the turnover 
process between two consecutive surgeries exceeds 21.5 min, it 
can lead to a significant decrease in the SSR, from 69 to 59%, as 
in scenarios 3 and 4. However, this is not the situation when a 
comparable delay of 11 min occurs within the surgery itself, during 
the surgical procedure, scenarios 1 and 2. In simple terms, a 1-
min delay in one stage of the surgery can have a vastly different 
impact on the SSR than in another stage. This complexity makes 
it challenging for a human to assess the significance of a minute at 
a specific point in the surgery without relying on the ML engine. 
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TABLE 2 Selected values for machine learning models. 

Model Parameters 

DT Criterion splitter max_depth min_samples_split 

entropy best 16 40 

RF n_estimators max_depth min_samples_split criterion 

100 40 5 gini 

SVM C kernel gamma degree 

1 rbf 1 3 

LR max_iter C solver verbose 

100 5 liblinear 1 

DNN-ANN hidden_layer_sizes Activation solver 

10 tanh adam 

XGBoost loss n_estimators criterion 

log_loss 50 friedman_mse 

TABLE 3 Machine learning models comparison and evaluation. 

Time monitoring (numerical) 

Model CV Accuracy AUC-ROC Sensitivity 
(Recall) 

Specificity Precision Overfitting 

LR 76% 74% 74% 84% 62% 8% 

SVM 75% 81% 74% 77% 27% 6% 

RF 72% 72% 66% 59% 80% 1% 

DNN-ANN 70% 74% 73% 59% 64% 4% 

XGBoost 70% 76% 72% 61% 60% 4% 

DT 68% 67% 74% 55% 53% 5% 

Standard Deviation 0.03 0.04 0.03 0.12 0.17 0.02 

As an additional motivation of implementing this framework, 
our previous work (Al Zoubi et al., 2023c) described the method 
of utilizing time saved from similar surgeries to accommodate 
additional procedures in a day, thereby reducing the arthroplasty 
waitlist (Al Zoubi et al., 2023d). 

The output from the ML engine is expected to flow in a 
cascading manner, with the output of one stage influencing the 
subsequent one. The machine learning model must continually 
adapt the SSR during the course of the operational time, operating 
under the assumption that forthcoming stages have predefined 
baseline values (Al Zoubi et al., 2023a). This is why monitoring 
is required, as the surgeon or the OR administrator is expected to 
closely observe the time and react accordingly. 

The day is ideally scheduled to initiate its first surgery, “case 1,” 
at 7:30 am with a turnover time of 0 min. If the day commences 
at a different time, for instance, 7:45 am, the preprocessing module 
calculates the turnover value as 15 minutes (7:45−7:30). Equation 1 
below is employed to estimate and calculate the remaining time 
metrics of the case. Metricnew represents the estimated time for 
the new metric. The term “delays or gains” signifies the difference 
between the actual metrics value once the stage is completed and 
the baseline value of that metric. If the actual value is less than the 

baseline value, it is considered a gain, and its sign in the formula 
becomes a negative value. Conversely, if the actual metric value 
exceeds the baseline value, it is regarded as a delay. 

Metricnew = Metric baseline+ 
(Delays or gains)last stage 

Number of MetricsNew 
(1) 

For the given example, with an actual turnover value of 15 min and 
a baseline value of 21.5 min, we experience a gain in time of 6.5 min 
(“−6.5”). The subsequent metrics will then have their estimated 
time as their baseline values minus 6.5/4, which is 1.625 min, as 
outlined in diagram B-2. The assumption here is that delays and/or 
gains in time from the previous stage are evenly distributed among 
the upcoming stage. 

The actual metric values are calculated at the conclusion of each 
stage once the required timestamp to calculate the stage is available. 
The ML model’s input is then updated with the actual metrics values 
for completed stages and with the estimated values for metrics 
where actual values are not yet available. A SSR is generated at each 
new model run. 

In Figure 2, the initial case for a surgical day is presented, 
highlighting instances of when and how the system updates 
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FIGURE 2 

ML engine outputs updating the benchmarks and the SSR and recommendation system trigger time. 

TABLE 4 Walsh Test for the PD seminar recommendation implementation. 

Metric APT APT in room SPT CASE SFT AFT Turnover Success 

Mean-Before 0.028 0.011 0.008 0.044 0.003 0.004 29.625 0.140 

Mean-After 0.026 0.009 0.009 0.042 0.004 0.005 26.785 0.640 

STD-Before 0.009 0.006 0.004 0.006 0.001 0.002 7.856 0.350 

STD-After 0.008 0.007 0.005 0.009 0.002 0.003 7.867 0.230 

t-stat 1.386 1.835 −0.221 1.684 −1.475 −2.379 −0.387 −690.936 

p-value 0.086 0.036 0.413 0.048 0.072 0.010 0.350 0.000 

DF 46.000 58.000 63.000 72.000 71.000 61.000 74.000 37.000 

the ML input, ML output, and the predicted SSR (Al Zoubi, 
2024). The calculation formula is displayed in the first row to 
illustrate the application of the new metric formula. Additionally, 
it outlines specific points where the system activates the 
recommendation system to address potential delays. Metrics 
displayed in blue and green (actual values and estimated values) 

font serve as the ML model input and are updated with each 
new timestamp. The SSR is also updated whenever there is 
new ML input. The recommendation system is triggered only 
when the estimated SSR falls below the baseline value. This 
sequence repeats in the diagram until the completion of all 
four surgeries. 
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TABLE 5 Benchmarks and associated SSR (OR throughput). 

Scenario APT Case AFT Turnover SSR 

1 <10.5 53 <20.5 <21.5 93% 

2 <10.5 64 <20.5 <21.5 89% 

3 <10.5 <71.5 <20.5 <21.5 59% 

4 <10.5 <71.5 <20.5 >21.5 69% 

5 10.5–18.5 <71.5 <20.5 <21.5 64% 

3.3.2 The recommendation system component 
The recommendation system specifically designed for the WM-

FAST was created using a distinctive approach known as the 
positive deviance (PD) seminar described in detail in a previous 
publication (Gold et al., 2023). Introducing any other method 
for implementing a recommendation system could contribute to 
transforming the framework into a prescriptive analytics decision 
support system. 

The decision to employ PD seminars as the source of 
recommendations for the WM-FAST, is in line with the objective 
of enhancing OR throughput by improving team efficiency. While 
alternative approaches, such as acquiring additional resources, 
hiring consultancy services, or adding personnel to oversee 
surgery flow, were available, they would have incurred extra 
costs. Moreover, the intention is to encourage the team’s self-
improvement by setting a positive example within the existing team 
dynamics and facilitating self-monitoring based on agreed-upon 
achievable and feasible performance standards. 

The PD seminar, functioning as a recommendation system, 
underwent testing and validation independently of the ML engine. 
To illustrate, suggested recommendations were implemented in a 
57-day trial focused on arthroplasty, and the outcomes are detailed 
in Table 4 (Al Zoubi, 2024). 

3.4 WM-FAST: decision support system 
module 

This module aims to enhance user experience and support 
workers in decision-making through the utilization of a dashboard 
and user interface. Initially, during the implementation of the 
WM-FAST, this aspect was manually executed. Benchmarks and 
SSR values were conveyed to practitioners without the aid of a 
dashboard. In cases of anticipated delays, surgeons had to resort 
to suggested actions from positive deviance seminars to manage 
subsequent stages. More information on the designed dashboard 
can be found in our previous work (Al Zoubi et al., 2023a). 

3.5 WM-FAST translated in clinical practice 

The goal for The Ottawa Hospital (TOH) was to achieve the 
highest possible SSR (i.e., completing 4 elective joint replacement 
surgeries, specifically hip and knee replacements) within a span of 
8 h and without running into delays. The designated time frame for 
this endeavor was from 7:30 am to 3:30 pm. This target was set to 

avoid incurring overtime costs, which were estimated at $56.84 per 
minute, resulting in an annual expense of $600,000 per operating 
room/annually within the Division of Orthopedic Surgery at TOH 
alone. Despite various attempts and strategies, such as dedicating a 
room solely for hip and knee surgeries, implementing benchmarks 
for each stage of surgery, and exploring parallel processing by 
separating anesthesia activities, TOH has been unable to surpass a 
SSR of 39% since 2012. 

The WM-FAST underwent implementation and validation 
at TOH’s Riverside Campus, with the involvement of a 
team comprising seven arthroplasty surgeons, nurses, and 
anesthesiologists. Surgical operations were carried out on a 
weekly basis, utilizing two operating rooms every week, over 
approximately 23 Saturdays in 2023. The primary aim was to 
enhance operating room efficiency by optimizing overall team 
performance. Through the application of FAST, the clinical facility 
succeeded in increasing the success rate of arthroplasty surgeries 
from 39% to 93% over 23 weeks (Al Zoubi et al., 2024) (Table 5). 

4 Discussion 

FAST is successfully able to improve the overall OR and 
complete more surgeries on time without changing clinical aspects, 
and without additional resources (human, financial, technical, 
etc.). This model leveraged data, artificial intelligence, stakeholder 
feedback and buy-in, and multiple ML models to not only predict, 
but suggest real time changes specific to the team and setting to 
achieve a better success rate. Quality of patient care and patient 
safety remained the top priority throughout the pursuit of this 
OR optimization solution that is a recommendation system which 
can be applied to other surgical procedures and other elements of 
healthcare delivery. 

This work goes beyond the predictive analytics, to our 
knowledge, this work presents the first AI-driven framework to 
improve efficiency and productivity with: 

1. The collaboration of key stakeholders: clinical team, data 
management team, hospital administration and patients. 

2. Encompass all stages of the surgical process, including pre-
operation, intra-operation, and post-operation phases. 

FAST demonstrated its ability to be utilized in a multitude 
of settings, irrespective of the size of the team, and without the 
addition of resources. With the current status of surgery delays 
and scheduling issues, this is a potential model which can be 
implemented without the need for additional healthcare personnel, 
facilities or supplies. The optimization ability of the framework can 
allow for easier scheduling of complex cases across the week to 
improve the daily surgery success rate and minimize burnout in the 
healthcare team, which was a major issue during and post-covid 
(Murthy, 2022). For instance, in scenarios where two patients need 
scheduling across 5 days of surgery, with four patients each day, 
the framework can intelligently distribute cases based on factors 
such as procedure duration (e.g., prioritizing longer procedures for 
specific days), thus potentially enhancing weekly success rates. With 
the current delays in surgery, the need of the hour, is for an easily 
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adoptable framework that can be integrated into the current system 
while providing setting specific real time suggestions. 

One of the key factors in implementing change, especially in a 
healthcare setting in buy-in from the multidisciplinary team, with 
individuals truly being a core component of the influencing, being 
ready for and valuing the change (Nilsen et al., 2020). The success 
of the FAST framework is due in-large part to the integration of 
the clinical team in the process. The clinical team’s commitment 
to the positive deviance seminars allowed them to take lead of 
this initiative and learn from the framework and each other by 
identifying key components and targets. Positive deviance focuses 
on why they succeeded, motivated the team and created a space 
for learning from team member’s success. This was also beneficial 
for the implementation approach involving utilizing the framework 
for surgical team scheduling, with a focus on optimizing personnel 
combinations to predict and enhance surgical success rates. 

5 Challenges and limitations 

One of the most significant challenges in implementing 
this framework is that buy-in and support is required from 
three different healthcare disciplines. For example, if some 
nursing unions won’t allow their nurses to begin work prior 
to 7:30 am in the morning, the surgery cannot begin on time 
as per the framework. Then there is the engineering layer 
connected to the development and deployment of these framework. 
Business owners have unique considerations and reservations 
compared to engineers and healthcare professionals, ranging 
from financial to human resource management. The conflicts of 
interest of these three healthcare stakeholders may slow down or 
impede the adoption and deployment of these framework in a 
healthcare institution. 

A limitation inherent to this body of work is the inherent 
margin of error associated with uncertainty and ambiguity. 
Both epistemic and aleatoric uncertainty (dimensions) is worth 
considering. Epistemic uncertainty is common in ML models 
with limited, incomplete, or inappropriate training data. This 
uncertainty can be partially eliminated by improving the training 
data available. In contrast, aleatoric uncertainty is tied to 
measurement errors and randomness that can’t be explained 
away. Some framework implementations such as surgical team 
scheduling framework can lead to team polarization. It can create 
two extremes, i.e., the strongest and the weakest members of 
the staff, which may lead to further division, and not allowing 
them to learn from each other. The patient scheduling application 
has drawbacks of its own, starting with the availability of the 
assigned surgeon for the day when the patient should optimally 
be scheduled (per the framework). Working around this constraint 
may significantly reduce the efficiency of the framework. For this 
application of the framework, the population was medically less 
complex, thus the surgeries were more likely to finish on time. 

6 Conclusion  

Prescriptive analytic frameworks, such as FAST are feasible and 
successful in utilizing real-time changes in variables and offering 

insights to improve OR efficiency and increase OR throughput. 
FAST’s use of team and hospital specific data allow it to be adapted 
to a multitude of settings, including hospitals internationally and 
various surgical departments. A key component of the success of 
FAST was the integration of the multidisciplinary team as partners 
throughout the process. 
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