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Utkarsh Mishra and Ansh Pandey

School of Computer Science and Engineering, Vellore Institute of Technology – Chennai Campus,

Chennai, Tamil Nadu, India

Introduction: OpenStreetMap (OSM) road surface data is critical for navigation,

infrastructure monitoring, and urban planning but is often incomplete or

inconsistent. This study addresses the need for automated validation and

classification of road surfaces by leveraging high-resolution aerial imagery and

deep learning techniques.

Methods: We propose a MaskCNN-based deep learning model enhanced

with attention mechanisms and a hierarchical loss function to classify road

surfaces into four types: asphalt, concrete, gravel, and dirt. The model uses NAIP

(National Agriculture Imagery Program) aerial imagery aligned with OSM labels.

Preprocessing includes georeferencing, data augmentation, label cleaning,

and class balancing. The architecture comprises a ResNet-50 encoder with

squeeze-and-excitation blocks and a U-Net-style decoder with spatial attention.

Evaluation metrics include accuracy, mIoU, precision, recall, and F1-score.

Results: The proposed model achieved an overall accuracy of 92.3% and a

mean Intersection over Union (mIoU) of 83.7%, outperforming baseline models

such as SVM (81.2% accuracy), Random Forest (83.7%), and standard U-Net

(89.6%). Class-wise performance showed high precision and recall even for

challenging surface types like gravel and dirt. Comparative evaluations against

state-of-the-art models (COANet, SA-UNet, MMFFNet) also confirmed superior

performance.

Discussion: The results demonstrate that combining NAIP imagery with

attention-guided CNN architectures and hierarchical loss functions significantly

improves road surface classification. The model is robust across varied terrains

and visual conditions and shows potential for real-world applications such as

OSM data enhancement, infrastructure analysis, and autonomous navigation.

Limitations include label noise in OSM and class imbalance, which can

be addressed through future work involving semi-supervised learning and

multimodal data integration.
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Introduction

Precise road quality classification is an important prerequisite for the work of

(intelligent) navigation systems, autonomous driving, and urban infrastructure planning.

OSM (OpenStreetMap), a popular open-source mapping service, has surface tags that are

user-contributed labels that are assigned to roadways. However, studies have demonstrated

that OSM data usually suffer from incompleteness, inconsistency, and antiqueness
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FIGURE 1

Example of NAIP imagery showing variations in road surfaces.

(Barrington-Leigh and Millard-Ball, 2017); therefore, automated

validation of OSM data is necessary. Road-type Road extraction

classification of road types is a related field of study in

aerial imagery. Conventional approaches include spectral analysis,

handcrafted feature extraction and rule-based classification.

However, these methods find it difficult to handle lighting

variations, occlusions, and heterogeneous terrains. Recent progress

in deep learning techniques such as convolutional neural

networks (CNNs) has shown promising results in remote sensing

applications (Maggiori et al., 2017; Sherrah, 2016).

Contributions of this study

In this study, we introduce a deep learning approach

to classify road surfaces using NAIP aerial imagery

and OSM surface labels. Our contributions include

the following:

• Data Integration and Preprocessing- Matching OSM road

surface descriptions to NAIP imagery to create high

quality training data.
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FIGURE 2

Examples of NAIP aerial imagery (top row) and their corresponding road surface masks (bottom row), labeled as either paved or unpaved. These

patches are representative of the dataset used during training and demonstrate the diversity and clarity in segmentation targets.

TABLE 1 Road segment counts before and after cleaning.

Surface class Original OSM segments Discarded (low
confidence)

After cleaning Patches auto-filled
(interpolated)

Asphalt 14,238 1,225 13,013 812

Concrete 3,517 402 3,115 289

Gravel 2,942 381 2,561 196

Dirt 2,108 354 1,754 178

Total 22,805 2,362 20,443 1,475

• Analysis of Road Color Based on Spectral Characteristics and

Texture—using spectral, color, and texture information to

improve classification accuracy.

• Hierarchical Loss Model—A CNN-based segmentation model

utilizing hierarchical loss functions to distinguish visually

similar road surfaces is adopted.

• Model Calibration and Testing—Tuning and calibration of the

model to enhance model performance and robustness across

locations with different climates.

Structure of the paper

The remainder of this paper is structured as follows:

• Related work section reviews previous research on road

surface classification and geospatial deep learning.

• Dataset description and preprocessing section

details the dataset, preprocessing pipeline, and feature

extraction techniques.

• Proposed methodology describes the segmentation model

architecture and hierarchical loss optimization.

• Experimental result section presents experimental results

and comparisons with existing methods.

• Conclusion section concludes the study and discusses

future research directions.

TABLE 2 Estimated OSM label error/omission rates.

Class OSM tag omission
rate (%)

Observed label
conflicts (%)

Asphalt 7.9 5.3

Concrete 11.4 6.7

Gravel 12.9 8.1

Dirt 16.8 9.3

Related work

The problem of road surface type classification has

been considered in numerous ways, such as manual

annotation, rule-based classification, machine learning, and

deep learning methods. In this section, we review previous

studies related to road surface detection using remote

sensing, OpenStreetMap confirmation, and geospatial-deep

learning methods.

Road surface classification using remote
sensing

High-resolution aerial imagery and satellite data have been

extensively applied for road-surface classification. Traditional
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FIGURE 3

Architecture of the proposed CNN-based model, showing encoder-decoder structure with an attention mechanism.

FIGURE 4

Dataset as original, then infrared (NIR-R-G) , then mask and at last probability masking.

approaches include spectral analysis, feature extraction based

on texture, and handcrafted classifiers. For example, spectral

indices and texture measures have been employed in the

initial methods to distinguish different road types with mixed

success owing to mixed-pixel effects. Road segmentation has

achieved compelling performance gains with the advent of

deep learning, particularly via convolutional neural networks

(CNNs). A typical example is the study by Zhang and Peng

(2018), who presented a GL-Dense-U-Net model to extract roads

from high-resolution remote sensing images, and improved

performance results over classical methods. Similarly, Abdollahi

et al. (2020) proposed an improved deep convolutional

encoder–decoder (derived from SegNet) in combination

with the ELU activation function to automatically segment

road classes from high-resolution remote sensing images, to

improve accuracy.
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FIGURE 5

Confusion matrix illustrating the classification performance of the proposed model.

OpenStreetMap (OSM) validation and road
surface mapping

OSM is a useful crowdsourced mapping service, but its

road-surface information is usually incomplete and incoherent.

Haklay (2010) analyzed the accuracy of OSM road networks

and discovered that surface tagging is often outdated or lacking.

Fonte et al. (2020) examined the verification and improvement

of OSM road-surface data using high-resolution satellite imagery

and machine learning. To make the OSM compatible with remote

sensing, Maggiori et al. (2019) proposed an automatic OSM

validation method that compared road surfaces extracted from

satellite images with OSM annotations. Their research showed

that machine learning classifiers with aerial imagery as input were

able to amend erroneous or absent road labels. Barrington-Leigh

and Millard-Ball (2017) also studied the quality and consistency

of OSM data and found regional differences in road surface

annotations, as well as the availability and completeness of data at

the global level.

Deep learning for road segmentation and
classification

The application of deep-learning models has resulted in the

classification of road surfaces into new heights. Shelhamer et al.

(2015) were the first to introduce fully convolutional networks

(FCNs) for semantic segmentation, laying the groundwork

for road extraction models. Based on this, Ronneberger et al.

(2015) proposed U-Net as a segmentation baseline for roads

using remote sensing. To improve classification accuracy,

multi-spectral researchers have used by methods. Mnih and

Hinton (2010) introduced an RGB+ near-infrared (NIR) CNN

model that provided better performance in road detection in

shadowed or occluded areas than the RGB model. Similarly,

Maggiori et al. (2017) presented a deep multi-scale method to

model local and global road surface properties. Hierarchical

loss has also been recently studied for robust training. Xu

et al. (2018) proposed a hierarchical loss function that can

improve the discrimination of visually similar road types.

Additionally, Zhang (2017) explored attention-based CNN

models trained on features relevant to the road to improve the

model performance.

Limitations of existing approaches

Despite the progress made, existing pavement-type

classification models encounter some important challenges.

• Data quality problems: Labels in OSM, for instance, are

frequently incomplete and require manual correction or

automatic validation (Fonte et al., 2020).
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FIGURE 6

Reliability diagram for each target class, comparing model accuracy against prediction confidence, demonstrating the calibration quality of the

proposed model.
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FIGURE 7

Hierarchical tree of road surface types based on visual similarity and

construction material. Closer branches represent classes with higher

semantic and visual overlap.

• Spectral confusion: The same Road Type (for example, gravel

vs. concrete) can look the same in aerial images, making

classification difficult (Zhang and Peng, 2018).

• Cross-region generalization: Most deep-learning-based

models fail to generalize training from one region to another

with different lighting conditions and other factors (Bengio,

2012).

Our study addressed these challenges by combining NAIP

imagery with OSM labels, leveraging hierarchical loss functions,

and fine-tuning CNN architectures for robust road classification.

In recent years, superior deep learning architectures have

emerged for road extraction and classification. Mei et al. (2021)

were the first to introduce a Connectivity Attention Network

(COANet) with a coarse-to-fine pipeline with context-enhanced

connective modules to preserve road connectivity and diminution

adipose scale. The model was more generalized, and able to

deal with continuity, while using satellite images. Alternatively,

Wang et al. (2024) proposed a Multiscale and Multidirection

Feature Fusion Network (MMFFNet), which aimed to capture

often overlooked directional and hierarchical features that

increased detection accuracy in areas with increased heterogeneous

complexity of roads (Wang et al., 2024). The SA-UNet model (Wu

et al., 2024) operated on a classic U-Net backbone, introducing

spatial attention nodes to highlight the salient features necessary for

successful extraction of travel areas deemed as roads. Collectively,

all of the studies in this section improved road extraction, but in

their own respective ways.

Dataset description and preprocessing

In this section, the processes of dataset selection, pre-processing

pipeline, and feature extraction methods related to road surface

classification are outlined. We employed NAIP high-resolution

aerial imagery andOSM road surface labels in ourmethod and used

advanced data pre-processing techniques to improve the robustness

and accuracy of the output.

Input: NAIP Aerial Imagery I, OSM Road Labels L

Output: Predicted Surface Segmentation Mask M

1: Begin

2: //Step 1: Data Alignment

3: Georeferenced imagery I to align with vector

roads L

4: Extract road-centered image patches P from I

based on L

5: //Step 2: Data Preprocessing

6: For each patch p in P do

7: Apply data augmentation (rotation, flipping,

brightness, noise)

8: Normalize pixel values in p

9: Extract corresponding surface label from L

10: Generate segmentation mask m for p

11: End For

12: //Step 3: Model Architecture Setup

13: Initialize encoder: ResNet-50 with Squeeze-

and-Excitation blocks

14: Initialize decoder: U-Net with attention

mechanism and multi-scale fusion

15: //Step 4: Model Training

16: For epoch = 1 to N do

17: For each batch B of (p, m) pairs

18: Predict segmentation mask M’ ←

Model.forward(p)

19: Compute loss L ← Hierarchical Loss + IoU

Loss +Focal Loss

20: Backpropagate L and update model parameters

21: End For

22: If validation loss does not improve → apply

early stopping

23: End For

24: //Step 5: Model Calibration (Post-training)

25: Calibrate prediction confidence

using reliability diagrams

26: //Step 6: Prediction

27: For new aerial patch q

28: Predict M ← TrainedModel.forward(q)

29: End For

30: Return M

31: End

Algorithm 1. Road surface classification using MaskCNN.

Dataset and data sources

We leveraged aerial imagery data from the National

Agriculture Imagery Program (NAIP) and road surface labels

from OpenStreetMap (OSM) to create an accurate and scalable

road surface classification model.

NAIP aerial imagery
The NAIP data contain multi-band (red, green, blue, near

infrared–NIR) high-resolution (1-meter per pixel) multispectral

images. By capturing the surface reflectance properties, these
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FIGURE 8

Training vs. validation loss.

FIGURE 9

Training and validation mIoU over epochs.

spectral bands allow discrimination between paved and non-

paved roads. The dataset encompasses urban, suburban, and rural

domains to ensure inclusiveness, as shown in Figure 1.

OSM road surface labels
OpenStreetMap (OSM) is a crowdsourced mapping tool

with surface labels, including asphalt, concrete, gravel, and dirt.

However, OSM tags may contain missing or inconsistent data,

which requires data validation (Singh et al., 2023).

Data preprocessing

To align NAIP imagery with OSM road labels, we perform the

following steps:
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FIGURE 10

5-fold spatial block cross-validation performance.

• Georeferencing and cropping: Georeference NAIP imagery to

OSM and crop patches that contain roads.

• Surface labeling: Extracting OSM road segments with

assigning surface labels.

• Transformation and noise filtering: The low-confidence OSM

tags are removed, inconsistencies are corrected, and missing

tags are infilled by spatial interpolation.

• Data augmentation: Use of rotation, flipping, adjusting

brightness, and adding Gaussian noise to help overcome bulky

malls and highways make the model general and robust.

• Patch normalization: The pixel intensity between

images is normalized to ensure that they have

consistent feature representations.

• Class balancing: Handles the problem of imbalanced

distribution of labels through oversampling and generates

synthetic data for minority classes.

An excerpt of the patches from the NAIP imagery and their

segmentation is shown in Figure 2. Each column represents the

sample image, surface label (paved/unpaved), and predicted mask

of the model. These visualizations demonstrate the variability in

road appearance and demonstrate that the pre-processing pipeline,

specifically georeferencing, mask alignment, and augmentation,

retained both the visual and spatial quality of the road surfaces

irrespective of terrain.

Table 1 shows the number of road segments per surface class,

as originally downloaded from OSM, the number removed due to

low confidence or ambiguous labels, and the number interpolated

during preprocessing. This indicates the degree of data curation

performed prior to training, as well as identifying the distribution

bias in crowdsourced data.

Label quality assessment

In Table 2, we provide the omission rates (i.e., segments that

do not have a surface label) and label conflict rates (i.e., where

the visuals contradict the OSM tag) across the road surface classes.

These results quantify the inconsistency in OSM surface tags and

support the need for an automated method.

Proposed methodology

In this section, we describe the model architecture and loss

optimization techniques used to achieve an accurate road surface

classification. In this study, we present a MaskCNN-like model

incorporating analogous hierarchical loss functions to achieve

better classification accuracy.

Proposed deep learning model

To classify the road surface with high precision, we designed

a multistage CNN-based segmentation model based on U-Net and

attention-based architectures, as shown in Figure 3.
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TABLE 3 Penalty weights based on semantic distance.

Class Asphalt Concrete Gravel Dirt

Asphalt 0 1 2 3

Concrete 1 0 1 2

Gravel 2 1 0 1

Dirt 3 2 1 0

Misclassifying concrete as gravel incurs a lower penalty (1) than confusing asphalt with

dirt (3).

TABLE 4 Patch distribution across splits.

Surface class Train Validation Test Total

Asphalt 10,200 2,100 1,713 14,013

Concrete 2,600 312 203 3,115

Gravel 2,050 307 204 2,561

Dirt 1,400 218 136 1,754

Total 16,250 2,937 2,256 21,443

Model architecture
Our model consists of the following key components:

• Encoder (feature extraction):

The encoders used ResNet-50 (Hu et al., 2018) pretrained on

ImageNet to obtain multiscale road features from NAIP imagery

(He et al., 2016). The model enables the effective joint learning

of high-level context-aware features and fine-grained road surface

information by utilizing the advanced feature extraction ability of

ResNet-50. Moreover, the encoder is equipped with squeeze-and-

excitation (SE) blocks that dynamically reweight feature maps to

make them more receptive to critical patterns (Hu et al., 2018).

These SE blocks enhance the network’s capability to concentrate

on road-specific traits, guaranteeing a better feature representation

performance for downstream classification.

• Decoder (surface classification):

The decoder is a U-Net style network for decoding road surface

segmentation masks from the produced feature maps. Figure 4

shows the network structure (Ronneberger et al., 2015). It also

integrates attention mechanisms to concentrate on road-specified

characteristics and screen out irrelevant context information,

contributing to the enhancement of segmentation performance

(Oktay et al., 2018). In addition, the decoder uses multiscale feature

fusion to maintain subtle details and structural consistency on the

road surface. In this way, we guarantee that the learning of both

coarse- and fine-scale features affects the classification, allowing the

model to better separate different types of roads.

Hierarchical loss function

To improve the classification performance (better

distinguishing among visually similar road types), the loss

TABLE 5 Class-wise precision, recall, F1 on test set.

Class Precision Recall F1-score

Asphalt 95.10% 96.70% 95.90%

Concrete 92.30% 91.00% 91.60%

Gravel 88.20% 85.60% 86.90%

Dirt 84.50% 82.10% 83.30%

Macro avg 90.00% 88.80% 89.40%

TABLE 6 5-fold cross-validation results (accuracy and mIoU).

Fold Accuracy (%) mIoU (%)

Fold 1 91.8 82.9

Fold 2 92.3 83.7

Fold 3 91.5 82.4

Fold 4 92.1 83.1

Fold 5 91.9 82.6

Avg 91.9 82.9

function used is hierarchical (Li et al., 2021). This loss function

punishes misclassifications by using hierarchical relations to

handle the errors between similar classes (e.g., asphalt, concrete)

in a different way than the errors between distant classes (e.g.,

asphalt vs. dirt). Furthermore, the loss function fuses with focal

loss (Lin et al., 2017) to cope with the class imbalance problem, and

the hard-to-classify samples obtain a higher weight. Additionally,

Intersection over Union (IoU) loss is used for better segmentation

results because it helps the model focus more on the spatial

alignment of the predicted and ground-truth road-surface masks.

Model training and hyperparameters

We trained our model on the cross-entropy loss function with

hierarchical regularization and the Adam optimizer. The learning

process was as follows:

• Data splitting: We split the data into three subsets for

sound model training and evaluation: 70% for training,

15% for validation, and 15% for testing (Chollet, 2017).

To maintain a balanced representation of all types of road

surface, stratified sampling was used (King and Zeng, 2001).

This guarantees that not only common road surface types

but also less prevalent ones are fairly distributed along the

training, validation, and test sets, thus avoiding acquisition

bias in model learning.

• Hyperparameters: Several key hyperparameters are

optimized to enhance model performance.

◦ Batch size: 16

◦ Learning rate: 1e-4 (with cosine decay)

◦ Epochs: 50

◦ Dropout rate: 0.3 to mitigate overfitting
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FIGURE 11

Visualization of five correctly classified unpaved road segments, each row showing RGB imagery, color infrared (IR), and overlayed ground truth and

prediction masks. High accuracy is observed even in scenes with significant vegetation or occlusion.

◦ Weight decay: 1e-5 to prevent excessive

parameter updates

• Training strategy: For achieve better generalization and

robustness, different training strategies are utilized. During

training, data augmentation operations (rotation, flipping,

and brightness change) were employed to inject variations for

the model to be robust to various road surface conditions

(Shorten and Khoshgoftaar, 2019). The stopping criterion is

the early stopping mechanism, where to observe validation

loss and stop utilizes decreasing training performance to

avoid overfitting (Prechelt, 1998). During the optimization

process, we used learning rate scheduling to further fine-

tune the optimizer by dynamically adjusting the learning

rate for better convergence (Loshchilov and Hutter, 2017).

In addition, mixed precision training was employed to

further achieve computational efficiency by taking advantage

of FP16 floating-point operations to reduce the memory
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FIGURE 12

Visualization of five correctly classified paved road segments with consistent prediction performance across suburban, rural, and highway

environments. Model segmentation accurately aligns with road structures under varying conditions.

requirement and acceleratemodel training (Micikevicius et al.,

2018).

• In total, the number of trainable parameters

in MaskCNN (ResNet-50 for the encoder

+ attention-enhanced decoder) is roughly

23.8 million.

• Early stopping was implemented based on

validation mIoU with a patience of 10 epochs.

We enforced early stopping once validation mIoU

did not improve for 10 consecutive epochs. This

approach reloaded the model weights from the best

model checkpoint.

Evaluation metrics

We report the following detailed criteria in order to evaluate

classification performances:

1) Overall accuracy: Computes the rate of correctly classified

road surfaces for the entire dataset. Although it is a sensible

high-level metric, accuracy alone does not fully describe the

per-class performance in imbalanced datasets.

Accuracy =

(

TP + TN

TP + TN + FP + FN

)

(1)
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where TP, FP, and FN represent the true positives, false

positives, and false negatives, respectively.

2) Intersection over Union (IoU): Also called the Jaccard

Index, IoU measures the intersection over union ratio

of the predicted and ground truth road surface masks.

Larger IoU values indicated better segmentation results. IoU

is computed as:

IoU =
TP

TP + FP + FN
(2)

where TP, FP, and FN represent the true positives, false

positives, and false negatives, respectively.

3) Mean Intersection over Union (mIoU): The average of

IoU scores over all surface classes serves as an overall

indicator of how well objects have been segmented for

multiclass recognition.

4) Precision, recall, and F1-score:

• Precision: This measures the proportion of correctly detected

road surfaces to all the instances that were predicted to be

road surfaces.

TABLE 7 Accuracy on manually verified test set (n = 200).

Class Precision Recall F1-score Accuracy

Asphalt 95.10% 96.70% 95.90% 94.50%

Concrete 92.30% 91.00% 91.60% 90.20%

Gravel 88.20% 85.60% 86.90% 86.50%

Dirt 84.50% 82.10% 83.30% 82.00%

Overall – – – 90.80%

precision =

(

TP

TP + FP

)

(3)

where TP and FP represent true positives, and false positives.

• Recall: This measures the portion of actual class instances that

were predicted correctly to be that class.

recall =

(

TP

TP + FN

)

(4)

where TP and FN represent true positives, and false

negatives, respectively.

• F1-score: Harmonic mean of precision p and sensitivity r to

address both aspects for a more comprehensive assessment.

F1 = 2×
Precision× Recall

Precision+ Recall
(5)

5) Confusion matrix analysis: Presents a class-wise

segmentation of the model prediction and underlines

the misclassification patterns across visually close road types

(i.e., low weight of cross-entropy loss by asphalt, gravel, and

dirt), as shown in Figure 5. In doing so, it provides room for

detecting and long-term detection of systematic errors or

directions for model improvement.

We also made comparisons with baseline models, including

classical SVM-based classifiers, Random Forest, and state-of-the-

art deep learning methods, to validate the superiority of our

model. This research combines high-resolution NAIP imagery

with OpenStreetMap (OSM) road labels to improve road surface

classification precision, as shown in Figure 6. The methodology

achieves a more realistic and robust representation of different

FIGURE 13

Confusion matrix comparing noisy OSM surface tags with model predictions on the test set.
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TABLE 8 Comparison with existing models.

Model Accuracy (%) mIoU (%) Precision (%) Recall (%)

SVM classifier 81.2 74.5 79.3 80.5

Random forest 83.7 76.1 81.6 82.1

U-Net (baseline) 89.6 80.5 88.3 87.8

COANet 91.50 82.00 89.00 90.00

SA-UNet 90.80 81.20 88.70 89.40

MMFFNet 91.20 82.30 89.60 90.20

Proposed model (MaskCNN+ hierarchical) 92.3 83.7 91.5 90.6

FIGURE 14

Comparison with existing models.

road properties using a combination of aerial images and

crowd-sourced road surface information. The proposed model

is based on an attention-enhanced CNN architecture with

a ResNet-50 backbone, squeeze and excitation (SE) blocks,

and a U-Net-like decoder. Our model allows road-specific

characteristics to increase the accuracy of the feature extraction

and segmentation.

A hierarchical loss function is proposed to distinguish

visually similar road surfaces better by introducing a penalty for

misclassification based on the hierarchy. With focal loss applied to

address the data imbalance and IoU loss to improve segmentation

accuracy, the model performs well in diverse road settings. The

model is also robust thanks to data pre-processing steps that are

more complex (e.g., noise filtering, data augmentation, and/or

class balancing) and serves as a variety of training examples

while dealing with the inconsistencies between OSM labels. We

provide a semantic hierarchy, based on visual and physical

characteristics observed in aerial imagery, over the road surface

classes. Surfaces with smoother texture and greater structural

aspects (e.g., asphalt) can be seen to be more similar to one another

than to unpaved surfaces (e.g., dirt). The hierarchy is illustrated in

Figure 7.

Equation for hierarchical loss:

- let yǫ{1,2,..C} be the ground truth label

- let pi be the predicted probability for class iii

- let Di,y be the hierarchical distance penalty between class iii

and ground truth y.

L HCE = −
∑

C
i=1Di,y · log

(

p̂i
)

(6)

For a complete evaluation, we used an extensive collection

of evaluation markers, including overall accuracy, IoU,

mean IoU, precision, recall, F1-score, and AUCPR. The

model was compared with the currently available machine

learning and deep learning-based methods, showing its

better classification accuracy. It is the combination of

the contributions that contribute more or less to pushing

the objective of road surface classification that combines

geospatial data, deep learning techniques, and optimization

techniques for better accuracy and generalization (Zhang et al.,

2022).

For clarity, Algorithm 1 summarizes the complete pipeline of

road surface classification using NAIP aerial images and OSM

annotations. The solution combines core components, such as
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data pre-processing, mask generation with feature extraction by

means of an attention-augmented-CNN, and classification using

a hierarchical loss. This detailed dismantling provides a replicable

roadmap for anyone looking to utilize the model in academic

and public-facing mapping spaces. Our dataset, though, contains

∼21,000 labeled road patches, the utilization of a deep encoder

TABLE 9 Class-wise performance metrics.

Road surface
type

Precision Recall F1-score IoU

Asphalt 94.10% 95.30% 94.70% 89.80%

Concrete 91.60% 90.20% 90.90% 85.10%

Gravel 88.40% 86.90% 87.60% 81.30%

Dirt 85.20% 83.70% 84.40% 78.50%

(ResNet-50) with attention-based decoding has raised issues of

overfitting. To mitigate this, we kept track of both training

and validation losses and mIoU scores during training. We

implemented early stopping with a patience of 10 epochs on

validation mIoU, to guard against training too long. Loss and

accuracy curves for their respective 50 epochs of training are shown

in Figures 8, 9. These curves indicate successful and stable training,

and that the model was able to generalize reasonably well over the

validation set - there were no signs of divergence or overfitting

present. This further confirms the effectiveness of our architectural

choices and regularization practices.

Label distribution and evaluation plan

Road surface classification datasets are commonly imbalanced,

especially crowdsourced datasets [e.g., OpenStreetMap (OSM)]

FIGURE 15

mIoU comparison with existing model.
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TABLE 10 Comparison with SOTA models.

Model Backbone mIoU (%) Accuracy (%)

U-Net Vanilla 80.5 89.6

DeepLabv3+ ResNet-50 81.8 90.5

HRNet HRNet-W18 82.2 90.9

Swin-UNet Swin-B 82.7 91.2

MaskCNN

(proposed)

ResNet-50+

attention+

hierarchical loss

83.7 92.3

The bold values represent the highest performance scores among the compared models for

each evaluation metric (mIoU and Accuracy), indicating that the proposed MaskCNNmodel

outperformed other state-of-the-art models on the given dataset.

that result in some class of paved surfaces like asphalts having

representative imbalances. To avoid biased interpretation of

models, we used stratified sampling and class-wise evaluation

through out the train, validate, and test splits, as well as, 5-

folded spatial block cross-validation to evaluate generalizability

of the models across spatial regions with autocorrelation not

limiting validity in the image patches. Table 3 presents the penalty

weights based on semantic distances between road surface classes,

indicating that misclassifications among visually similar classes

(e.g., concrete and gravel) incur lower penalties than dissimilar

classes (e.g., asphalt and dirt).

Table 4 shows the number of image patches per surface class

in the train, validation and test sets. There is evidence of class

imbalance in the image patches as can be seen in the values, with

asphalt surfaces dominating the dataset.

Class-wise evaluation metrics are shown in Table 5, calculated

on the test set with the full 4-class confusion matrix. With

imbalanced data, the model is still effective overall for every surface

class, and is especially effective based on F1-score.

To address the potential for to overfitting model predictions

due to spatial autocorrelation we divided the study area into

geographic tiles of 256 × 256 km and used 5-fold cross-validation.

The consistent model performance from 1-fold to the next, with

very little variation in accuracy andmIoU values is shown in Table 6

as well as in Figure 10.

Result and discussion

This section presents the experimental results, analyzes the

performance of the proposed model, and compares it with

the existing approaches. This discussion highlights the key

observations, potential challenges, and implications of the findings.

Qualitative evaluation of correctly classified
samples

This section presents the EV results, evaluates the performance

of the proposed model, and compares it with the known methods.

The Key observations, possible limitations, and implications of the

findings are also discussed. To assess the quality of segmentation

and feature classification of our proposed model, we performed

a qualitative visual inspection of samples of both unpave d and

pave d-Roads. Figures 11, 12 present the results for the samples

from the test set, with each row representing a different sample.

The correctly classified unpaved roads are illustrated in Figure 8

for the five different geographic conditions. Each sample includes

an RGB image, near-infrared (Color IR) image, and several

mask overlays, namely, combined image with ground truth mask,

combined image with true probability mask, and combined image

with predicted.

Similarly, Figure 9 depicts the five categories of successfully

classified paved roads. Although the surface reflectance,

background clutter, and imaging viewpoints vary, the model

remains relatively stable irrespective of the different cases. Sample

2 showed low occlusion (1.8%) and provided an accurate prediction

following the road shape. For sample 3, despite the 50.5% occlusion

level, the predicted segmentation matched the ground truth well,

demonstrating the linear feature recognition of the model, even

in the presence of partial coverage. Sample 5 is of special interest

because it exhibits the model’s confidence in a slightly noisy

environment, even though there is nothing very complex in the

background scene, and there is 0 predicted misalignment that

equals 100% clarity.

These results reinforce the strong generalization capability of

the model and fine-grained surface discrimination across different

terrain types and spectral channels.

The performance of the model is summarized in Table 7, when

applied to manually curated and visually verified road patches (n=

200). The metrics provide evidence that the model made accurate

predictions, as opposed to simply learning from, or reproducing

noisy labels.

Figure 13 illustrates the confusion matrix between noisy

OSM labels and model predictions. The strong diagonal

indicates robustness against noisy labels, with only small

class-misclassifications and mostly between surfaces that are

visually similar such as gravel and dirt.

Comparison with existing methods

In order to evaluate our attention-guided CNN model for

road surface classification in an objective manner, we compared

our model to three of the most established baselines: (a) support

vector machine (SVM) classifier; (b) random forest classifier; (c)

standard U-Net (SLI-Net) deep learning model; (d) COANet; (e)

SA U-Net; (f) MMFFNet. We present our results in terms of the

following relevant performancemetrics: global accuracy, mean IoU,

precision and recall. Comparative results are presented in Table 8

and Figure 14.

According to the results, our model surpassed all the baselines

for all the metrics checked. In particular, it attained an accuracy

of 92.3% in terms of overall classification, and the mIoU reached

83.7%, corresponding to+3.2% in the mIoU with respect to the U-

Net baseline and nearly+10% of the SVM classifier. These gains are

achieved mainly by the inclusion of an attention mechanism that

allows better attention to be placed on road cues and an improved

loss function that enforces semantic consistency and penalizes class

misalignment more strongly.
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In addition to comparing our method against baseline U-Net

and more traditional models, we also compared it to more recent

architectures such as COANet (Mei et al., 2021), SA-UNet (Wu

et al., 2024), and MMFFNet (Wang et al., 2024). Although we were

unable to numerically benchmark against these methods due to

differences in datasets, their best accuracies were reported to be

between (89 and 91.5%) with the best mIoUs reported between 82

and 83%. Our model achieved an accuracy of 92.3% and mIoU of

83.7%, outperforming all the SOTAmodels listed in some measure.

Our method had practical advantages in real-world applications

to road surface classification (especially in scenarios matched to

crowdsourced map validation) by using attention, hierarchical

loss, as well as georeferencing through OSM, compared to the

above models.

Graphical comparison of the models with respect to all four

evaluation measures is shown in Figure 14. The proposed approach

demonstrates stronger performance on all QA axes: trajectory

performance on each axis is high, confirmingmodel robustness and

balanced generalization.

It is our observation that our model surpasses traditional

machine learning methods as well as the baseline U-Net model.

In terms of attention and learning, two-step loss functions proved

effective in improving the classification accuracy and segmentation

performance in a hierarchical manner.

Error analysis

However, error analysis revealed some limitations of the

proposed architecture despite its high performance.

• Gravel vs. dirt misclassification: A Significant confusion was

caused by the similarities between gravel and dirt roads. Both

surface types often share visual and textural properties in

aerial photographs, resulting in high misclassification rates.

Notwithstanding this, an F1-score of 84.4% and IoUs of 81.3%

in gravel and 78.5% in dirt were retained by the model, as

shown in the cross-wise performance analysis.

• Effects of class imbalance: The dirt road category was the

smallest sub-category in the training dataset, which led to

a relatively low recall (83.7%). This imbalance hampers the

generalization of the model to represent rare classes at the

test time.

• Label misalignment: The employment of crowdsourced

OpenStreetMap data naturally leads to imperfect label

alignment. In several cases, road boundaries and segmentation

masks were not perfectly aligned with the corresponding

NAIP imagery, particularly in rural areas. This discrepancy

sometimes results in incorrect supervision training.

To address these limitations, several remedial measures are

suggested in future studies. These consist of advanced class-

balancing techniques, such as SMOTE or GAN-based synthetic

sample generation, geospatial registration tools for spatial label

refinement, and transformer-based modules for more effective

long-range context and spatial dependencies.

Performance evaluation

The attention-embedded CNN model was well-trained

and tested with aerial images extracted from the National

Agriculture Imagery Program (NAIP) along with road surface

annotations made by OpenStreetMap (OSM). On the held-

out test set, the model achieved a high accuracy of 92.3%,

indicating a strong generalization across different geographical and

visual circumstances.

One of the major strengths of this study is the availability

of fine-grained, class-wise performance of the four types of road

surfaces: asphalt, concrete, gravel, and dirt. This granular level

of classification is not typically covered in the extant literature,

which for classification problems related to road surfaces, is often

binary (e.g., paved vs. unpaved) and does not describe categories

of performance for road surfaces made up of specific materials. In

Table 9, we can see that the model not only performs well overall

but also achieves high precision and recall for all classes, including

the more difficult gravel and dirt.

These metrics reveal the potential of the model to discriminate

visually similar surfaces (asphalt and concrete) and its ability to

correctly identify coarser textures (gravel and earth) that other

classifiers sometimes confuse with other surfaces.

For further comparison, the mean Intersection over Union

(mIoU) of themodel was compared against three baseline classifiers

(a Support Vector Machine (SVM), Random Forest classifier, and

regular U-Net architecture).We also observed that with anmIoU of

83.7%d, the proposed method clearly outperformed the competing

methods, SVM (74.5%) and Random Forest (76.1%), and provided

noticeable improvements over the U-Net baseline (80.5%), as

shown in Figure 15. This improvement is visually confirmed by the

radar chart in Figure 15, in which a better behavior shape toward all

the metrics is observed in all cases.

This significant improvement in segmentation quality can

be attributed to the integrated spatial attention mechanisms,

multi-scale feature fusion, and hierarchical loss function, which

consider both inter-class similarities and label balance. With

these architectural innovations, together with sophisticated pre-

processing and balancing strategies for the input data, our model

achieves state-of-the-art performance for road surface classification

and improves the baseline by a significant margin. Therefore,

it is eminently applicable to operational use cases, such as

geospatial data validation pipelines, infrastructure monitoring, and

automated navigation systems.

Ablation study and SOTA comparison

In order to compare our contributions and also in the context

of recent developments in the field of semantic segmentation

research, we conducted two experiments. The first experiment was

to benchmark our method against state-of-the-art architectures

in remote sensing using DeepLabv3+ (ResNet-50), HRNet, and

Swin-UNet. The second experiment was an ablation study that

establishes the impact of the attention mechanism and hierarchical

loss independently. The comparison of the proposed model

with modern state-of-the-art semantic segmentation models is

given in Table 10 using the same dataset and split. MaskCNN
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achieves the best mIoU and accuracy even though ResNet-50 is a

moderately deep backbone, thereby demonstrating the benefits of

its architectural changes.

Future work

Although the proposed attention-augmented CNN model is

effective for the accurate and robust classification of road surfaces

from aerial imagery and crowdsourced labels, there are several

potential directions for future improvements and extensions to

this work.

First, the generalization of the model can be substantially

enhanced by enriching the underlying dataset in both spatial and

temporal dimensions. Although the current model was trained

on a wide variety of NAIP images, adding imagery from other

geographic regions, seasons, and atmospheric conditions would

allow the model to better account for regional variations in surface

appearance, illumination, and vegetation cover. This may also

remedy the biases in the current sampling distribution and facilitate

adaptation to internationally collected datasets.

Second, our method is closely tied to OSM, and leverages the

surface labels provided by OSM, which are noisy, incomplete, and

sometimes subjective. Future workmay also consider incorporating

semi-supervised or self-supervised learning schemes that can

alleviate the dependence on manually annotated data through

large-scale unlabeled image usage. Automated label refinement

methods (label propagation, active learning, and spatiotemporal

consensus across overlapping tiles) can also be investigated to

increase label quality without human intervention.

Third, although the model architecture utilizes spatial attention

and hierarchical loss, progress in transformer-based vision models

may have the potential to model (e.g., Vision Transformers and

Swin Transformers) long-range dependencies and context-aware

reasoning in geospatial imagery. Thesemodels can also be tested for

their ability to segment and classify road networks in challenging

scenarios where roads are partially occluded, cross, and have

varying forms.

Fourth, including multimodal data can enhance the semantics

of road surfaces. The inclusion of LiDAR, synthetic aperture

radar (SAR) or mobile GPS traces can also offer supplemental

depth, texture, and usage-based cues that cannot be found in

optical imagery alone. Integrating these data sources in a multi-

stream manner could potentially result in stronger models that can

discriminate between difficult cases, such as partially graveled and

bad asphalt roads.

Fifth, another promising direction is to employ a trained

model in real mapping environments. This could be integrated

with open-source editing software such as Java OpenStreetMap

Editor (JOSM), providing online feedback and annotation support

for mapping contributors. A user-focused interface that displays

low-confidence predictions or displays sands that have been

saved with incompatible previous observations would help with

targeted validation and build trust within the community that the

automated recommendations are reliable.

The next step is to examine the fairness and interpretability of

the model. Identifying and improving any discrepancies in model

performance for rural vs. urban areas can be used to evaluate

the bias reflected in historically underrepresented locations. Visual

explanation methods, such as Grad-CAM or SHAP, can offer some

intuitive insights into what the model is looking at and make the

decision process transparent.

These future trajectories combined will help enrich the

robustness, scalability, and field application of the associated

road surface classification techniques to support sustainable

infrastructural development, autonomous mobility, and worldwide

mapping systems.

Conclusion

In this study, we designed an attention-augmented CNN for

road-surface classification using NAIP imagery and OSM labels.

This model achieved an accuracy of 92.3% and an mIoU of

83.7% and outperformed state-of-the-art machine learning and

deep learning techniques. The major contributions of this study

are the fusion of geospatial datasets to improve the classification

accuracy, design of an attention-based CNN model for better

feature extraction and segmentation, and design of a novel layer-

wise hierarchical loss function to account for the visual similarity

of our surfaces. Moreover, the study offers a full-scale performance

analysis comparing the proposed model with current state-of-the-

art techniques to demonstrate its superiority.

Despite its high classification accuracy, the model can be

improved in several ways, which will be of interest in future

work. Broadening the spectrum of the dataset, covering more

road surface diversity, and improving the quality of labeling using

more advanced annotationmethods or applying transformer-based

architectures may further increase the generalization ability of the

model. The proposed approach provides a scalable solution for

road surface reconstruction, which may have a profound impact on

urban planning, traffic management, and autonomous navigation

systems (Chen et al., 2023).

Broader impacts

The introduced road surface classification pipeline has

important implications for applications beyond map enrichment

and routing optimization. One crucial field on which we work is

disaster response and contingency planning. Distinguishing paved

from unpaved roads can help navigate relief teams to more usable

access roads following floods, earthquakes, or wildfires, where road

usability is important for logistics and evacuation.

In terms of equity, such a system can enhance infrastructure

surveillance in low coverage or resource-limited areas. Most

developing countries do not have extensive road quality data,

and this framework can, particularly when combined with

OpenStreetMap, help fill data gaps in rural and underserved

zones, promoting more equitable urban development and

resource planning.

In addition, road condition monitoring contributes to climate

resilience. Pavements play a significant role in the urban heat

island effect, have a high runoff coefficient, and affect the flood

patterns. Classification of different types of road surfaces may

help planners model thermal footprints, consider stormwater
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drainage systems, and determine the importance of green

infrastructure interventions.

By integrating machine learning with freely accessible

geospatial data, this study adds to sustainable infrastructure

maintenance, resilient transport systems, and more inclusive

mobility information access globally.
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