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Reconstruction of gene regulatory networks (GRNs) from experimental data is a funda-
mental challenge in systems biology. A number of computational approaches have been
developed to infer GRNs from mRNA expression profiles. However, expression profiles
alone are proving to be insufficient for inferring GRN topologies with reasonable accu-
racy. Recently, it has been shown that integration of external data sources (such as gene
and protein sequence information, gene ontology data, protein–protein interactions) with
mRNA expression profiles may increase the reliability of the inference process. Here, I
propose a new approach that incorporates transcription factor binding sites (TFBS) and
physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable
selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected
to genetic perturbations. Using real experimental data, I show that the integration ofTFBS
and PPI data with mRNA expression profiles leads to significantly more accurate networks
than those inferred from expression profiles alone. Additionally, the performance of the
proposed algorithm is compared with a series of least absolute shrinkage and selection
operator (LASSO) regression-based network inference methods that can also incorporate
prior knowledge in the inference framework. The results of this comparison suggest that
BVS can outperform LASSO regression-based method in some circumstances.

Keywords: network inference, Bayesian statistics, data interpretation, statistical, variable selection, gene regulatory
networks

INTRODUCTION
Understanding how genes regulate each other to orchestrate cellu-
lar phenotypes is a fundamental challenge of Biology. A straight-
forward way of uncovering gene regulatory networks (GRNs) is
to perturb each gene of the network, e.g. by means of siRNAs and
chemical inhibitors, and measure the effects of these perturbations
on the expression of other genes in the network (Kholodenko et al.,
2002; Wagner, 2002). However, the effects of such perturbations
rapidly propagate through the entire network, causing widespread,
global changes in the gene expressions, making it challenging to
differentiate the direct interactions from the indirect ones. Several
computational approaches were proposed to unmask the direct
gene regulatory interactions by systematically analyzing pertur-
bation responses (Kholodenko et al., 2002; Repsilber et al., 2002;
Wagner, 2002; Gardner et al., 2003; Hartemink, 2005; Rogers and
Girolami, 2005; de la Fuente and Makhecha, 2006; Margolin et al.,
2006; Bansal et al., 2007). Many of these studies found that the
steady-state perturbation responses of a gene are linearly depen-
dent on the same of its direct regulators (Kholodenko et al., 2002;
Gardner et al., 2003; Rogers and Girolami, 2005; de la Fuente and
Makhecha, 2006; Bansal et al., 2007). These findings presented a
unique opportunity of identifying direct genetic interactions by
simply solving a set of linear equations. Although this approach
seems simple in theory, implementing it in practice is not straight-
forward. First, biological measurements are noisy and contain
experimental errors. The noise in biological datasets may cause
significant errors while reconstructing GRNs by solving linear

equations. Second, and perhaps most importantly, in order to
solve these linear equations, one needs to perturb a GRN at least
as many times as the number of genes in the network and measure
the responses of all its genes after each perturbation (Kholodenko
et al., 2002; Gardner et al., 2003; Rogers and Girolami, 2005;
de la Fuente and Makhecha, 2006; Bansal et al., 2007). There-
fore, reconstructing genome scale GRNs using the above method
requires thousands (for simple organisms, e.g. bacteria, fungus,
etc.) and often tens of thousands (for complex organisms such as
mammals) of perturbation experiments that are time consuming
and expensive. Most perturbation experiments, except those per-
formed in some simple model organisms such as Escherichia coli
(Baba et al., 2008) or yeast (Hughes et al., 2000), involve far fewer
perturbations than the number of genes in the GRN. As a result,
the datasets produced by these experiments do not have enough
information for a full reconstruction (by solving linear equations)
of the corresponding GRNs. Several statistical algorithms have
been proposed to resolve this issue. For instance, some authors
used singular value decomposition and linear regression (Yeung
et al., 2002; Guthke et al., 2005; Zhang et al., 2010) to reconstruct
GRNs using datasets obtained from a small number of pertur-
bation experiments. Huang et al. (2010) used regulator filtering,
forward selection, and linear regression for GRN reconstruction;
and Imoto et al. (2003) used non-parametric regression embed-
ded within a Bayesian network for the same purpose. Several other
regression techniques such as the elastic net (Zou and Trevor, 2005;
Friedman et al., 2010) and least absolute shrinkage and selection

www.frontiersin.org May 2014 | Volume 2 | Article 13 | 1

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00013/abstract
http://www.frontiersin.org/people/u/131173
mailto:tapesh.santra@ucd.ie
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Santra Data integration for network inference

operator (LASSO; van Someren et al., 2003; Li and Yang, 2004; van
Someren et al., 2006; Shimamura et al., 2007; Hecker et al., 2009,
2012; Lee et al., 2009; Charbonnier et al., 2010; Gustafsson and
Hornquist, 2010; James et al., 2010; Pan et al., 2010; Peng et al.,
2010; Wang et al., 2013) have also been widely used to reconstruct
GRNs from noisy and insufficient perturbation response data.

Although many of these algorithms perform reasonably well, it
is being increasingly clear that the accuracy of these algorithms can
be significantly increased by integrating external data sources, e.g.
gene sequence, single nucleotide polymorphism (SNP), protein–
protein interaction (PPI), etc., in the network reconstruction
process (Yeung et al., 2011; Lo et al., 2012). Public data reposi-
tories provide a rich resource of biological data related to gene
regulation. Integrating data from these external data sources into
network inference algorithms has become a primary focus of the
systems and computational biology community. Previously, James
et al. (2010) incorporated documented transcription factor bind-
ing sites (TFBS) information to infer the GRN of E. coli. Djebbari
and Quackenbush (2008) used preliminary GRN derived from
PubMed indexed literature and PPI databases as prior knowl-
edge for their Bayesian network reconstruction algorithm. Zhu
et al. (2004) combined TFBS and PPI data to infer GRNs. Imoto
et al. (2003) used PPI, documented TFBS, and well studied path-
ways as prior information for their network inference method.
Lee et al. (2009) presented a systematic way to incorporate various
types of biological knowledge, such as the gene ontology (GO)
annotations, data from ChIP–ChIP experiments, and a compre-
hensive collection of information about sequence polymorphisms.
Yeung et al. (2005), Yeung et al. (2011), and Lo et al. (2012)
developed a Bayesian model averaging approach to systematically
integrate publicly available TFBS data, ChIP–ChIP data, physical
interactions, genetic interactions, additional expression data, and
literature curation.

This study is an extension of our previous work (Santra et al.,
2013) which used a Bayesian framework that was designed to
reconstruct biochemical networks by analyzing steady-state per-
turbation response data. In our previous study, we used Bayesian
variable selection (BVS) algorithm to account for model uncer-
tainty under noisy and insufficient data. Only generic topological
knowledge such as sparsity of biochemical networks was used
as prior information in the network reconstruction process. No
external knowledge regarding potential interactions between net-
work components was used to guide the inference process. The
contributions of this study are four folds. First, a simple and an
intuitive technique is proposed to incorporate external knowl-
edge into the BVS framework in the form of a prior distribution.
Second, a new way of integrating protein interactions among tran-
scription factors (TFs) into the network inference framework is
proposed. Although, PPI data were used previously (Zhu et al.,
2008) in the context of GRN inference, the approach used by pre-
vious researchers was very different from the approach used in
this study. For instance, protein interactions among target genes
were used by Zhu et al. (2008) to determine co-regulation of
multiple genes. Here, we use protein interaction among TFs to
determine combinatorial regulations by multiple TFs. Third, as a
proof of concept, the proposed methodology is applied to a gene
expression dataset obtained from a liver-enriched TF regulatory

network, revealing that it significantly outperforms our previous
work. Finally, the performance of the proposed method is com-
pared with a LASSO regression-based network inference method
using publicly available gene expression datasets.

The rest of this study is organized as follows. In the next Section
“Linear Model of Gene Regulation”, I briefly discuss linear models
of gene regulation, followed by a detailed description of the pro-
posed BVS algorithm in Sections “The Bayesian Variable Selection
Algorithm” and “Sampling Scheme for the Proposed BVS Frame-
work.” In Section “Integrating External Data to Formulate P(Ai),”
I present a new method of integrating external data sources in the
BVS formulation. An implementation of this method to infer a
liver-specific GRN is then discussed in Section “Inferring Liver-
Specific Gene Regulatory Network from Perturbation Response
Data.” In this section, I also compared the performance of the
proposed BVS algorithm with our previous work. The results of
comparing the proposed method with other network inference
techniques are presented in Section “Inferring GRN of Human
Breast Epithelium and Comparison with LASSO.” Finally, in the
conclusion section, I discuss the advantages and disadvantages of
our algorithm and future directions.

LINEAR MODEL OF GENE REGULATION
When a GRN is perturbed, the effect of the perturbation rapidly
propagates through the entire network, causing widespread, global
changes in the expression levels of its genes. It has been shown
(Rogers and Girolami, 2005; Bansal et al., 2007; Lo et al., 2012)
that the responses (xi

= {xij, j= 1, . . ., np}) of a gene (gi), to a series
of (np) perturbations, are linearly dependent on the responses
(Xi
= {xkj, k= 1, . . ., ni, j= 1, . . ., np, k 6= i}) of its direct regulators

(gi
= {gk, k= 1, . . ., ni, k 6=i}), i.e.,

x i
= X iT

βi (1)

where ni is the number of regulators of the gene (gi), and βi
= {βik,

k= 1, . . ., ni, k 6= i} are the linear coefficients that represent the
strengths and types of the interactions between the gene (gi) and
its direct regulators (gi).

The measurements of the expression levels usually contain
experimental errors, and may not exactly fit into the above Eq. 1.
The difference between the left and right hand side of Eq. 1 caused
by such errors are called the “residuals.” In order to compensate
for errors, the residuals are added to Eq. 1 leading to,

x i
= X iT

βi
+ εi (2)

where εi
= {εij, j= 1, . . ., np} represents the residuals caused by

measurement errors. It can be easily showed that the residual vari-
ables (εij) are linear combinations of the individual measurement
errors associated with the perturbation responses of the gene (gi)
and its regulators (gi) (Kariya and Kurata, 2004). Since, the mea-
surement errors are random in nature, the residual variables are
also random variables, and by central limit theorem, these vari-
ables have Gaussian distribution (Kariya and Kurata, 2004). It is
further assumed that the residual variables (εi) are independent of
each other and have 0 mean and variance σ2 which depend on the
extent of experimental/measurement error in the dataset (Rogers
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and Girolami, 2005; de la Fuente and Makhecha, 2006; Bansal et al.,
2007; Vignes et al., 2011; Santra et al., 2013).

To identify the direct regulators (gi) of the gene (gi), one needs
to calculate βi by solving Eq. 2 in a least-square sense. The ele-
ments (βik) of βi whose absolute values are significantly >0 are
then selected as direct interactions, and the corresponding genes
(gk) are considered to be the direct regulators of gi. However, solv-
ing Eq. 2 requires at least as many perturbations as the number
of genes (n) in the network (Kholodenko et al., 2002; Rogers and
Girolami, 2005; de la Fuente and Makhecha, 2006; Santra et al.,
2013). Under most circumstances, it is not possible to perform
so many perturbation experiments, and therefore, in such cases,
a full GRN reconstruction is not feasible by solving Eq. 2, either
exactly or in a least-square sense. This issue is resolved by variable
selection algorithms.

BAYESIAN VARIABLE SELECTION ALGORITHM
Variable selection algorithms find the most likely set of regulators
(gi) for each gene (gi) by iteratively solving Eq. 2. It should be noted
that the inferred interactions between a gene (gi) and its regulators
(gi) may not always represent causal relationships. In many cases,
these interactions represent “acausal” dependencies between gene
expressions (Guyon and Elisseeff, 2003). Yet, it has been shown
that variable selection algorithms can infer gene regulatory pro-
grams with reasonable accuracy (Yeung et al., 2005, 2011; Lo et al.,
2012). The mechanism of a simple variable selection technique in
the context of GRN reconstruction is described below.

(a) First, a random set of genes
(
g i

1

)
are selected as the potential

regulators of a gene (gi), and the least-square estimates
(
βi

1

)
of the corresponding interaction strengths and the resulting
sum of square error

(
εSOS

i1 = ||ε
i
1||

2
)

are calculated.

(b) At the next iteration, a different set of genes
(
g i

2

)
are selected as

the potential direct regulators of gene gi, and again, the least-

square estimates
(
βi

2

)
of corresponding interaction strengths

and the resulting sum of square error
(
εSOS

i2 = ||ε
i
2||

2
)

are
calculated.

(c) The newly calculated sum of square error
(
εSOS

i2

)
is then com-

pared with the one
(
εSOS

i1

)
calculated in the previous iteration.

If εSOS
i2 < εSOS

i1 , then the new set of potential regulators
(
g i

2

)
is

considered more likely to directly regulate gi than the previous
one

(
g i

1

)
, otherwise the old set is retained as the most likely

potential regulators.
(d) For each gene (gi), the above procedure is repeated for all possi-

ble combination of potential regulators until a set of regulators
is found that has the minimum sum of squared error.

The above scheme is simple in theory, but there are some major
obstacles in implementing it in practice. For instance, if we want
to reconstruct a GRN involving 1000 genes, then, for each gene,
we need to iterate through 2999 possible combinations of poten-
tial regulators to find its most likely direct regulators. Iterating
through so many possible combinations is not feasible even for
the most advanced computing systems. Therefore, we must adopt
a smarter strategy to find the most likely set of regulators of each
gene in a GRN. BVS algorithms (in general) implement efficient

search strategies to identify the most likely regulators of a gene in a
reasonable time. Here, I adopted a BVS framework which is similar
to our previous work (Santra et al., 2013) with a few exceptions.

To formulate the BVS algorithm, it is convenient to represent
the topology of a GRN using a binary “adjacency” matrix (A).
A non-zero entry (Aik= 1, k 6= i) of this matrix represents direct
regulation of one gene (gi) by another (gk, k 6=i), whereas the zero
elements indicate no direct regulation. Consequently, the non-
zero elements of the ith row (Ai

= {Aik, k = 1, . . ., n, k 6= i}) of this
matrix represent interactions between the gene gi and its direct
regulators (gi). Note that the binary adjacency matrix (A) and the
matrix of interaction strengths (β) are closely related, since absence
of direct interaction (Aik= 0, i 6= k) between two genes (gi, gk)
implies zero interaction strength (βik= 0, i 6= k). In other words,
the elements (βik, i 6= k) of the interaction strength matrix (β)
corresponding to the zero elements (Aik= 0, i 6= k) of the binary
adjacency matrix (A) are also zero. Therefore, finding the most
likely direct regulators of a gene (gi) amounts to finding the most
likely combination of 0s and 1s in the ith row (Ai) of the binary
matrix A.

To avoid iterating through all possible combinations of Ai, BVS
algorithms adopt a Bayesian approach. Bayesian algorithms closely
mimic the natural learning process of human brain that updates
its knowledge about certain events when it receives new informa-
tion about the event. In these algorithms, the prior knowledge
about a certain event is represented by its prior distribution which
assigns a prior probability to each possible outcome of the event.
When new information becomes available, the prior probabilities
are updated using Bayes’ theorem. The updated probability dis-
tribution is known as the posterior distribution. The posterior
distributions represent our up-to-date knowledge about a certain
event based on the data that have been recently available.

In the context of GRN reconstruction, any prior knowledge
about the possible regulators (gi) of each gene (gi) is encoded in
the prior distributions (P(Ai)) of the binary vectors Ai. In our
previous work (Santra et al., 2013), we formulated the prior dis-
tribution P(Ai) to penalize gene regulation models with too many
regulators and favored sparse models where each gene is regulated
by a small number of regulators. No other external knowledge was
used to formulate the prior distribution of Ai. Here, we take a
different approach and formulate a more informative prior dis-
tribution of Ai by integrating TFBS and PPI between TFs. The
process of integrating PPI and TFBS data into the prior distribu-
tion of Ai is an important aspect of data integration and will be
discussed in detail in the next section.

Prior information about the possible values of the interaction
strengths (βi) is rarely available. In the absence of any specific
prior knowledge of the possible values of βi , it is safe to assume
that its non-zero elements can take a wide range of positive or
negative values depending on whether the corresponding inter-
action is activating or repressing. The zero elements represent
no direct interaction and correspond to the zero elements of Ai.
This assumption is formulated by assigning a multivariate Gauss-
ian prior to the non-zero elements of βi . The prior distribution
of βi is assumed to have zero mean and covariance matrix V βi ,
which is a (ni× ni) matrix that represents our prior knowledge
about the possible ranges of values of βi . A common approach
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is to assume that the prior covariance matrix (Vβi ) of βi is pro-

portional to the scaled fisher information matrix (FIM) of βi ,

i.e. V βi = cσ2
(

X iT
X i
)−1

, where c is the proportionality con-

stant (also known as Zellner’s constant) which determines the
span of the prior distribution of βi (Zellner, 1986; Ishwaran and
Rao, 2005; Gupta and Ibrahim, 2009) and σ2 is the scaling factor
which is the same as the variances of the residual variables εij. The
above formulation of the covariance matrix assumes that the vari-
ances/covariances of the interaction strengths depend not only on
the inherent variability of the perturbation responses, but also on
the variance of the measurement errors. It was shown by other
researchers that the choice of the proportionality constant c has
a significant impact on the performance of BVS algorithms and
several studies were conducted to find the most appropriate value
of c (George and Foster, 2000; Fernández et al., 2001; Hansen and
Yu, 2001; Liang et al., 2008). Fernández et al. (2001) demonstrated
that among the commonly used values, c = max

(
np , n2

i

)
per-

forms the best in most scenarios. Therefore, this value was chosen
for the BVS framework presented in this study.

The prior knowledge about the noise variance σ2 is incorpo-
rated in its prior distribution. Previously, the noise variance σ2

was assumed to have a gamma distribution with shape and scale
parameters, α and β, respectively (Santra et al., 2013). The val-
ues of these parameters were set to 1 to ensure a flat prior, which
represents our lack of prior knowledge about extent of noise in
the dataset. Here, in order to avoid extra hyper parameters (α, β),
we assumed that σ2 has Jeffrey’s prior (Fernández et al., 2001),
i.e.p(σ2) ∼ 1

σ2 , which is an uninformative “improper” prior that
relies on the notion that noises in biological data are unlikely to
cause very large residuals in the linear models.

These prior distributions can then be updated to posterior dis-
tributions based on the measured perturbation responses of the
network using Bayes formula. Here, we are interested in the pos-
terior distributions of binary vectors Ai, i= 1, . . ., n, since these
vectors represent the network topology. It is straightforward to
show that the posterior distribution (P(Ai|xi, Xi)) of Ai given the
perturbation responses of gene gi and its regulators is (Liang et al.,
2008; Note 1 in Supplementary Material)

P
(

Ai
|x i , X i

)
∝

(1+ c)
−

(
ni+1

2

)(
1−

c

1+ c
R2
)−(np−1)

2

 P
(

Ai
)

(3)

here R2
= 1 −

(
x i
−X iT β̂i

)T (
x i
−X iT β̂i

)
(

x i−x i
)T (

x i−x i
) is the coefficient of deter-

mination of the linear model shown in Eq. 2, where β̂i =(
X iT

X i
)−1

X iT
x i is the least-square estimate of βi , and x i is the

sample average of xi.
Finding the most likely regulators of gene gi is equivalent to

finding the configuration of Ai that maximizes the above posterior
probability (Eq. 3). But, as discussed before, finding this con-
figuration requires iterating through all possible configurations
of Ai, which is hardly possible for large networks. An alterna-
tive approach is to estimate the “expected” configuration of Ai

using model averaging techniques that identify a number of “good
enough” configurations instead of a single “best” configuration.
The average of these good configurations is commonly used as an
approximation of the “expected” configuration of Ai. The “good
enough”configurations of Ai can be determined in reasonable time
by drawing samples from the above posterior distribution (Eq. 3)
using a Markov Chain Monte Carlo (MCMC)-based sampling
algorithm.

SAMPLING SCHEME FOR THE PROPOSED BVS FRAMEWORK
A typical MCMC-based sampling algorithm iteratively explores
different configurations of Ai in order to find those with relatively
high posterior probability. In each iteration, it calculates the poste-
rior probability of the current and a proposed new configuration
of Ai. However, in some cases, it is not possible to calculate the
posterior probability of certain configurations of Ai. For instance,
when ni � np , i.e. the number of 1s in Ai is larger than the num-

ber of perturbations, then the corresponding data matrix Xi has
dimensions np× ni and suffers from rank deficiency. Therefore,

the Gram matrix X iT
X i is non-invertible and the correspond-

ing coefficient of determination (R) and the posterior probability
(P(Ai|xi, Xi)) do not exist. Previously (Santra et al., 2013), we

addressed this issue by adding a diagonal loading (X iT
X i + δI ) to

the Gram matrix, ensuring its invertibility. However, this approach
requires the estimation of an optimal value for the loading con-
stant (δ), which adds to the complexity of the sampling process.
Additionally, the effects of diagonal loading on the overall outcome
of BVS algorithms are not well understood. In this study, a differ-
ent strategy is adopted to address the above issue. Here, in order
to avoid rank deficiency, the search space (ζ) of the MCMC algo-
rithm is constrained to only those configurations of Ai which has
less number of 1s than the number of perturbations, i.e. ni < np.
The restricted search space is denoted by ζnp

(
ζnp ⊂ ζ

)
, where

the subscript np indicates the upper limit on the number of 1s
in the configurations of Ai. The above approach has two major
advantages over the previous method. First, it ensures the existence
of the posterior probability without artificial diagonal loading of
the Gram matrix. Second, it decreases the computational com-
plexity of the MCMC algorithm by reducing the size of the data
matrix Xi. This property makes this approach particularly attrac-
tive for inferring large GRNs where computational complexity is
a major issue for MCMC-based variable selection algorithms. The
computational cost of sampling can be significantly reduced by
further restricting the search space to an even smaller subspace(
ζk ⊆ ζnp

)
, which contains only those configurations of Ai that

have less than k (where k ≤ np) numbers of 1s. Restricting the
search space to ζk implies that the MCMC algorithm will explore
regulatory programs (configurations of Ai) consisting of at most
k ≤ np regulators for each gene (gi). For accurate network infer-
ence, it is therefore desirable to assign the restriction parameter (k)
a reasonable value that is not far from the ground truth. Although,
there is no easy way of determining an optimal k, one can use prior
information about the topology of the network to have a broad
estimate of this parameter. This is discussed in the results section
where the proposed algorithm is implemented on experimental
data sets to infer GRNs. In the rest of this section, I continue with
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the discussion of the MCMC-based sampling algorithm, which is
used in this study to explore the restricted search space (ζk) of
potential gene regulatory programs.

A Metropolis–Hastings algorithm was implemented to sys-
tematically explore ζk and identify highly probable regulatory
programs (Ai). The sampling algorithm starts with a random

configuration of Ai
∈ ζk. A new configuration Ai′

∈ ζk is then
proposed based on a proposal distribution Q. The proposal dis-
tribution (Q) is formulated as follows. Let η(Ai)⊆ ζk denote a set
of binary vectors consisting of all possible configurations that can
be obtained by changing one of the elements of Ai from 0 to 1 or
vice versa. Define a proposal distribution Q as follows.

Q
(

Ai , Ai′
)
=

{
=

1
|η
(
Ai
)
|

if Ai′
∈ η

(
Ai
)

0 if Ai′ /∈ η
(
Ai
) (4)

Based on the above proposal distribution, an acceptance ratio

α =
P
(

Ai′
|X i′ ,x i

)
Q
(

Ai′ ,Ai
)

P
(
Ai |X i ,x i

)
Q
(

Ai ,Ai′
) is computed. The proposed new config-

uration Ai′ is then accepted with probability min(1,α). If accepted,
Ai′ is added to the sequence of drawn samples and becomes
the current configuration. Else, Ai remains the current config-
uration. Repeating this procedure in an iterative manner gives
rise to an irreducible Markov chain in the restricted search space
(ζk). This Markov chain asymptotically converges (Geyer, 2011) to
the desired posterior (P(Ai|xi, Xi)). Upon convergence, the sam-
ples drawn by the chain resemble those drawn from the posterior
(P(Ai|xi, Xi)), and therefore, the most probable configurations of
Ai appear more frequently in the drawn samples than the improb-
able ones. These samples are then used to determine an “average”
or “expected” regulatory program for each gene (gi). The expected
probability that a gene (gi) is regulated by another gene (gk) is
estimated by calculating the ratio of the number (nij) of samples
whose jth element is 1 to the total number (ns) of samples, i.e.
P
(
Aij = 1|x i , X i

)
=

nij

ns
(Mukherjee and Speed, 2008). Calculat-

ing this probability for each pair of genes results in a probabilistic
representation of the network topology.

The above sampling algorithm draws samples from the pos-
terior distribution of Ai (Eq. 3) which depends on its prior
distribution. This can be exploited to incorporate prior knowl-
edge from external data sources into the BVS algorithm. To do
so, the prior distribution (P(Ai)) needs to be formulated in such
a way that it favors the likely interactions supported by external
data sources. This will bias the posterior of Ai toward the interac-
tions that are supported by external data. Below, I show a scheme
that integrates TFBS with PPI information to formulate the prior
distribution P(Ai).

INTEGRATING EXTERNAL DATA TO FORMULATE P (AI)
Genes regulate each other via several mechanisms, e.g. transcrip-
tional regulation, methylation, histone acetylation, etc. Among the
known mechanisms of gene regulation, transcriptional regulation
via TFs is perhaps the most well-studied gene regulatory mecha-
nism. In the case of transcriptional regulation, proteins produced
by regulatory genes undergo post-translational modifications and
then either directly bind to the promoter regions of target genes

or form multi-protein transcription factor complexes (TFCs) that
bind to the gene promoters and regulate the activity of the corre-
sponding genes. The regulatory proteins and TFCs bind genes at
specific locations containing specific nucleotide sequences, com-
monly referred to as TFBS. These binding sites are experimentally
determined by ChIP–ChIP experiments (Hughes et al., 2000)
and/or computationally predicted by statistical algorithms (Matys
et al., 2006; Bryne et al., 2008; Bailey et al., 2009; Ernst et al., 2010).
There are a number of databases that contains vast amount of
information on binding specificities (TFBS) of several TFs and
TFCs (Matys et al., 2006; Bryne et al., 2008; Bailey et al., 2009).
However, there are some limitations of incorporating these infor-
mations as prior knowledge into a network inference algorithm.
First, the binding specificities are known only for a fraction of all
TFs and TFCs that are found in nature. For a large number of
TFs and TFCs, such information is unavailable. It is challenging
to interpret the unavailability of information in an unambiguous
manner. For instance, it is difficult to determine whether the lack
of information represents absence of interaction or simply lack
of knowledge about the presence of interaction. Second, TFs may
indirectly regulate genes by forming protein complexes (TFCs)
with other TFs which directly bind to gene promoters. Many of
these indirect regulations are not well characterized, further con-
tributing to the incompleteness of prior knowledge regarding gene
regulation.

To address the above issues, I propose a simple scheme of
incorporating available knowledge into the prior distribution of
Ai. The proposed prior distribution favors potential regulatory
interactions supported by TFBS data available in public databases.
However, it does not exclude the possibility of potentially new
interactions that are not supported by external sources. Further-
more, it uses information regarding protein interactions among
the TFs to determine potential indirect gene regulations. These
indirect regulatory interactions, along with the TFBS specificities,
are then collectively used as potential regulatory interactions in
the formulation of the prior distribution of Ai. A step-by-step
description of using external data sources to formulate the prior
distribution of Ai is shown below.

Step 1: First, TFBS information are collected from multi-
ple external sources, e.g. public databases such as HTRIDB
(Bovolenta et al., 2012), ENCODE (Hughes et al., 2000), KEGG
(Ogata et al., 1999), ConsensusPathDB (Kamburov et al., 2011),
etc., published literature (Ernst et al., 2010), computational
TFBS prediction services such as MEME (Bailey et al., 2009),
TRANSFAC (Bryne et al., 2008), JASPER (Matys et al., 2006),
TRED (Jiang et al., 2007), etc.
Step 2: Next, information regarding PPIs among known TFs are
obtained from publicly available sources. Recently, Ravasi et al.
(2010) determined a comprehensive map of physical interac-
tions among mammalian TFs using mammalian two-hybrid
system. They identified around 800 protein interactions among
human and mouse TFs. Arguably, this dataset is the most reliable
source of information regarding protein interactions among
TFs and is used in the large-scale GRN inference study later in
this study. However, Ravasi et al.’s study does not cover all mam-
malian TFs, in which case proteins interaction databases such as
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STRING (Szklarczyk et al., 2011), HPRD (Keshava Prasad et al.,
2009), IntAct (Kerrien et al., 2012), BIND (Bader et al., 2003),
KEGG (Ogata et al., 1999) is used to determine PPI between
TFs. It should be noted that many of these databases store
functional and computationally predicted PPIs which may not
always represent physical protein bindings. Since, we are inter-
ested in physical interactions among TFs, only physical PPIs
are carefully selected from the above databases, functional and
computationally predicted PPIs are excluded from the list of
potential TF–TF protein interactions.
Step 3: The above information is then used to build a prior
network that contains both direct and indirect regulations sup-
ported by external data. Potential direct regulations are iden-
tified using TFBS information as described above (see Step
1). Potential indirect regulations are identified based on the
assumption that if a TF binds to another TF which targets a
certain gene, then the former indirectly regulates the target of
the later (Figure 1). Both direct and indirect regulations are
incorporated in the prior network as potential transcriptional
interactions. The prior network is represented by a weighted
adjacency matrix (Γ). The non-zero elements of this matrix rep-
resent potential transcriptional regulations supported by TFBS
and PPI data. The value of a non-zero element (Γij 6= 0) repre-
sents our confidence on the regulation of a gene (gi) by another
(gj). In this study, equal confidence is placed on all potential
transcriptional regulations that are supported by TFBS and PPI
data, i.e., Γij= αc if gene gi has a TFBS for gj or any of its binding
partners. Here, αc is called the confidence parameter. The ith
row (Γi) of the prior adjacency matrix (Γ) represents our prior
knowledge about the regulatory program of gene gi and is used
to formulate the prior distribution of the binary vector Ai in the
following manner.

P(Ai) ∝ exp(ΓiT
Ai) : Ai

∈ ζk

= 0 otherwise. (5)

The above prior distribution ensures that the prior probability
of Ai

∈ ζk depends only on the number of interactions (Aij= 1)
which are supported by prior information (Γij= αc). This implies

that if two different configurations of Ai have different numbers of
potentially new interactions (Aij= 1, Γij= 0) but the same num-
ber of previously known interactions (Aij= 1, Γij= αc), then these
two configurations have the same prior probability. Therefore,
the above prior distribution (Eq. 5) favors regulatory programs
(configurations of Ai) that have large number of known interac-
tions (Γij= αc) but does not penalize the presence of previously
unknown interactions, allowing such interactions to be seamlessly
inferred by the variable selection algorithm.

As a proof of concept, I implemented the above BVS algorithm
to reconstruct a liver-specific transcription regulatory network by
analyzing perturbation response data. To show the effectiveness
of integrating TFBS and PPI data in the BVS framework, I used
four different prior settings for Ai. In the first setting, no exter-
nal data source was used to formulate the prior distribution of Ai

and all possible regulatory programs (configurations of Ai) were
considered equally likely a priori. In the second setting, no exter-
nal data sources were used, but the prior distribution of Ai was

Gene

Protein Protein Interac�on

Predicted TF binding sites

TF1 TF2 TF3

TF4

Gene

Prior transcription regulatory network

TF1 TF2 TF3 TF4

Promoter region Coding region

Promoter region Coding region

FIGURE 1 | Constructing prior transcription regulatory network using
TFBS and PPI data.

designed to favor sparse regulatory programs, i.e., the configura-
tions of Ai which has relatively fewer non-zero elements than zero
elements. This approach is similar to that we adopted in our previ-
ous work (Santra et al., 2013). In the third setting, a prior network
was constructed using only direct regulatory interactions that were
predicted from publicly available TFBS information. This prior
network was then used to formulate the prior distribution of Ai as
shown in Eq. 5. In the final setting, I used both direct and indirect
regulatory interactions that were predicted from both TFBS and
PPI interaction data to construct the prior network. This prior net-
work was then used to formulate the prior distribution of Ai. The
results of the above analysis are described in detail in the following
section.

INFERRING LIVER-SPECIFIC GENE REGULATORY NETWORK
FROM PERTURBATION RESPONSE DATA
Genes that play key roles in liver development, physiology, and
disease are found to be tightly regulated by a handful of TFs, such
as hepatocyte nuclear factors (HNF1A, HNF1B, HNF3A, HNF3B,
HNF3G, HNF4A, HNF4G, and ONECUT1), CCAAT/enhancer-
binding proteins (CEBPA and CEBPB), peroxisome proliferator
activated receptors (PPARA, PPARD, and PPARG), retinoic acid
receptors (RARA, RARB, and RARG), retinoid receptors (RXRA,
RXRB, and RXRG), and RAR-related orphan receptors (RORA
and RORC) (Schrem et al., 2002, 2004; Odom et al., 2004, 2006;
Tomaru et al., 2009). The genes that encode these TFs are known
to transcriptionally regulate each other to maintain a particular
sequence of events leading to the normal development of liver tis-
sues (Schrem et al., 2002, 2004; Odom et al., 2004, 2006; Tomaru
et al., 2009). Therefore, uncovering the GRN involving the above
genes is a fundamental step in understanding the physiological
processes of liver development. For this purpose, Tomaru et al.
(2009) perturbed the above GRN, one gene at a time, using siR-
NAs and measured the steady-state expression levels of these genes
after each perturbation. Here, these measurements were used to
infer the topology of the above GRN.

As mentioned above, four different versions of the aforemen-
tioned BVS framework were used for network inference, each with
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a different prior distribution of Ai. In the first case, all configu-
rations of Ai were assumed to have equal prior probability, i.e.
P(Ai)= γ, where γ is a constant.

In the second case, the prior distribution of Ai was designed
to assign higher probabilities to those configurations of Ai which
have fewer ones than zeroes. For this purpose, Ai was assumed to
have a beta binomial distribution,

P
(

Ai
)
=

(
nr

ni

)
B (ni + α , nr − ni + β)

B(α, β)
(6)

Here, nr is the number of potential regulators in gene gi. When
all genes in the network are considered to be the potential regu-
lators of gi, nr= n− 1. The values of the shape parameters (α, β)
were kept the same as those used in our previous work (Santra
et al., 2013), i.e. α= 1, β= 2.

In the third setting, only TFBS information was used to
construct the prior network (Figure 2A). TFBS information
were collected from HTRIDB (Bovolenta et al., 2012), MEME
(Bailey et al., 2009), TRANSFAC (Bryne et al., 2008), JASPER
(Matys et al., 2006), TRED (Jiang et al., 2007), and SABioscience
(www.sabiosciences.com). Here, only those TFBS that were found
within a 5000 bp region of the gene promoters were included
in the analysis. This resulted in a total of 106 potential tran-
scriptional regulations (excluding autoregulations, see Table S1
in Supplementary Material for details) among the 21 TFs men-
tioned above. These regulatory interactions were represented by a
prior adjacency matrix (ΓTFBS) whose non-zero elements repre-
sent potential gene regulations and are assigned a value of αc= 2.
The ith row

(
Γi

TFBS

)
of this matrix (ΓTFBS) represents our prior

knowledge on the regulatory program of the ith gene gi, based
solely on TFBS information, and was used to formulate the prior
distribution of Ai.

In the fourth setting,both TFBS and PPI among TFs (Figure 2B;
Table S2 in Supplementary Material) were used to determine
potential gene regulations. The TFBS information was collected
as described above. Information regarding PPIs among the above
TFs was obtained from STRING (Szklarczyk et al., 2011) and
HPRD (Keshava Prasad et al., 2009) databases (Table S2 in Sup-
plementary Material). The TFBS and PPIs were used to determine
potential direct and indirect regulatory interactions as described
in the previous section (see Figure 1). These resulted in a total of
217 potential gene regulatory interactions (excluding autoregula-
tions; see Table S3 in Supplementary Material for details) which
were used to construct the prior network matrix (ΓTFBS+PPI).
The non-zero elements of this matrix (ΓTFBS+PPI) were assigned
a value of αc= 2. The rows of the prior matrix (ΓTFBS+PPI) were
then used to formulate the prior distributions P(Ai), i= 1, . . ., n.

In all the above cases, the search space for the MCMC sampler
was restricted to ζk, where the subscript k represents the upper
limit on the number of regulators for each gene. The value of k
was chosen to be the same as the average number of regulators per
gene

( 217
21 ≈ 10

)
in the prior network (ΓTFBS+PPI) constructed

from TFBS and PPI data.
The GRNs reconstructed using the above prior settings were

then compared to a gold standard network (GSN) which was
deduced by Tomaru et al. (2009) using matrix RNAi combined

with rt-qPCR and Chromatin Immunoprecipitation (X-ChIP)
experiments (see Figure S1 in Supplementary Material). To recon-
struct the GSN, Tomura et al. knocked down 19 of the above genes,
one at a time, and measured the responses of these genes to each
knockdown. If a gene responded to the knockdown of another,
then the former was considered to be potentially regulated by the
later. Based on this assumption, a set of potential gene regula-
tory interactions (GRNAi) were determined. This was followed by
X-ChIP/qPCR analysis that determined the DNA binding pref-
erences of six (TCF1, FOXA1, FOXA2, HNF4A, ONECUT1, and
RXRA) of the above TFs. If a TF was found on the promoter of
a target gene in the X-ChIP experiment, then the later was con-
sidered to be potentially regulated by the former. A second set of
potential gene regulations (GXChIP) were identified based on the
X-ChIP measurements. The set of interactions (Gref ) that were
common to both the above networks (GRNAi and GXChIP) were
then considered to represent the GSN (Gref =GRNAi ∩GXChIP).
The networks inferred by the proposed BVS frameworks with dif-
ferent prior setting were then compared with the above GSN. Since
the GSN contains information regarding the regulatory activities
of only six (out of 21) TFs, I compared only the interactions involv-
ing these TFs. The activities of the remaining 15 TFs were excluded
from the comparison.

Recall that the proposed BVS algorithm uses MCMC sampling
to estimate the posterior interaction probabilities. These poste-
rior probabilities represent the a posteriori confidence on each
interaction based on the perturbation response, TFBS and PPI
data. If the posterior probability of an interaction is higher than
a certain threshold (pτh), then the corresponding interaction is
considered to be a true interaction. On the other hand, if a pos-
terior probability is less than or equal to this threshold, then the
corresponding interaction is thought to be absent in the GRN.
This implies that the topology of the reconstructed GRN depends
on the threshold probability (pτh) and therefore, any comparison
between the reconstructed GRN and the true GRN also depends
on the choice of this threshold. For a more objective assessment,
multiple GRNs are constructed from the above posterior prob-
abilities using multiple different thresholds. Each reconstructed
GRN is then compared with the true GRN and the number of
correctly and incorrectly inferred interactions are counted. These
counts are used to calculate the true positive rates (TPRs), false
positive rates (FPRs), and precisions (PREs) of the reconstructed
GRNs. The TPR is the ratio of total number of the correctly iden-
tified interactions to the total number of interactions present in
the GSN (Fawcett, 2004; Powers, 2011); the FPR is the ratio of
the total number of incorrectly identified interactions and the
total number of possible interactions that are absent in the GSN
(Fawcett, 2004; Powers, 2011); PRE is the ratio of the total number
of correctly identified interactions to the total number of inter-
actions present in the inferred network. Then, the TPRs (Y -axis)
are plotted against the FPRs (X -axis), and the PREs (Y -axis) are
plotted against TPRs (X -axis) in two separate plots, commonly
known as receiver operating characteristic (ROC) and precision
recall (PR) curves, respectively (Fawcett, 2004; Powers, 2011). The
areas under these curves, denoted by AUROC and AUPR, give an
objective assessment of the accuracy of the GRNs reconstructed by
the BVS algorithms (Fawcett, 2004; Powers, 2011). Both AUROC

www.frontiersin.org May 2014 | Volume 2 | Article 13 | 7

www.sabiosciences.com
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Santra Data integration for network inference

FIGURE 2 | Integrating external data to infer liver-specific transcription
regulatory network (Tomaru et al., 2009). (A) Prior network constructed
from TFBS information. (B) PPI among transcription factors. (C) Network
inferred by flat prior (P (Ai)= γ). (D) Network inferred using sparse prior.
(E) Network inferred using prior network constructed from TFBS information
only. (F) Network inferred using prior network constructed from TFBS and PPI

information. The interactions that occur with high and low posterior
probabilities are represented by darker/thicker and lighter/thinner edges,
respectively, in (C), (D), (E), and (F). (G) Average ROC curves of the inferred
networks. (H) Average PR curves of the inferred networks. (I) mean and
standard deviation of the area under the ROC and PR curves of the inferred
networks.

and AUPR can have values between 0 and 1, and the closer these
values are to 1, the better is the accuracy of the inferred networks,
with AUROC= 1 and AUPR= 1 being the ideal case. To perform a
robust comparison, the proposed BVS algorithm was executed 50

times under each prior setting, producing 50 posterior networks
for each prior network (see Figures 2C–F for sample posterior
networks inferred from different priors). ROC, PR curves, and the
areas under these curves (AUROC and AUPR, respectively) were
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calculated from each posterior network. The average ROC and PR
curves of the networks that were inferred from the same network
prior was then calculated for each prior setting (Figures 2G,H).
The mean and standard deviations of the corresponding AUROC
and AUPR values, calculated under different prior settings, are
shown in Figure 2I. The AUROC values calculated under differ-
ent prior settings were then compared using Mann–Whitney U
test (Mann and Whitney, 1947) to assess the effects of different
network priors on the accuracy of the proposed BVS algorithm.
These results suggest that the BVS framework that incorporates
both the TFBS and PPI data performed better than those which
incorporate no prior information (p= 0.99× 10−6), only TFBS
information (p= 2.05× 10−4) as prior knowledge, and the sparse
prior (p= 2.4× 10−6). These results support our hypothesis that
TFBS and PPI data can be collectively more predictive of potential
GRNs than TFBS data alone.

Finally, I assessed the sensitivity of the BVS framework to the
confidence parameter (αc) by looking at the agreement between
results obtained under different values of this parameter. For this
purpose, five different values (αc= 1, 2, 3, 4, 5) of the confidence
parameters were used to formulate a total of 10 prior distributions,
five of these use only TFBS information and the remaining five use
both TFBS and PPI information. A GRN was reconstructed using
each of these prior distributions, leading to 10 inferred networks.
These networks were then compared with each other to determine
whether different values of the confidence parameter (αc) had
significant effect on the network inference process. The inferred
networks were then compared with the networks inferred from
no prior knowledge (NPK) and sparse priors, the prior networks
(ΓTFBS, ΓTFBS+PPI), and the reference network (REF). Pearson
correlation coefficient was used for comparing these networks.
The resulting correlation coefficients are shown in Figure 3. Val-
ues close to unity indicate high degree of similarities between
networks. The networks inferred from the same type of prior dis-
tribution are in close agreement with each other, despite different
values of the confidence parameter αc. This suggests that the pro-
posed BVS framework is relatively insensitive to different values
of αc. However, the networks inferred from different types of pri-
ors are mostly different from each other. Additionally, the inferred
networks are also considerably different from the prior networks
suggesting that the proposed Bayesian framework indeed strikes a
balance between prior information and observed data.

Encouraged by the above results, I implemented the proposed
BVS framework to infer the regulatory mechanisms of the human
breast epithelium and compared its performance with a state-of-
the-art network inference method, which relies on LASSO regres-
sion. The results of this comparison are described in detail in the
next section.

INFERRING GRN OF HUMAN BREAST EPITHELIUM AND
COMPARISON WITH LASSO
For large-scale GRN inference, I used a set of mRNA expression
measurements obtained from human epithelium at different stages
of cancer development (Graham et al., 2010). The dataset was pro-
duced by Graham et al. (2010) who performed gene expression
analysis of breast epithelium tissue samples obtained from 42
patients (18 cancer free, 18 had prophylactic mammoplasty,

and 6 had reduction mammoplasty) in order to understand the
differences in expression profiles of histologically normal breast
epithelium and usual-risk controls undergoing reduction mam-
moplasty. These expression profiles were used to infer the GRN
that governs the regulatory mechanisms of human breast epithe-
lium. The natural genetic variations caused by SNP, copy number
variations, mutation, epigenetic regulation, etc., were considered
to be genetic perturbations that led to different gene expression
profiles among different patients. To save computational time, only
top 2000 probe sets (1337 genes) with the highest between-sample
variances were selected (Table S4 in Supplementary Material).
Among the selected probes, there were 93 known TFs (Table S5 in
Supplementary Material) which were used as potential regulators
of the selected genes for network inference.

Four different prior settings were used for the BVS framework.
The parameter settings for the flat and sparse priors were left the
same as before. TFBS information were collected from ENCODE
(Hughes et al., 2000; Ernst et al., 2010), MEME (Bailey et al., 2009),
TRANSFAC (Bryne et al., 2008), and JASPER (Matys et al., 2006)
to construct the prior network (ΓTFBS) that contains only direct
gene regulations (Figure 4A). This network (ΓTFBS) contains 4963
number of potential gene regulations between 93 TFs and 1317
target genes (Table S6 in Supplementary Material). Information
regarding PPI among TFs (Figure 4B) was collected from physi-
cal TF binding data published by Ravasi et al. (2010) (Table S7 in
Supplementary Material). This information along with the TFBS
data were used to construct a second prior network (ΓTFBS+PPI)
which contains 16,372 potential regulatory interactions supported
by both types of data (Table S8 in Supplementary Material). The
confidence parameter (αc) was set to 2 and the restriction para-
meter (k) were assigned a value of 12

(
k = 16,372

1317 ≈ 12
)
. The

above prior settings, when used with the proposed BVS frame-
work led to four different posterior networks that were then used
for performance evaluation and comparison purposes.

For performance comparison, a LASSO regression-based GRN
inference algorithm (Wang et al., 2013) was selected due to recent
popularity of LASSO-based methods in the network inference
community (van Someren et al., 2003; Li and Yang, 2004; van
Someren et al., 2006; Shimamura et al., 2007; Hecker et al., 2009,
2012; Lee et al., 2009; Charbonnier et al., 2010; Gustafsson and
Hornquist, 2010; James et al., 2010; Pan et al., 2010; Peng et al.,
2010; Wang et al., 2013). LASSO is a regularized version of least-
square regression which uses the constraint that ||β||1, the L1-norm
of the regression coefficients, is no greater than a given value.
This is equivalent to an unconstrained minimization of the least-
squares penalty with an added penalty λ||β||1, where λ is a con-
stant. As the penalty is increased, LASSO regression drives more
and more of the regression coefficients (β) to 0, leaving fewer and
fewer non-zero coefficients. Both LASSO and BVS share some sim-
ilarities in their core formulations but differ in some key aspects
in their implementations. For instance, both these algorithms rely
on linear regression models, but LASSO uses absolute shrinkage
regularization to deal with curse of dimensionality where BVS
uses MCMC sampling for the same purpose. Therefore, compar-
ing the results obtained from LASSO- and BVS-based techniques
may reveal the strengths and weaknesses of algorithms which
rely on regularization and MCMC sampling. Similar to the BVS
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FIGURE 3 |The sensitivity of the BVS framework to the confidence
parameter (αc). Here, REF represents the reference/gold standard
network. TFBS represents the prior network that uses only TFBS
information. TFBS+PPI represents the prior network that uses both TFBS
and PPI information. No prior knowledge (NPK) represents the network
that was inferred using flat prior. SPARSE represents the network that was
inferred using sparse prior. TFBS α= x represents the posterior network
inferred from ΓTFBS with the confidence parameter set to αc = x.
TFBS+PPI α= x represents the posterior network inferred from ΓTFBS+PPI

with the confidence parameter set to αc = x. The above heatmap
represents the similarities (in terms of Pearson correlation coefficients)

among the reference, prior, and posterior networks. Values close to 1 (dark
red) represent close agreement and values close to zero (dark blue)
represent a lack of agreement between network topologies. This figure
suggests that the prior networks (TFBS and TFBS+PPI) do not have
significant overlap with the reference network (correlation coefficients
0.42, 0.31, respectively). This is due to the fact that only 19 and 16% of the
interactions that are present in the prior networks (TFBS and TFBS+PPI)
are also present in the reference network (REF). Additionally, posterior
networks inferred from the same prior network have a high degree of
topological similarity (correlation coefficients 0.6–0.95), regardless of the
value of the confidence parameter (αc).

framework, three different prior settings were used for the LASSO-
based algorithm. In the first case, no prior information was used,
and in the second and third cases, ΓTFBS and ΓTFBS+PPI were
used, respectively, as prior networks. The values of the regular-
ization parameters were kept at their default values (λ1= 0.2,
λ2= 0.8). This led to three different networks that were inferred
by the LASSO-based algorithm.

To evaluate the accuracy of the inferred networks, I compared
these to a GSN which consists of a collection of 1726 known gene
regulatory interactions obtained from the HTRIdb, Consensus-
PathDB and KEGG databases (Figure 4C, see Table S9 in Sup-
plementary Material for details). The GSN contains interactions
between only 27 (out of 93) TFs and their target genes. There-
fore, only the regulatory activities of these 27 TFs were compared
and the activities of the remaining 66 TFs were excluded from the

comparison. The comparison was done using ROC and PR curves
as mentioned in the previous section. The resulting AUROC and
AUPR values are shown in Figures 4D,E. These results suggest
that the performance of the proposed BVS algorithm increased
significantly when prior information was incorporated into the
inference method. In particular, TFBS and PPI data collectively
were more predictive of regulatory interactions than TFBS infor-
mation alone. Moreover, BVS algorithm performed better than
the LASSO-based method under all circumstances. As in the pre-
vious section, the performance of BVS algorithm was found not
to be sensitive (Figure 4F) to different values of the confidence
parameter (αc).

A possible reason behind the poor performance of LASSO can
be low precision of the prior networks. The prior networks used
in this study have many more interactions (≈5000, 16,000) than
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FIGURE 4 | Reconstructing GRN of human breast epithelium and
comparison with LASSO. (A) Prior network based on TFBS information.
(B) PPI among TFs. (C) The gold standard network. (D) AUROCs of LASSO
and BVS algorithms under different prior settings. (E) AUPRs of LASSO and
BVS algorithms under different prior settings. (F) Sensitivity of the BVS

algorithm to the confidence parameter (αc). Here, TFBS represents the prior
network constructed from TFBS data, TFBS+PPI represents the prior
network constructed from both TFBS and PPI information, α=1, 2, 3, 4
represents the networks inferred from ΓTFBS+PPI with confidence parameters
αc =1, 2, 3, 4, respectively.
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the REF (≈1700 interactions) and therefore have very low preci-
sion. It was shown before that the performance of LASSO degrades
rapidly as the precision of the prior information decreases (Wang
et al., 2013). Additionally, the above results depend largely on the
quality of the GSN which is a generic network consisting of the
interactions involving the selected genes and TFs. This network
does not necessarily reflect the tissue-specific behavior of the gene
regulatory programs in breast cancer cells and therefore may not be
ideal for performance evaluation purposes. However, this network
was used as gold standard due to unavailability of information
regarding tissue-specific GRNs.

DISCUSSION
In this study, I presented a new approach that incorporates TFBS
data along with protein interactions among TFs in a BVS frame-
work to infer GRNs. The main hypothesis behind this approach
was that integrating protein interactions among TFs with TFBS
data increases the predictive power of the inference process, espe-
cially in a variable selection setting. This was demonstrated by
inferring a liver-specific transcription regulatory network and the
gene regulation program of human breast epithelium, and eval-
uating the accuracy of the inferred networks based on known
interactions. However, there are several shortcomings of the pro-
posed data integration method. For instance, adding all indirect
interactions, predicted from TF–TF PPIs, may result in a very large
number of potential interactions, leading to a very low precision
prior which may not contribute to the predictive power of the
inference process. This issue can be mitigated by using informa-
tion on protein complexes from relevant databases when these
databases mature. The precision of the prior network can also be
improved by removing unlikely edges that can be determined by
other types of data, e.g. eQTL data.

Moreover, the proposed BVS framework relies on a linear
regression model of gene regulation. Although linear regression
models are extensively used by network inference community due
to ease of implementation, it was recently shown that tree-based
regression models may be better suitable than linear regression
models in network reconstruction problems (Huynh-Thu et al.,
2010). Therefore, a possible upgrade of the proposed Bayesian
framework will be to replace the linear regression-based gene reg-
ulation models by tree-based regression models. Additionally, in
this study, I focused mainly on two types of external data sources,
consensus motif data, and PPI data. There are a plethora of other
functional genomics data, e.g. GO, SNP, gene orthology, etc., which
can also be predictive of potential gene regulatory interactions.
Our next objective is to find a meaningful way of incorporating
such information into the BVS framework.
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