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A general computational method is introduced to estimate the Poisson’s ratio for mem-
branes with small thickness. In this method, the Poisson’s ratio is calculated by utilizing a
rescaling of inter-particle distances in one lateral direction under periodic boundary condi-
tions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we
calculate the Poisson’s ratio in the gel, fluid, and interdigitated phases. Having the Poisson’s
ratio, enable us to obtain the Young’s modulus for the membranes in different phases. The
approach may be applied to other membranes such as graphene and tethered membranes
in order to predict the temperature dependence of its Poisson’s ratio andYoung’s modulus.
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INTRODUCTION
Elastic properties play an important role in a number of mem-
brane processes, as for example, membrane fusion (Chernomordik
and Kozlov, 2008) and modulations of membrane channel activ-
ities (Schmidt and MacKinnon, 2008; Sansom and Biggin, 2010;
Mashaghi et al., 2013b). In cells, the outer membranes are sup-
ported by the underlying actin networks. The mechanical stress
is then dominated by the associated actin cytoskeleton at length
scales larger than the mesh size of the actin network (30–300 nm)
(Morone et al., 2006). On small length scales, however, the con-
tribution of the lipid bilayer will dominates. As such, efforts have
been made to study the mechanical properties of bilayer patches
with dimensions close to the mesh size of the actin cytoskeleton
(Claesson et al., 2011).

When considering a membrane as a two-dimensional body, i.e.,
neglecting its thickness, its mechanical properties in the absence of
anisotropies can be characterized by two elastic constants accord-
ing to continuum elasticity theory. In common practice of material
characterization, these parameters are typically the Young’s mod-
ulus and the Poisson’s ratio. Estimates for the Young’s modulus
of membranes have been provided by experiments (Tierney et al.,
2005; Popescu et al., 2006). However, the measuring of the Pois-
son’s ratio is not straightforward, due to the small thickness of
membranes in the nanometer range (Mitchell et al., 2003; Martins
et al., 2009). From the theoretical aspect, mechanical properties
of lipid membranes are commonly investigated based on the Hel-
frich Hamiltonian. The main physical quantity obtained from such
studies is the bending rigidity. The Young’s modulus and Pois-
son’s ratio are interrelated by formula that incorporate the bending
rigidity, but neither Young’s modulus nor Poisson’s ratio have been
determined separately so far.

Simulations and theoretical models have been used to pro-
vide important information on elastic (Goetz and Lipowsky, 1998;
Lindahl and Edholm, 2001; Ayton et al., 2002) and viscous prop-
erties of lipid bilayers (Jeon and Voth, 2005). Investigating the
mechanical properties of thin films is not limited to biomem-
branes and represents an active area of research in materials
science. Efforts have been put into predicting the Poisson’s ratio
of films made of various materials by means of computer simula-
tions. For instance Galvao et al. has employed molecular dynam-
ics simulations using reactive empirical bond-order potentials to
investigate the mechanical properties of graphene nanoribbons
(Martins and Galvao, 2010). Baughman et al. proposed a model
to estimate the Poisson’s ratio of fiber networks and successfully
applied it to carbon nanotube sheets (buckypaper) (Hall et al.,
2008).

In this work, we introduce a method for determining the Pois-
son’s ratio ν in simulations and apply it to the coarse grained lipid
membrane model, which was introduced by Lenz and Schmid
(2005). This method is general and applicable to any other sur-
faces. After determining the bending rigidity kc from the power
spectrum of membrane height fluctuations, we are able to calculate
the Young’s modulus E.

MATERIALS AND METHODS
Monte Carlo simulations of lipid bilayers with periodic bound-
ary conditions in lateral directions were carried out for the coarse
grained model introduced by Lenz and Schmid (2005). In this
model, single-tail amphiphiles are considered, which are repre-
sented by six tail beads and one slightly larger head bead (with a
size ratio of 1–1.1). Beads belonging to one molecule are connected
via finitely extensible non-linear elastic (FENE) springs (Grest and
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Kremer, 1986) with a bond stretching potential Figure 1:

VFENE (r) = −
υFENE

2
(∆rm)

2 log

[
1−

(
r − r0

∆rm

)2
]

(1)

Here r is the distance between adjacent beads, νFENE character-
izes the strength of the spring, r0 is the optimal bond length (no
stretching), and ∆rm is the maximal stretching distance. The stiff-
ness of the tails is taken into account by a harmonic bond-angle
potential

Vba
(
θijk
)
= υba

(
1− cos θijk

)
(2)

where θijk is the bond-angle associated with three adjacent beads.
Both the non-bonded beads belonging to the same molecule and
the beads belonging to different molecules interact via a soft-core
potential:

Vsc (r) =
[
VLJ (r)− VLJ (rc)

]
θ (rc − r) (3a)

VLJ (r) = ε

[(σLJ

r

)12
− 2

(σLJ

r

)6
]

(3b)

where θ(.) is the Heaviside step function. The solvent molecules
are represented by a phantom model of beads that interact with
the lipid beads via V SC(r) (with same parameters as the head
beads) but do not interact with themselves. All model parameters
have been chosen according to the referenced model (Lenz and
Schmid, 2005) and are summarized in Table 1.

Lipid bilayers exhibit a rich spectrum of structures and phase
transitions (Nagle and Tristram-Nagle, 2000; Illya et al., 2005; Seto
et al., 2008; Thakkar et al., 2011). The fluid state at high tempera-
tures is characterized by a disordered arrangement of the lipid tails
and a comparatively high lipid mobility. Upon cooling, this fluid
state undergoes a phase transition to a gel state, where the lipid
molecules are more ordered and have a lower mobility. Other pos-
sible phases are the interdigitated phase, in which lipid tails from
opposing monolayers interpenetrate.

By scanning the phase diagram of the referenced model (Lenz,
2007), firstly we equilibrated lipid bilayers for about two mil-
lions Monte Carlo (MC) steps to produce different phases for
the aim of this work, see Figure 2. In the reduced units, ε/kB for
the temperature T and ε/σ3

LJ for the pressure P, the correspond-
ing thermodynamic variables are: P = 2 and T = 1.08 for the gel
phase, P = 1 and T = 1.3 for the fluid phase, P = 0.5 and T = 1.16
for the interdigitated phase. The characteristic parameters for dif-
ferent phases including the average chain length l̄ , thickness of
the bilayer d, area per lipid A, and chain order parameter Sz are
summarized in Table 2.

Simulations were performed under constant temperature and
pressure condition (NPT ensemble) for lipid bilayers with differ-
ent sizes. To investigate the power spectrum of the surfaces height
fluctuations, we simulated a bilayer whose upper and lower leaflets
consist of 64× 64 lipid molecules. About 17000–72000 beads were
chosen for the solvent model (precise number depends on simu-
lated phase). For performing the analysis of the Poisson’s ratio, we
equilibrated rectangular bilayers consist of 12× 24 lipid molecules
per leaflet to three different phases.

FIGURE 1 | Interactions applied in the model.

Table 1 | Interaction potentials of the referenced model and

corresponding parameters.

Interaction type Potential Parameters

Tail–tail Vsc ε=1, σLJ=1, rc=2σLJ

Head–tail ε=1, σLJ=1.05, rc=1σLJ

Solvent–tail ε=1, σLJ=1.1, rc=1σLJ

Head–head

Solvent–head

Solvent–solvent None

Bond length V FENE νFENE=100, r0=0.7, ∆rm=0.2

Bond angle V ba νba=4.7

r is the distance of the connecting vector of two particles and θ is the angle

between every three adjacent beads. The SI values are calculated using σLJ ~ 6Å

and ε ~ 3.6.10−21 J (Neder et al., 2010).

To determine both E and ν, we need to determine one of these
elastic constants separately. Utilizing the periodic boundary con-
ditions, we introduce a method to compute the Poisson’s ratio for
the surface (Abedpour et al., 2010). The Poisson’s ratio is the nega-
tive ratio of the transverse strain changes divided by the axial strain
changes in a body when it is stretched or compressed along the axial
direction under the tension below the proportional limit. For the
infinitesimal diagonal strains, the Poisson’s ratio can be replaced
by the ratio of the relative length changes as νij=−∆Li/ηjLi, where
ηj≡∆Lj/Lj is defined as the fraction of the axial length change.
Here i 6= j and i= x, y, and z. In the method, we present here
the length between neighboring lipids is rescaled by a factor of
(1+η) in axial direction, let say y-direction, and the subsequent
change of the simulation box size in perpendicular directions, in
this case x- and z-direction, are monitored. While keeping the
rescaled box length (1+η) Ly constant, for fixing the pressure in
the simulations, the box dimensions are now allowed to fluctuate
in only the x- and z-directions. When the initial mean lengths in
x and z-direction were Lx and Lz, new mean values of Lx+∆Lx

and Lz+∆Lz are reached after rescaling, by re-equilibrating the
system for a few number of MC steps, see Figure 3.

During the simulation, to accelerate the thermalization proce-
dure after extending the box along the axial direction, we slightly
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Jadidi et al. Poisson’s ratio of lipid bilayers

FIGURE 2 | Snapshots of the simulated lipid membrane in the (A) gel, (B) fluid, and (C) interdigitated phase. Lipid’s head beads and tail bead are shown
in red and green, respectively.

Table 2 | Characteristic parameters of lipid bilayers.

Phase l̄ (σLJ) d (σLJ) A (σ2
LJ) Sz

Fluid 3.3 5.48 1.68 0.42

Gel 3.8 7.64 0.96 0.72

Interdigitated 4 4.8 1.8 0.98

l̄ denotes the average chain length, d thickness of the bilayer, A area per lipid,

and Sz chain order parameter.

increased the temperature in the system, which results in produc-
ing the more mobility for the particles. For the fluid phase, we set
the initial temperature to T = 1.3 and then changed it to T = 1.4
for about extra 400 steps and then switched back to the original
value. Similarly, for the gel and interdigitated phases, the initial
temperatures were T = 1.08 and T = 1.16 and were switched to
T = 1.2 and T = 1.3, respectively.

A common analysis of the elastic properties of a mem-
brane relies on the Helfrich Hamiltonian (Helfrich, 1973), which
describes the cost of elastic free enthalpy associated with fluc-
tuations of the membrane height (deviations from flat surface).
When parameterizing the membrane in Cartesian coordinates
(x,y)→(x,y,h(x,y)) (Monge gauge), the Helfrich Hamiltonian is,

for small fluctuations, given by

H =

∫
dx dy

[
kc

2

(
∇

2h
)2
+

σ

2
(∇h)2

]
(4)

where kc is the bending rigidity and σ is the surface tension. Equa-
tion (4) is applied when the membrane is considered as a body with
zero thickness. A generalized elastic theory for membranes with
finite thicknesses was suggested by Brannigan and Brown (2006)
and applied to the Lenz–Schmid model recently (West et al., 2009;
Neder et al., 2010).

To determine h(x, y) from the simulations, we discretized the
(x, y)-plane into a regular grid with spacing 2σLJ, determined in
each cell (i, j) the mean z-coordinates z+(i, j) and z−(i, j) of the
head beads in the upper and lower leaflet, respectively, and calcu-
lated the height h(i, j)− [z+(i, j)+ z−(i, j)]/2 (the average h̄ was
subtracted subsequently). For a membrane of lateral size L× L,
Eq. (4) predicts: 〈∣∣∣ĥ (q)∣∣∣2〉 = kBTL2

kcq4 + σq2
(5)

for the power spectrum of the fluctuations, where ĥ(q) is the
Fourier transform of h(x, y) at wave vector q, q= |q|, and <. . .>
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Jadidi et al. Poisson’s ratio of lipid bilayers

FIGURE 3 | Snapshots of the lipid membrane in fluid phase as
(A) initial configuration, (B) after increasing the bilayer size in
y -direction by a factor of (1+ η), and (C) the relaxed bilayer fixing
the membrane size in y -direction and variable x -direction. As a

consequence of positive Poisson’s ratio for the bilayer in this phase, the
membrane size in x -direction is reduced and equilibrated after a few
number of MC steps. Lipid’s head beads and tail bead are shown in red
and green, respectively.

denotes an equilibrium average. In the numerics, ĥ(q) is cal-
culated from a discrete Fourier transform of h(i, j). It is clear
that Eq. (5) can hold true only for a q-range 2π/L� q� 2π/σLJ,
where neither the finite system size nor the (atomistic) bead size
affects the fluctuations. The corresponding q-range for system
sizes amenable within reasonable computing time is unfortunately

not large, but fits of < |ĥ(q)|2 > /kBTL2 as function of q2 in a
range 0.5≤ q2

≤ 1 yield a good agreement with Eq. (5) for our
sizes.

RESULTS AND DISCUSSIONS
In Table 3, the obtained Poisson’s ratios νyx, νzx, and νxy as well
as νzy for different phases are summarized. As demonstrated in
Figure 4, the Poisson’s ratio obtained in this way is independent of
the rescaling factor η as long as η is neither too large, which leads
to destroy the membrane structure nor too small, which dose not
produce enough free space for particles to move. According to the
Table 3 and Figure 4, fluid and interdigitated phases have the same
measured Poisson’s ratio for both x and y-directions. It means that
these two phases are isotropic in the plane of bilayer. However, this
is not the case any more for the gel phase. The measurements show
that, a bilayer in the gel phase behaves as an anisotropic material,
which has two distinguishably different values for the two different
directions in the plane of the bilayer.

Conversely, when the bilayer was extended in the perpendic-
ular direction to the tilt plane, lipids reorganize themselves in
such a way that the bilayer laterally shrank. For the present work,
lipids bond lengths in the z-direction (perpendicular to the bilayer
plane) have not been rescaled. The reason is that, to observe the
Poisson’s effect, the length between the beads should be rescaled by
a factor, which produces enough space for particles to rearrange.
However, in the z-direction, this increase should occur between
the bonded beads inside a lipid, which causes a bond breaking.
The reported values for νzx and νzy are the resulted relative length
changes in the bilayer mean length due to the lateral extension of
bilayers in x- and y-direction, respectively.

The values obtained for the bending rigidity kc are 5.2ε for the
fluid phase, and 7.6ε for the interdigitated phase. For the gel and
fluid phases, the results agree with the previous computational
reports (West, 2008; West et al., 2009) and experimental findings
(Falcioni et al., 1997; Liu and Zhang, 2009). The spectral density

Table 3 | Elastic constants obtained from simulations of lipid

membranes in different phases.

Phase kc(ε) νxy νzy νyx νzx E (ε/σ3)

Gel 10.56 0.11 0.44 0.54 0.04 –

Fluid 5.2 0.50 0.25 0.50 0.26 0.28

Interdigitated 7.6 0.40 0.12 0.39 0.13 0.67

for the interdigitated phase was calculated according to the same
method. We report here bending rigidity for interdigitated phase.
Figure 5 illustrates the fluctuation spectra of the height for three
studied phases and fits to the Eq. (5).

Within two-dimensional elasticity theory, the bending rigidity
kc is related to the Poisson’s ratio ν and the Young’s modulus E
according to (Landau et al., 1986)

kc =
Ed3

12
(
1− ν2

) (6)

where d is the mean membrane thickness, for which we obtain,
5.48σLJ, and 4.86σLJ for the fluid, and interdigitated phases, respec-
tively. Substituting the founded values for the Poisson’s ratios and
the bending rigidities for bilayers in two isotropic phases into Eq.
(6), one can obtain the according Young’s moduli. The Young’s
moduli calculated in this way are 0.28 and 0.67 in units of ε/σ3

for the fluid and interdigitated states, respectively. Obviously, the
observed anisotropicity in the gel phase dose not allow to use the
above theorem for the bilayer in this phase.

The approach presented in this article could be applied to
membranes with more complex lipid compositions, given that the
experimentally verified interaction models exist for those lipids.
The approach could also be combined with more accurate sim-
ulation of bilayers. Full atomistic simulations and in particular
ab initio simulations, could in principle provide more accurate
descriptions of the system but comes with a huge computational
burden (Mashaghi et al., 2012, 2013a).

CONCLUSION
We have performed Monte Carlo simulations of the coarse grained
lipid bilayer model to gain insight into the mechanical properties
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A

B

C

FIGURE 4 | Relaxation of −∆Li/ηjLi in (A) fluid, (B) interdigitated, and
(C) gel phase. The plateau value reached after about 5000 MC steps,
independent of the value of η, yields the Poisson’s ratio ν. In the gel phase,
Poisson’s ratio has different values for νxy and νyx and this phase acting as an
anisotropic surface.

of planar lipid membranes. By using a rescaling method, we could
determine the Poisson’s ratio ν for different phases, in addition to
the bending rigidity determined from an analysis of the mem-
brane height fluctuations based on the Helfrich Hamiltonian.
This allows us to calculate also the Young’s modulus E for dif-
ferent phases. The approach is accurate, easy to implement and
may be applied to other membranes such as graphene (Abedpour
et al., 2010), in order to predict the temperature dependence of
its Poisson’s ratio and Young’s modulus. Other interesting systems
to study are crystalline metallic nanowires where elastic modu-
lus controls their structural performance and functional behavior
such as their resonance frequency under oscillatory load typically

FIGURE 5 | Fluctuation spectra for the fluid, gel, and interdigitated
phases and fits to the Eq. (5).

applied during actuation and sensing (Chen et al., 2006; McDowell
et al., 2008).

ACKNOWLEDGMENTS
We would like to thank Philipp Maass for his helpful discussions.

REFERENCES
Abedpour, N., Asgari, R., and Tabar, M. R. R. (2010). Irreversibility in response

to forces acting on graphene sheets. Phys. Rev. Lett. 104, 196804. doi:10.1103/
PhysRevLett.104.196804

Ayton, G., Smondyrev, A., Bardenhagen, S., McMurtry, P., and Voth, G. (2002). Cal-
culating the bulk modulus for a lipid bilayer with nonequilibrium molecular
dynamics simulation. Biophys. J. 82, 1226–1238. doi:10.1016/S0006-3495(02)
75479-9

Brannigan, G., and Brown, F. L. H. (2006). A consistent model for thermal fluctu-
ations and protein induced deformations in lipid bilayers. Biophys. J. 90, 1501.
doi:10.1529/biophysj.105.075838

Chen, C., Shi, Y., Zhang, Y., Zhu, J., and Yan, Y. (2006). Size dependence of
Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505. doi:10.1103/
PhysRevLett.96.075505

Chernomordik, L. V., and Kozlov, M. M. (2008). Mechanics of membrane fusion.
Nat. Struct. Mol. Biol. 15, 675–683. doi:10.1038/nsmb.1455

Claesson, M., Frost, R., Svedhem, S., and Andersson, M. (2011). Pore spanning lipid
bilayers on mesoporous silica having varying pore size. Langmuir 27, 8974–8982.
doi:10.1021/la201411b

Falcioni, M., Bowick, M. J., Guitter, E., and Thorleifsson, G. (1997). The Poisson
ratio of crystalline surfaces. Europhys. Lett. 38, 67–72. doi:10.1016/j.jhazmat.
2010.12.101

Goetz, R., and Lipowsky, R. (1998). Computer simulations of bilayer mem-
branes: self-assembly and interfacial tension. J. Chem. Phys. 108, 7397–7409.
doi:10.1063/1.476160

Grest, G. S., and Kremer, K. (1986). Molecular dynamics simulation for polymers in
the presence of a heat bath. Phys. Rev. A 33, 3628–3631. doi:10.1103/PhysRevA.
33.3628

Hall, L., Coluci, V., Galvao, D., Kozlov, M., Zhang, M., Dantas, S., et al. (2008).
Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507.
doi:10.1126/science.1149815

Helfrich, W. (1973). Elastic properties of lipid bilayers-theory and possible experi-
ments. Z. Naturforsch. C 28, 693.

Illya, G., Lipowsky, R., and Shillcock, J. C. (2005). Effect of chain length and asym-
metry on material properties of bilayer membranes. J. Chem. Phys. 122, 1–6.
doi:10.1063/1.1917794

Jeon, J., and Voth, G. (2005). The dynamic stress responses to area change in planar
lipid bilayer membranes. Biophys. J. 88, 1104–1119. doi:10.1529/biophysj.104.
052183

www.frontiersin.org April 2014 | Volume 2 | Article 8 | 5

http://dx.doi.org/10.1103/PhysRevLett.104.196804
http://dx.doi.org/10.1103/PhysRevLett.104.196804
http://dx.doi.org/10.1016/S0006-3495(02)75479-9
http://dx.doi.org/10.1016/S0006-3495(02)75479-9
http://dx.doi.org/10.1529/biophysj.105.075838
http://dx.doi.org/10.1103/PhysRevLett.96.075505
http://dx.doi.org/10.1103/PhysRevLett.96.075505
http://dx.doi.org/10.1038/nsmb.1455
http://dx.doi.org/10.1021/la201411b
http://dx.doi.org/10.1016/j.jhazmat.2010.12.101
http://dx.doi.org/10.1016/j.jhazmat.2010.12.101
http://dx.doi.org/10.1063/1.476160
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1126/science.1149815
http://dx.doi.org/10.1063/1.1917794
http://dx.doi.org/10.1529/biophysj.104.052183
http://dx.doi.org/10.1529/biophysj.104.052183
http://www.frontiersin.org
http://www.frontiersin.org/Biomechanics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jadidi et al. Poisson’s ratio of lipid bilayers

Landau, L. D., Pitaevskii, L. P., Lifshitz, E. M., and Kosevich, A. M. (1986). Theory of
Elasticity, Volume 7, 3rd Edn. Oxford: Butterworth-Heinemann.

Lenz, O. (2007). Computer Simulation of Lipid Bilayers. Ph.D. thesis, University of
Bielefeld, Bielefeld.

Lenz, O., and Schmid, F. (2005). A simple computer model for liquid lipid bilayers.
J. Mol. Liq. 117, 147–152. doi:10.1016/j.molliq.2004.08.008

Lindahl, E., and Edholm, O. (2001). Molecular dynamics simulation of NMR relax-
ation rates and slow dynamics in lipid bilayers. J. Chem. Phys. 115, 4938–4950.
doi:10.1529/biophysj.107.121806

Liu, P., and Zhang, Y. W. (2009). Temperature-dependent bending rigidity of
graphene. Appl. Phys. Lett. 94, 231912. doi:10.1063/1.3155197

Martins, B., and Galvao, D. (2010). Curved graphene nanoribbons: structure and
dynamics of carbon nanobelts. Nanotechnology 21, 075710. doi:10.1088/0957-
4484/21/7/075710

Martins, P., Malhaire, C., Brida, S., and Barbier, D. (2009). On the deter-
mination of Poisson’s ratio of stressed monolayer and bilayer sub-
micron thick films. Microsyst. Technol. 15, 1343–1348. doi:10.1007/s00542-009-
0822-5

Mashaghi, A., Partovi-Azar, P., Jadidi, T., Nafari, N., Esfarjani, K., Maass, P., et al.
(2012). Interfacial water facilitates energy transfer by inducing extended vibra-
tions in membrane lipids. J. Phys. Chem. B 116, 6455–6460. doi:10.1021/
jp302478a

Mashaghi, A., Partovi-Azar, P., Jadidi, T., Anvari, M., Panahian, J. S., Nafari, N., et al.
(2013a). Enhanced autoionization of water at phospholipid interfaces. J. Phys.
Chem. C 117, 510–514. doi:10.1021/jp3119617

Mashaghi, S., Jadidi, T., Koenderink, G., and Mashaghi, A. (2013b). Lipid nanotech-
nology. Int. J. Mol. Sci. 14, 4242–4282. doi:10.3390/ijms14024242

McDowell, M., Leach, A., and Gall, K. (2008). On the elastic modulus of metallic
nanowires. Nano Lett. 8, 3613–3618. doi:10.1021/nl801526c

Mitchell, J. S., Zorman, C. A., Kicher, T., Roy, S., and Mehregany, M. (2003). Examina-
tion of bulge test for determining residual stress, Young’s modulus, and Poisson’s
ratio of 3c-sic thin films. J. Aerosp. Eng. 16, 46–54. doi:10.1061/(ASCE)0893-
1321(2003)16:2(46)

Morone, N., Fujiwara, T., Murase, K., Kasai, R. S., Ike, H., Yuasa, S., et al.
(2006). Three-dimensional reconstruction of the membrane skeleton at the
plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862.
doi:10.1083/jcb.200606007

Nagle, J. F., and Tristram-Nagle, S. (2000). Structure of lipid bilayers. Biochim. Bio-
phys. Acta 1469, 159–195. doi:10.1016/S0304-4157(00)00016-2

Neder, J., West, B., Nielaba, P., and Schmid, F. (2010). Coarse-grained simula-
tions of membranes under tension. J. Chem. Phys. 132, 115101. doi:10.1063/
1.3352583

Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C. A., Laposata, M., Manley, S.,
et al. (2006). Optical measurement of cell membrane tension. Phys. Rev. Lett. 97,
218101. doi:10.1103/PhysRevLett.97.218101

Sansom, D. M. S. P., and Biggin, P. C. (2010). Molecular Simulations and Biomem-
branes: From Biophysics to Function, 1st Edn. Cambridge, UK: Royal Society of
Chemistry.

Schmidt, D., and MacKinnon, R. (2008). Voltage-dependent k+ channel gating and
voltage sensor toxin sensitivity depend on the mechanical state of the lipid
membrane. Proc. Natl. Acad. Sci. U.S.A. 105, 19276–19281. doi:10.1073/pnas.
0810187105

Seto, H.,Yamada, N., Nagao, M., Hishida, M., and Takeda, T. (2008). Bending modu-
lus of lipid bilayers in a liquid-crystalline phase including an anomalous swelling
regime estimated by neutron spin echo experiments. Eur. Phys. J. E Soft Matter
26, 217–223. doi:10.1140/epje/i2007-10315-0

Thakkar, F. M., Maiti, P., Kumarana, V., and Ayappa, K. (2011). Verifying scalings
for bending rigidity of bilayer membranes using mesoscale models. Soft Matter
7, 3963–3966. doi:10.1039/c0sm00876a

Tierney, K. J., Block, D. E., and Longo, M. L. (2005). Elasticity and phase behavior
of DPPC membrane modulated by cholesterol, ergosterol and ethanol. Biophys.
J. 89, 2481–2493. doi:10.1529/biophysj.104.057943

West, B. (2008). Lipid-Protein Interactions in Lipid Membranes. Ph.D. thesis, Univer-
sity of Bielefeld, Bielefeld.

West, B., Brown, F. L. H., and Schmid, F. (2009). Membrane-protein interac-
tions in a generic coarse-grained model for lipid bilayers. Biophys. J. 96, 101.
doi:10.1529/biophysj.108.138677

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 January 2014; accepted: 04 April 2014; published online: 22 April 2014.
Citation: Jadidi T, Seyyed-Allaei H, Tabar MRR and Mashaghi A (2014) Poisson’s ratio
and Young’s modulus of lipid bilayers in different phases. Front. Bioeng. Biotechnol. 2:8.
doi: 10.3389/fbioe.2014.00008
This article was submitted to Biomechanics, a section of the journal Frontiers in
Bioengineering and Biotechnology.
Copyright © 2014 Jadidi, Seyyed-Allaei, Tabar and Mashaghi. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Biomechanics April 2014 | Volume 2 | Article 8 | 6

http://dx.doi.org/10.1016/j.molliq.2004.08.008
http://dx.doi.org/10.1529/biophysj.107.121806
http://dx.doi.org/10.1063/1.3155197
http://dx.doi.org/10.1088/0957-4484/21/7/075710
http://dx.doi.org/10.1088/0957-4484/21/7/075710
http://dx.doi.org/10.1007/s00542-009-0822-5
http://dx.doi.org/10.1007/s00542-009-0822-5
http://dx.doi.org/10.1021/jp302478a
http://dx.doi.org/10.1021/jp302478a
http://dx.doi.org/10.1021/jp3119617
http://dx.doi.org/10.3390/ijms14024242
http://dx.doi.org/10.1021/nl801526c
http://dx.doi.org/10.1061/(ASCE)0893-1321(2003)16:2(46)
http://dx.doi.org/10.1061/(ASCE)0893-1321(2003)16:2(46)
http://dx.doi.org/10.1083/jcb.200606007
http://dx.doi.org/10.1016/S0304-4157(00)00016-2
http://dx.doi.org/10.1063/1.3352583
http://dx.doi.org/10.1063/1.3352583
http://dx.doi.org/10.1103/PhysRevLett.97.218101
http://dx.doi.org/10.1073/pnas.0810187105
http://dx.doi.org/10.1073/pnas.0810187105
http://dx.doi.org/10.1140/epje/i2007-10315-0
http://dx.doi.org/10.1039/c0sm00876a
http://dx.doi.org/10.1529/biophysj.104.057943
http://dx.doi.org/10.1529/biophysj.108.138677
http://dx.doi.org/10.3389/fbioe.2014.00008
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Biomechanics
http://www.frontiersin.org/Biomechanics/archive

	Poisson's ratio and Young's modulus of lipid bilayers in different phases
	Introduction
	Materials and methods
	Results and discussions
	Conclusion
	Acknowledgments
	References


