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Cardiac autonomic neuropathy (CAN) is a disease that involves nerve damage leading to
an abnormal control of heart rate. An open question is to what extent this condition is
detectable from heart rate variability (HRV), which provides information only on successive
intervals between heart beats, yet is non-invasive and easy to obtain from a three-lead ECG
recording. A variety of measures may be extracted from HRV, including time domain, fre-
quency domain, and more complex non-linear measures. Among the latter, Renyi entropy
has been proposed as a suitable measure that can be used to discriminate CAN from
controls. However, all entropy methods require estimation of probabilities, and there are
a number of ways in which this estimation can be made. In this work, we calculate Renyi
entropy using several variations of the histogram method and a density method based on
sequences of RR intervals. In all, we calculate Renyi entropy using nine methods and com-
pare their effectiveness in separating the different classes of participants. We found that
the histogram method using single RR intervals yields an entropy measure that is either
incapable of discriminating CAN from controls, or that it provides little information that
could not be gained from the SD of the RR intervals. In contrast, probabilities calculated
using a density method based on sequences of RR intervals yield an entropy measure
that provides good separation between groups of participants and provides information
not available from the SD.The main contribution of this work is that different approaches to
calculating probability may affect the success of detecting disease. Our results bring new
clarity to the methods used to calculate the Renyi entropy in general, and in particular, to
the successful detection of CAN.

Keywords: Renyi entropy, heart rate variability, cardiac autonomic neuropathy, probability estimation, disease
discrimination

INTRODUCTION
Cardiovascular function is controlled by intrinsic and extrinsic
mechanisms including membrane properties of the sino-atrial
node, neuro-hormonal, and autonomic nervous system (ANS)
modulation (Valensi et al., 2002; Vinik et al., 2003). The natural
rhythm of the human heart is known to vary in response to sym-
pathetic and parasympathetic signals and dysfunction of either
of these mechanisms is often associated with diabetes, which can
manifest at different times during diabetes disease progression.
This dysfunction is referred to as cardiac autonomic neuropa-
thy (CAN) (Pop-Busui, 2010; Tarvainen et al., 2013). As it affects
the control of heart rate, it should be manifested in changes
to cardiovascular rhythm, which are observable and therefore
classifiable.

A common type of ECG signal is shown in Figure 1. Such
signals have been studied extensively and the diagnostic value
of the different features is well established. The RR interval,
shown in Figure 1, is the time between successive heart beats.
Heart rate is the reciprocal of this. Generally, sympathetic activity

increases heart rate and decreases variability, whereas parasym-
pathetic activity decreases heart rate and increases variability
(Berntson et al., 1997). Therefore, heart rate variability (HRV)
is a useful indication of the health of the cardiovascular system,
and is commonly used in assessing the regulation of cardiac auto-
nomic function (Flynn et al., 2005; Vinik et al., 2013). HRV may be
described by a variety of measures such as time domain, frequency
domain, and non-linear measures (TFESC, 1996; Khandoker et al.,
2009; Sacre et al., 2012).

Guidelines for the use of HRV for clinical practice were estab-
lished in 1996 and included time and frequency domain measures
as well as non-linear analysis and geometric methods from the
time signal in the form of heart rate or inter-beat intervals (RR
intervals) (TFESC, 1996). Geometrical methods are less sensitive
to noise in the biosignal and offer a good alternative to the more
often time and frequency domain analysis applied to determine
HRV (Sztajzel, 2004) but require longer recording times (Malik
and Camm, 1993). Geometric methods require the time series to
be converted to a discrete scale, which allows the binning of RR
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FIGURE 1 | A typical ECG signal showing the RR interval.

intervals as histograms. More recently, geometric-based methods
have also been shown to be robust for classification of CAN with
shorter recording periods (Karmakar et al., 2009, 2013; Jelinek
et al., 2013). Geometric methods are in general based on convert-
ing the RR intervals into a geometric form such as a triangle or
ellipse, which can assist with visualization and can provide sum-
mary measures such as measures that describe the shape of such
figures, to be calculated. Another approach is to express the RR
intervals as a frequency distribution histogram, which can then
be analyzed (Nasim et al., 2011). Common examples of HRV fea-
tures derived from the geometric forms include the triangular
index (Tri), triangular interpolation of NN interval (TINN), the
Poincaré plot including the complex correlation method (CCM),
and wavelet-based analysis (Tulppo et al., 1996; Acharya et al.,
2002, 2006; Voss et al., 2007). More recent geometric methods
for HRV analysis include the entropy measures, especially if the
feature extracted is based on a histogram presentation of the RR
intervals or autoregressive spectral estimation of the tachogram
(Wessel et al., 2000; Tarvainen et al., 2013).

Non-linear measures include determination of the time sig-
nal’s entropy in an attempt to quantify randomness in the system
and include approximate entropy (ApEn), sample entropy (Sam-
pEn), and multiscale entropy (MSE). Renyi entropy generalizes the
Shannon entropy and includes the Shannon entropy as a special
case (Rényi, 1960). Renyi entropy H is defined as:

H (α) =
1

1− α
log2

(∑n

i=1
pα

i

)
(1)

where pi is the probability that a random variable takes a given
value out of n values, and α is the order of the entropy measure.
H (0) is simply the logarithm of n. As α increases, the measures
become more sensitive to the values occurring at higher probabil-
ity and less to those occurring at lower probability, which provides
a picture of the RR length distribution within a signal. However,
the entropy requires an estimate of probabilities, and there are a
number of ways in which this can be determined.

The histogram method has advantages in terms of its low com-
putational effort and its ability to allow a simple visualization of
the distribution of RR values. However, its reliance on binning

FIGURE 2 | Histograms of the detrended RR intervals for participants in
the Normal group made using the same bin divisions for all data used.
The vertical axis shows the count of RR intervals falling into each bin. The
SD is 0.050.

the data points introduces an artificial discretization, leading to a
boundary problem where an individual value may be included in
one bin or the other depending on a very small perturbation. This
can be ameliorated by using a smoothing method that spreads
data points into adjacent bins, but does not take into account how
close a particular data point was to the bin boundary. Figures 2–4
show histograms of detrended RR intervals using data from par-
ticipants in this study classified as Normal (N), Early CAN (E), or
Definite CAN (D), respectively. The effect of the discretization is
clear, especially for the data from participants with definite CAN
(Figure 4), where all RR intervals fell into only two bins. The dif-
ference in distribution between the three classes is also clear, with
participants in the Normal group (Figure 2) showing much greater
variability of RR intervals than those with CAN (Oida et al., 1999;
Khandoker et al., 2009). Notice also that this particular example of
early CAN (Figure 3) appears to fit somewhere between Normal
and Definite CAN.

An alternative approach is to estimate the probability of an
individual RR interval using a notional density of space around the
individual data point. This can be done by considering other RR
intervals in the vicinity of the individual RR interval using Euclid-
ean distance and imposing a threshold. For example, a calculation
of sample entropy is described in Costa et al. (2002) as counting
all RR intervals that are closer to the individual RR interval given a
specific threshold. However, this still introduces a boundary prob-
lem and depends on choosing a suitable value for the threshold.
Alternatively, a Gaussian kernel is centered on the individual RR
interval and all RR intervals are added, weighted by the Gauss-
ian function, based on the distance between the individual RR
interval and the other RR intervals. A density measure can be cal-
culated for the individual RR interval with index i, as the sum of
all contributions from other RR intervals with index j :

ρi =
1

σ
√

2π

∑n

i=1
e
−

dist2ij

2σ2 (2)
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FIGURE 3 | Histograms of the detrended RR intervals for participants in
the Early CAN group made using the same bin divisions for all data
used. The vertical axis shows the count of RR intervals falling into each bin.
The SD is 0.038.

FIGURE 4 | Histograms of the detrended RR intervals for participants in
the Definite CAN group made using the same bin divisions for all data
used. The vertical axis shows the count of RR intervals falling into each bin.
The SD is 0.026.

where σ is a parameter of the method and controls the dispersion
of the function, and distij is the Euclidean distance between two
RR intervals:

distij =

√
RR2

i − RR2
j (3)

Apart from the advantage of allowing a continuous rather
than a discretized measure, this method also allows more
than one dimension, as long as a suitable distance measure
can be provided. In the case of RR intervals, higher dimen-
sions allow sequences of RR intervals to be compared, rather
than individual RR intervals. In this case, a single RR inter-
val with length RRi is replaced by a sequence of RR intervals
Si,λ= {RRi+1, RRi+2, RRi+λ}, where λ is the number of intervals

FIGURE 5 | Density of detrended RR intervals plotted against the RR
interval value for participants in the Normal group. The SD is 0.030.

in the sequence of length λ. The calculation of distance now
becomes:

distij =

√∑λ

k=1

(
RR2

i+k − RR2
j+k

)
(4)

where 1≤ k ≤λ.
This value of distij can be used in Eq. 2 to estimate the proba-

bility of a sequence of RR intervals, and the resulting probability
can be used in Eq. 1 to calculate the Renyi entropy of a sequence of
RR intervals. This provides several advantages over the histogram
method. First, there are no boundary issues associated with placing
RR intervals into a finite number of bins, where the bin boundaries
are set at arbitrary values, possibly introducing bias. Second, this
method can be applied to sequences of RR intervals, where this is
infeasible for the histogram method. This method does, however,
have two parameters to set: the sequence length λ and the Gaussian
dispersion σ.

Figures 5–7 show visualization of the results of this process, for
Normal, Early CAN, and Definite CAN classes, respectively. For
every RR interval, its density measure ρ has been plotted against
the RR interval value. This results in a much smoother curve than
the histogram method, and note that each graph shown here com-
prises approximately 1000 points. As with the figures showing
histograms, the effects of CAN may be seen in terms of the reduced
variability of heart rate.

MATERIALS AND METHODS
The work reported here used data from the Charles Sturt Dia-
betes Complications Screening Group (DiScRi), Australia (Jelinek
et al., 2006). The study was approved by the Charles Sturt Univer-
sity Human Ethics Committee, and written informed consent was
obtained from all participants. A 20-min lead II ECG recording
was taken from participants attending the clinic, using a Maclab
Pro with Chart 7 software (ADInstruments, Sydney, NSW, Aus-
tralia). Participants were comparable for age, gender, and heart
rate, and after initial screening, those with heart disease, presence
of a pacemaker, kidney disease, or polypharmacy (including mul-
tiple anti-arrhythmic medication) were excluded from the study.
The same conditions were used for each participant. The status of

www.frontiersin.org September 2014 | Volume 2 | Article 34 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cornforth et al. How to calculate Renyi entropy

FIGURE 6 | Density of detrended RR intervals plotted against the RR
interval value for participants in the Early CAN group. The SD is 0.023.

FIGURE 7 | Density of detrended RR intervals plotted against the RR
interval value for participants in the Definite CAN group. The SD is
0.006.

CAN was defined using the Ewing battery criteria (Ewing et al.,
1985; Javorka et al., 2008; Khandoker et al., 2009), and each partic-
ipant was assigned as either without CAN (71 participants), early
CAN (67 participants), or definite CAN (11 participants). From
the 20-min recording, a 15 min segment was selected from the
middle in order to remove start up artifacts and movement at the
end of the recording. From this shorter recording, the RR intervals
were extracted. No other information was used in this study. The
RR interval series for each participant was pre-processed using
the Kubios HRV software (Tarvainen et al., 2014). Ectopic and
other aberrant beats, if any, were first corrected using a simple
threshold based artifact correction algorithm of the software. The
very low frequency trend components (frequencies below 0.04 Hz)
were then removed from the RR interval series using a smooth-
ness priors detrending method (Tarvainen et al., 2002). All the
HRV measures were then applied on these pre-processed data.

The SD of RR intervals as a time domain feature and the Renyi
entropy, using a scaling exponent α of integer values from −5 to
+5, were analyzed. The Renyi entropy was calculated using nine
different methods for calculating the probabilities, resulting in 90

Renyi measures for every participant (values for α= 0 were dis-
carded since these measure only the support). For probabilities
calculated using histograms, the RR intervals were separated into
30 bins using bin boundaries calculated in two different ways.
In the first binning method, the maximum and minimum of all
RR intervals in the entire datasets were calculated. The interval
between the global maximum and minimum was divided into 30
equal portions, and a histogram was formed for each participant
using these bin boundaries. Examples of this approach are shown
in Figures 2–4. It may be observed that some of the histogram
bins are effectively unused in this approach. In the second binning
method, the maximum and minimum of the RR intervals for just
one participant were used to calculate the boundaries of 30 bins in
order to form a histogram for that participant. In this approach,
all histograms have 30 useful bins.

After calculating each histogram by either method, the result
is an estimate of the distribution of RR intervals for one partici-
pant in the study. To obtain probability values, each histogram was
normalized by dividing the number of RR intervals in each bin by
the total RR intervals in the sequence. This resulted in estimates of
the probability of each bin, and these 30 probability values were
used to calculate the Renyi entropy for the participant. This was
repeated to calculate the Renyi entropy for each participant.

For each histogram, smoothing was performed using a five-
term Gaussian kernel filter, and another set of Renyi entropy values
was calculated from the smoothed histogram. The smoothing
calculates a new frequency m for each bin i as follows:

m∗i = a2mi−2 + a1mi−1 +mi + a1mi+1 + a2mi+2 (5)

where mi is the number of samples falling into bin i, and m∗i is the
filtered number of samples in bin i. The filter coefficients ak were
calculated from a Gaussian function:

ak = e
−

(i−k)2

2σ2 (6)

where σ is the range parameter of the filter. In this work, σ was
set to 1, so the filter parameters used were 0.135, 0.607, 1, 0.607,
and 0.135. As these parameters do not sum to 1, normalization is
required, which was performed after calculating all probabilities,
so that the sum of all 30 probabilities was made equal to 1. After
Renyi values were obtained, these were also normalized by divid-
ing by log2 of the number of bins. In this way, all Renyi entropies
using α= 0 were 1, and could be compared between the different
method used to calculate them, and allowed for the different num-
ber of intervals within each 15 min time series obtained from the
participants.

For probabilities calculated using the Density method, proba-
bilities were estimated from Eqs 2 and 4. Parameters were varied,
as a range of sequence lengths λ were used, and the dispersion of
the Gaussian function σ was varied in proportion, as detailed in
the following list.

The nine methods are summarized here:

1. Histogram of 30 bins using a global maximum and mini-
mum, based on the range of RR intervals obtained from all
participants.
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2. Same as method 1, but using Gaussian kernel smoothing.
3. Histogram using widths based on the individual maximum

and minimum obtained from each participant.
4. Same as method 3, but using Gaussian kernel smoothing.
5. Density method for sequence length λ= 1 and σ= 0.01.
6. Density method for sequence length λ= 2 and σ= 0.02.
7. Density method for sequence length λ= 4 and σ= 0.04.
8. Density method for sequence length λ= 8 and σ= 0.08.
9. Density method for sequence length λ= 16 and σ= 0.16.

The Renyi measures were analyzed separately for each of the
nine methods and positive and negative exponents were also
treated separately in the analysis. For each measure, A Mann–
Whitney test was performed to compare the Normal (N) to the
Early (E) group, the Early to the Definite (D) group, and the Def-
inite to the Normal group. Mann–Whitney tests were performed
using the u_test procedure of GNU Octave with the default argu-
ments. For each of the nine methods, we summarized the results
of the separation between classes by finding the minimum p-value
from three tests (Normal vs. Early, Early vs. Definite, and Definite
vs. Normal) and for 10 different Renyi measures (−5≤ α≤+5).
The minimum was used to indicate the best potential of each
method to separate the classes and was followed by a more detailed
examination or the actual p-values obtained. Thus the minimum
p-value from 30 tests is used to summarize each method. The
nine methods were also compared using the mean correlation
coefficient from 11 Renyi values.

RESULTS
Table 1 summarizes the result of the nine versions of Renyi entropy
used in the experiments. Each row corresponds to one of the
methods of calculating probabilities. The numbers in column 1
correspond to those used in the Section “Materials and Meth-
ods.” The next two columns provide the minimum probability
achieved by the Mann–Whitney tests comparing the three classes.
These columns summarize the degree of class separation that was
achieved. For example, method 3 produced Renyi entropy val-
ues that were unable to separate the three classes of participants,
because the minimum p-values obtained from the Mann–Whitney
test were 0.275 for the negative Renyi coefficients and 0.575 for the
positive Renyi coefficients.

Columns 4 and 5 provide the average Pearson r2 value com-
paring the SD with the negative and for the positive Renyi values,
respectively. For example, method 3 produced Renyi entropy val-
ues that were not correlated with the SD, with the mean Pearson
r2 value of 0.106 for the negative Renyi coefficients and 0.003 for
the positive Renyi coefficients.

The final two columns provide a measure of the suitability of
the method for assisting with the task of discriminating between
classes. The verdict achieves an affirmative only if the probabil-
ity value from columns 2 or 3 is <0.05 (a 5% probability that an
apparent difference in classes occurs by chance), and if the cor-
relation value from columns 4 or 5 is <0.5. For example, method
3 is considered unsuitable because although it produces measures
that are uncorrelated with SD, the separation of classes was not
achieved as indicated by the high p-values.

Table 1 | Summary of results of Mann–Whitney tests for Renyi entropy

calculated using nine different methods of estimating probabilities.

Method Separation Correlation Verdict

Neg Pos Neg Pos Neg Pos

1 0.043 0.000 0.109 0.910 Yes No

2 0.126 0.000 0.074 1.061 No No

3 0.275 0.575 0.106 0.003 No No

4 0.129 0.680 0.115 0.005 No No

5 0.106 0.000 0.027 0.850 No No

6 0.014 0.000 0.067 1.025 Yes No

7 0.008 0.000 0.106 1.019 Yes No

8 0.003 0.000 0.209 1.043 Yes No

9 0.000 0.000 0.467 0.915 Yes No

Table 2 | Results of Mann–Whitney tests for Renyi entropy calculated

with negative exponents and using method 1.

Test H (−5) H (−4) H (−3) H (−2) H (−1)

Normal vs. early 0.568 0.572 0.475 0.313 0.0427

Early vs. definite 0.388 0.360 0.388 0.403 0.332

Definite vs. normal 0.275 0.2625 0.250 0.204 0.0990

Pearson r2 0.0663 0.0683 0.0725 0.0846 0.145

According to these criteria, the only measures that were deemed
to satisfy the two outcome requirements are the negative Renyi
measures for method 1 (Histogram) and all of the density methods
except for method 5. However, Table 1 provides only a summary
of results, as it lists only the minimum p-value found. Now, we
examine more closely the results deemed satisfactory. All results
are provided as p-values from the Mann–Whitney test on Renyi
entropy calculated with negative exponents of α (in brackets) and
significant results highlighted in yellow.

Table 2 shows the individual results using method 1. Only one
test produced a p-value lower than 0.05, and that was using an
exponent of −1, for discrimination between Normal and Early.
The fact that method 1 did not distinguish between Normal and
Definite casts doubt on this result, as it should be easier to detect
a difference between control and definite CAN than a difference
between control and early CAN. However, this may be a func-
tion of the smaller sample size for the definite CAN group or the
shorter interval length. For all values of exponent, the correlation
with the SD is small, suggesting that these Renyi measures contain
additional information, with only 14.5% of the variability in the
Renyi entropy explained by the SD.

The density measures provided better results in that they were
able to differentiate between all three clinical groups and added
additional information in terms of the differences of the biosig-
nals between the three groups (Normal, early CAN, and definite
CAN).

Using method 6 (sequences of length 2), only one test was sig-
nificant, differentiating between Definite CAN and Normal with
H (−1) (Table 3). Also, differentiation between Normal and Early
CAN nearly reached significance (p= 0.0536). The result further
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Table 3 | Results of Mann–Whitney tests for Renyi entropy calculated

with negative exponents and using method 6.

Test H (−5) H (−4) H (−3) H (−2) H (−1)

Normal vs. early 0.950 0.945 0.826 0.559 0.0536

Early vs. definite 0.968 0.9148 0.872 0.726 0.230

Definite vs. normal 0.906 0.972 0.877 0.553 0.0136

Pearson r2 0.000458 0.00170 0.00566 0.0241 0.234

Table 4 | Results of Mann–Whitney tests for Renyi entropy calculated

with negative exponents and using method 7.

Test H (−5) H (−4) H (−3) H (−2) H (−1)

Normal vs. early 0.528 0.497 0.417 0.286 0.0314

Early vs. definite 0.319 0.306 0.269 0.201 0.1427

Definite vs. normal 0.0731 0.0694 0.0750 0.0591 0.00771

Pearson r2 0.0241 0.0294 0.0399 0.0690 0.260

Table 5 | Results of Mann–Whitney tests for Renyi entropy calculated

with negative exponents and using method 8.

Test H (−5) H (−4) H (−3) H (−2) H (−1)

Normal vs. early 0.104 0.101 0.0865 0.0566 0.00858

Early vs. definite 0.135 0.128 0.121 0.115 0.0908

Definite vs. normal 0.00657 0.00657 0.00548 0.00568 0.00278

Pearson r2 0.118 0.122 0.130 0.154 0.310

suggests that 23.4% of the variability in Renyi entropy H (−1) is
explained by the SD.

Table 4 shows the individual p-values from Renyi entropy cal-
culated with negative exponents and using method 7 (sequences
of length 4). Here, two tests produced a p-value lower than 0.05,
implying that the Renyi entropy with exponent−1 may be able to
discriminate these classes. The correlation between SD and Renyi
entropy for H (−1) suggests that 26% of the variability of the latter
is explained by the former.

The results for using method 8 (sequences of length 8) are
shown in Table 5. The longer sequence length and larger Gaussian
smoothing may have contributed to the entropies calculated with
the more negative α values to also differentiate between Normal
and Definite CAN. However, this was not the case for Normal ver-
sus early CAN. The contribution of the SD observed was found
to be 11.8% for H (−5) and increased to 31% for H (−1) with a
concomitant improvement in discriminatory power.

Method 9 (sequences of length 16) discriminated between Nor-
mal and Definite CAN as well as Normal versus Early CAN for all
values of the exponent (Table 6), and also between Early and Def-
inite CAN with H (−1). This suggests that increasing the sequence
length allows further measures to be extracted that could be used
in the discrimination of these disease subtypes. However, the cor-
relation values are higher than those observed for shorter lengths

Table 6 | Results of Mann–Whitney tests for Renyi entropy calculated

with negative exponents and using method 9.

Test H (−5) H (−4) H (−3) H (−2) H (−1)

Normal vs. early 0.00105 0.00103 0.000854 0.000517 0.000115

Early vs. definite 0.062965 0.059243 0.06108 0.05073 0.0356

Definite vs. normal 0.00119 0.00110 0.000928 0.000816 0.00037

Pearson r2 0.353 0.353 0.357 0.373 0.434

FIGURE 8 | An illustration of the trade-off between correlation and
separation for choosing sequence length λ when using the density
method of estimating probabilities for calculating Renyi entropy. The
figure relates to methods 5–9 as defined in the Section “Introduction.” The
vertical axis shows Pearson’s r 2 for correlation. For separation, the vertical
axis is scaled for convenience, so that 1.0 corresponds to a p-value of 0.1.

(λ) and smaller Gaussian kernel smoothing with 43% of the vari-
ance explained by the SD for discrimination between any of the
groups with H (−1).

Figure 8 illustrates the trade-off between separation and cor-
relation for the density method. The horizontal axis shows the
sequence length λ for methods 5–9 defined in the Section “Intro-
duction.” In this figure, the average p-value obtained from t -tests
is shown by dark gray bars and labeled as separation. The height of
the bars has been scaled by 10, to lie in the range 0–1. The selected
threshold of p= 0.05 therefore occurs at 0.5 on the vertical axis.
All choices of sequence length λ >1 yield p < 0.05. Correlation
is shown by the light gray bars, where the vertical scale indicates
Pearson r2. The diagram shows that as the sequence length λ that
is used to calculate probabilities increases, the ability to distinguish
between classes improves. However, at the same time, the correla-
tion between Renyi entropy and SD increases, suggesting that the
Renyi entropy provides a diminishing about of useful information
over and above that, which could be obtained from SD.

DISCUSSION
In this paper, we have shown that the Renyi exponent combined
with the sequence length λ and the dispersion of the Gaussian
function σ are important for classification paradigms such as
determination of CAN progression. The main focus is to point
out that any method for determining biosignal characteristics,
such as entropy, needs to be able to show additional informa-
tion about the biosignal, which is being analyzed. In the case of
entropy evaluation, the standard method depends on binning the
RR intervals into groups, and calculations are then based on the
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obtained histogram. Therefore, current entropy measures show a
strong correlation with the SD of the biosignal, and in actuality,
do not provide additional information.

Nine methods for calculating Renyi entropy were assessed in
two ways: by the ability of the resulting values to allow identifi-
cation of Definite CAN, Early CAN, or Normal, and whether the
resulting values added extra information to that afforded by the
SD. Results show that out of the histogram methods only the first
method, which applied a histogram of 30 bins using a global max-
imum and minimum based on the range of RR intervals obtained
from all participants, produced a positive assessment by these
criteria. However, this method was only able to differentiate Nor-
mal and Early CAN using Renyi entropy with exponent α=−1.
The positive Renyi coefficients associated with the remaining his-
togram methods were able to distinguish classes, but were also
highly correlated with the SD and add no additional information.

The variants of the density method (methods 6–9) provided
good separation between classes, but only for Renyi entropy cal-
culated using negative exponents. The results using the density
methods also improved as the sequence length was increased, but
this also led to an increasing correlation with the SD. Therefore,
an optimum sequence length that provides a compromise between
good separation for classes and low correlation with SD is neces-
sary. The current results suggest that for discriminating between
Normal and early CAN, an optimal sequence length would be
λ= 16 and a Gaussian kernel smoothing, σ= 0.16 with α being
set at −5. The most difficult pair of classes to separate was Early
CAN with Definite CAN. However, this is the problem likely to be
of least interest. It is far more likely that a diagnostic test would
rely on discrimination between Normal and Definite or between
Normal and Early CAN (Vinik et al., 2013).

In order to distinguish between Normal and Definite classes,
Table 5 represents a good compromise and corresponds to
sequence length λ= 8 and σ= 0.08. The same situation also pro-
vides a good compromise for distinguishing Normal from Early
CAN with p= 0.00858 and a correlation of only 0.310.

CONCLUSION
The main finding of this work is that when calculating the
Renyi entropy in order to provide variables that can discrimi-
nate between classes of CAN, the method chosen for estimation
of probabilities may result in variables that are strongly correlated
with the SD. As the latter is computationally easy to calculate, it
casts doubt on why a more complicated measure such as entropy
would be calculated, since it seems to provide little extra infor-
mation. However, this work shows that more advanced methods
of calculating probabilities can be applied, and that these yield
entropy measures that not only provide good discrimination, but
also contain information over and above that provided by the SD.
The application of a variety of sequence lengths in the calculation
of probabilities allows a trade-off between discrimination power
and independence from SD. Use of a density method, based on
sequences of RR intervals, produced Renyi measures that allowed
discrimination between definite CAN, normal controls, and even
early CAN. We found the best result for longer sequences of 8
or 16 beats. This suggests that a more sophisticated method for
estimation of probabilities is justified by its improved results, and

shows that Renyi entropy is suitable for use in discriminating CAN.
Furthermore, we show that the method chosen for probability
estimation is important and has a large effect on the outcome.
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