{frontiers im

BIOENGINEERING AND BIOTECHNOLOGY

METHODS ARTICLE
published: 28 November 2014
doi: 10.3389/fbioe.2014.00055

=

Hierarchical stochastic simulation algorithm for SBML
models of genetic circuits

Leandro H. Watanabe * and Chris J. Myers

Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, UT, USA

Edited by:
llias Tagkopoulos, University of
California Davis, USA

Reviewed by:

Mario Andrea Marchisio, Harbin
Institute of Technology, China
Dimitris Papamichail, The College of
New Jersey, USA

Linh V. Huynh, University of California
Davis, USA

*Correspondence:

Leandro H. Watanabe, Department of
Electrical and Computer Engineering,
The University of Utah, 50 S. Central

This paper describes a hierarchical stochastic simulation algorithm, which has been imple-
mented within iBioSim, a tool used to model, analyze, and visualize genetic circuits.
Many biological analysis tools flatten out hierarchy before simulation, but there are many
disadvantages associated with this approach. First, the memory required to represent the
model can quickly expand in the process. Second, the flattening process is computationally
expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining
the hierarchy of the model is inefficient since models must grow dynamically over time.
This paper discusses a new approach to handle hierarchy on the fly to make the tool faster
and more memory-efficient. This approach yields significant performance improvements
as compared to the former flat analysis method.

Keywords: hierarchical simulation, stochastic simulation, discrete-event simulation, SBML, genetic circuits,

Campus Drive, Room 3280, Salt Lake population modeling

City, UT 84112, USA
e-mail: |. watanabe@utah.edu

1. INTRODUCTION

Genetic engineering and other forms of biotechnology are having
a substantial impact on the world economy, and this trend is likely
to continue (Lucks and Arkin, 2011). Although genetic engineers
have had success on the development of some pharmaceuticals, the
field has encountered many challenges. One of the challenges is to
gain control over the cells one needs to accurately and efficiently
predict their behavior (Lucks and Arkin, 2011). This motivated the
creation of the synthetic biology field, which is a subset of bioengi-
neering developed by biologists and engineers. One of the goals of
the field is the systematic design of genetic circuits. Genetic circuits
are used to regulate gene expression at many molecular levels and
can potentially be used to consume toxic spills and waste (Brazil
etal., 1995; Cases and de Lorenzo, 2005), destroy tumors (Ander-
son etal., 2006; Ruder et al., 2011), and produce drugs or bio-fuels
more efficiently (Ro et al., 2006; Savage et al., 2008).

Since electronic design automation (EDA) software tools have
had success in the electrical engineering field in the construc-
tion of complex circuits, the synthetic biology field has introduced
the development of genetic design automation (GDA) tools (Myers
etal.,2009). iBioSim,being developed at the University of Utah,
isone example of such atool (Madsen etal.,2012a). The iBioSim
tool can be used to model, analyze, and visualize genetic circuits.
Models in iBioSim are represented using the systems biology
markup language (SBML), which is a standard representation for-
mat for chemical reaction network models in systems biology
(Hucka et al., 2003).

iBioSim has had positive results with static models (Kuwa-
hara et al., 2010; Nguyen et al.,, 2010; Madsen et al., 2012a).
However, many biological models are complex and rely on the
communication and cooperation of cells. Recently, 1BioSim has
been extended to support such dynamic modeling of bacterial
populations (Stevens and Myers, 2012). However, improvements

in simulation performance are needed. Currently, the bottle-
neck in the analysis of population models in iBioSim is the
routine that flattens out the hierarchical constructs. This rou-
tine is very expensive and causes the memory requirements of
the model to grow quickly. This fact motivated the develop-
ment of the hierarchical stochastic simulation algorithm (hSSA)
described in this paper. This method handles hierarchy at runtime
rather than compiling the hierarchical model into a flat model
before simulation. An earlier version of the hSSA that supported
only chemical species and reactions appeared in (Watanabe and
Myers, 2014). This paper extends the hSSA to support all ele-
ments of SBML Level 3 Version 1, including rules, events, and
constraints.

2. GENETIC CIRCUIT MODELS

All organisms are made up of cells. Some organisms are com-
posed of a single cell (e.g., bacteria) and some are composed
of many cells (e.g., humans). Within each cell, a deoxyribonu-
cleic acid (DNA) molecule includes coding sequences (known as
genes) that provide instructions on how to construct proteins. Pro-
teins are macromolecules made from chains of amino acids that
serve many important functions in all organisms. Protein synthesis
begins with a process known as transcription in which an enzyme
called RNA polymerase (RNAP) binds to a specific sequence in the
DNA called a promoter. RNAP walks the DNA to produce a single-
stranded messenger RNA (mRNA). The resulting mRNA sequence
is converted into a sequence of amino acids by a ribosome using a
process known as translation. This amino acid sequence then folds
into a protein. The rate of this protein synthesis process can be
regulated through the binding of proteins known as transcription
factors to regions on the DNA called operator sites. That is,
transcription factors can facilitate or block the binding of RNAP
to certain promoters. The interaction of all these elements can be

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 1


http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00055/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00055/abstract
http://www.frontiersin.org/people/u/184128
http://www.frontiersin.org/people/u/117623
mailto:l.watanabe@utah.edu
http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

used to create networks that control the rate of transcription of the
genes. These regulatory networks are known as genetic circuits.
One well-known genetic circuit is the repressilator, which was
constructed in Escherichia coli (E. coli) (Elowitz and Leibler, 2000).
In the repressilator, there are three proteins produced from three
promoters in which each protein acts as a transcription factor for
one promoter creating a loop that forms an oscillator. Namely, the
first protein, Lacl, inhibits the transcription of the production of
the second, TetR, which inhibits the production of the third pro-
tein, CI, which inhibits the production of Lacl. Figure 1 depicts a
graphical model of this genetic circuit in iBioSim in which the
vertices are proteins, the edges represent repression relationships,
and the edge labels are the promoter names. Note that a fourth
protein, green fluorescent protein (GFP), is included in this genetic
circuit to be produced at the same time as CI. The purpose of this

TetR )
internal ’

P2~ TR2_
Cl ) I GFP
internal ’ PL . internal |
TSRg cell

l Lacl ’
\ internal )

FIGURE 1 | Repressilator circuit modeled in iBioSim.

protein is to make the cells glow green when CI is high, allowing
an observer to see the oscillation.

3. CHEMICAL REACTION MODELS

In order to simulate the repressilator, the model must be converted
into a set of chemical reactions (Myers, 2009). Chemical reactions
combine species (DNA, RNA, protein molecules, etc.) to form new
species. The species and chemical reactions for the repressilator
circuit in Figure 1 are shown in Figure 2. Note that reactions
can be shown explicitly as circles or implicitly as labels on edges
between species. Also note that edges from species to reactions
indicate that a species is a reactant (i.e., consumed by the reac-
tion), edges from reactions to species indicate that a species is a
product (i.e., produced by the reaction), and edges with no direc-
tion indicate that the species is a modifier (i.e., is neither produced
or consumed). Finally, bi-directional edges indicate that a reaction
is reversible, meaning that it can run in either direction. The num-
ber of molecules produced or consumed by a reaction is known as
its stoichiometry. The edge is labeled with the stoichiometry when
it is not one.

Some chemical reactions from the model are below:

PO + RNAP <ﬁ> PO_RNAP (transcription initiation) (1)

ko .
PO_RNAP — PO_RNAP + 10 - LacI (production) (2)

P1+ 2 - Lacl &) P1_LacI_bound (repression) (3)
k
Lacl - () (degradation) (4)

R PO RNAP

( “PO_RNAP |

| internal |
. P1 ) Pl ;AD

L internal | = = |

P1_RNAP
internal

PO h
internal

14.0

R_repression_binding_P1_Lacl
Lacl
! internal ’

R_repression |binding_P0_CI

R_repression_pfnding_P1| Lacl

Degr%tio. _Lacl

IZJ

( PI_LCacl_bou:".
internal
— [ PO_CI_bound )
| internal |

FIGURE 2 | Repressilator modeled as chemical reactions.

RNAP ’ | internal ’
-l internal " <

[ TetR
internal

internal

internal

Degr@n_Cl

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 2


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

[}
—n

amount
w

0 100 200 300 400

FIGURE 3 | Repressilator ODE simulation results.

500 600 700 800 900 1,00
time

Note that parameters such as ko and k; are known as rate con-
stants, and they indicate the speed or likelihood of the reaction.
Parameters such as K, and K, are known as equilibrium constants,
and they are ratios of the forward and reverse rate constants (i.e.,
K= kgl k).

4. ODE SIMULATION
A chemical reaction model can be converted into a set of ordinary
differential equations (ODEs) using the law of mass action. This
law states that the rate of a reaction is its rate constant times the
concentration of the reactants raised to the power of their stoi-
chiometry. More formally, consider a model with n species {S;,
.» S} and m reactions {Ry, ..., Ry} where each reaction, Rj, is
of the form:

ke

VSt 4+ VS kz VS VS

where vi;- is the reactant stoichiometry for species S; in reaction

R;j and vg- is its product stoichiometry. Therefore, the law of mass
action states that the rate equation, V;, for reaction R; is:

n n
r P
Vi=k []15:17 — k [ ] 1511"
i=1 i=1

where [S;] is the concentration of species S;. The rate equations
for all reactions that produce or consume a species, S;, can be
combined to form an ODE describing the time evolution of the
concentration of that species as follows:

dSi] <« .
it :j_zlvijVj, 1<i<n

where vj; = vf])- — 1/5- (i.e., the net change in species S; due to

reaction R;). As an example, the ODE for Lacl is as follows:

% = 10k, [PO_RNAP] — k; [LacI] — 2 (ks [P1] [Lacl]?

— ky+ [P1_LacI_bound])

Ordinary differential equation simulation results for the repres-
silator are shown in Figure 3. It is clear from these results that
ODE simulation of this model is not an accurate representation
of the repressilator circuit, since the circuit stabilizes rather than
oscillates. ODE simulation is deterministic, meaning that multi-
ple simulations starting from the same initial condition always
produce the same result. Moreover, ODE methods assume a large
count of the entities being analyzed. In electrical engineering, ODE
methods are reasonable for simulating electronic circuits, since the
number of electrons flowing through the wires is very large. How-
ever, ODE methods can be inaccurate for certain genetic circuits,
such as the repressilator circuit, because the numbers of molecules
of each species in a genetic circuit are typically small discrete values
(Kaern et al., 2005). In addition, since the number of molecules
is typically quite small, the system can have large intrinsic noise
making ODE methods less accurate. While there do exist ODE
models that produce oscillations, our ODE model, which is directly
derived from the chemical reaction network for this genetic circuit
does not reproduce the expected oscillatory behavior. The origi-
nal ODE model in (Elowitz and Leibler, 2000) has little physical
connection to the biological behavior of the repressilator.

5. STOCHASTIC SIMULATION

A better method for reasoning about genetic circuits is to utilize
Gillespie’s stochastic simulation algorithm (SSA) (Gillespie, 1977).
There are several variants of the SSA. This paper uses the direct
method, which is shown in Algorithm 1. The SSA takes a chemical
reaction network model, M, and computes a time series simulation

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

o. The SSA is essentially a Monte Carlo algorithm, which treats
each reaction as a random event. The simulation begins by initial-
izing o to an empty sequence, computes the initial time and state,
(t,x), from the model, M, and appends this time point to a. The
state of the network is x = (xj,...,x,) where x; is the current
amount of species S;. The next step computes the reaction propen-
sities,a = (ay, . . ., ap), where a; is the propensity for reaction, R;,
and can be approximated using the rate equation as follows:

n

v

g =Mk
i=0

where kj is the rate constant for reaction R; and vig. is the number
of reactant molecules of species S; consumed by the reaction. For
example, the propensity for the forward reaction for transcription
initiation on promoter PO is approximately:

ks - PO - RNAP

The total propensity, ag, is the sum of all propensities. The
total propensity is used to the time until the next reaction using

Algorithm 1: Gillespie's SSA.

1 Input: Chemical reaction network model, M
2 Output: Time series simulation, «;

3 a:=();

4 (t,x) := initialize(M);

s while ¢t < timeLimit do

6 a:=a-(t,x);

7 (a, ap) := computePropensities(M, x);
8 7:= computeNextReactionTime(ap);

9 u := selectNextReaction(a, ap);

10 (t,x) == (t+ 7, x+Vu);

the following equation:

1 1
T=—1In—.
ao n

where r1 is a random number drawn from a uniform distribution
from [0, 1]. Next, the propensities are used to compute the next
reaction, L, as follows:

n
p = smallest integer s.t. Z aj > rdg
j=1

where 1 is a random number drawn from a uniform distribution
from [0, 1]. Finally, the time and the state are updated as shown in
Algorithm 1, where v, is a vector representing the change in state
due to reaction R,. This process repeats until the time, t, exceeds
the simulation time limit. Using the SSA method, the repressilator
model indeed oscillates as shown in Figure 4.

6. CELLULAR POPULATION MODELS

Genetic circuits have been constructed for many applications,
such as genetic timers, oscillators, and logic gates, among others
(Lucks and Arkin, 2011). These applications can be developed in
single-celled organisms. However, there are applications in which
population modeling is a necessity, such as biomedical applications
(Ruder et al., 2011). For example, genetic circuits can potentially
be used for the treatment of infectious diseases and cancer, vaccine
development, and gene therapy.

Stevens and Myers (2012) describe a method to model, ana-
lyze, and visualize dynamic populations of cells. Population-based
models within 1BioSim are represented in a two-dimensional
grid as shown in Figure 5. Each grid location is distinct and
each location can include a single cell. As shown in Figure 6,
diffusible species within a cell can move through membranes
and between neighboring grid locations. The simulator described

100
90
80
70
60
50

amount

1,000

2,000 3,000 4,000

FIGURE 4 | Repressilator SSA simulation results.

5,000
time

6,000 7,000 8,000 9,000 10,0C

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 4


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

ca || [ «c2 ( ( ca )| [ o5
represcCirc represCirc represcCirc represcCirc represcCirc
ce || [ c7 ( co || [ cuo
represcCirc represcCirc represcCirc represCirc represcCirc
c1i1 | c12 c13 | ci4 | c15
represcCirc represCirc represcCirc represCirc represCirc
16 c17 [ ci8 | c19 [ c20
represcCirc represcCirc represcCirc represcCirc represCirc
c21 c22 ( c23 cza | | [ ca2s
represcCirc represcCirc represcCirc represcCirc represcCirc

FIGURE 5 | Cellular population modeling in iBioSim.

(e =
cell ﬁ cell
c3 i ca
cell L i d cell

. J J

FIGURE 6 | Diffusion in an iBioSim grid model (courtesy of Stevens
and Myers, 2012).

in Stevens and Myers (2012) also supports dynamic events such
as cell movement, division, and death. When a cell moves, the cell
changes grid location. When a cell divides, a copy of the cell divid-
ing is created. When a cell dies, the cell is removed from the model.
Simulations can be visualized in 1BioSim by coupling color gra-
dients to species. The higher the concentration (or amount) of a
species, the brighter the color. When visualizing the repressilator
circuit, it is possible to see every cell periodically turning on and
off over time as shown in Figure 7. While two dimensional grids
are not as realistic as three dimensional models in biology, two
dimensional grids are a useful simplification.

The hierarchy in grid models is represented using SBML’s hier-
archical model composition package. This package allows the
expression of hierarchy in SBML by allowing a top-level model
to be constructed from a collection of sub-models. This pack-
age also enables the customization and connection of sub-models

using replacements and deletions. A replacement can be used to
state that an element in the top-level model replaces an element in
a sub-model. A replacement can, for example, be used to state that
a species in the top-level model is to replace a species in two sub-
models, which effectively connects the two sub-models through
this species. A deletion can be used to remove part of a sub-model
that is not relavant to this use of the sub-model. A deletion, for
example, can be used to remove a reaction that is not needed for
this particular instantiation of a sub-model.

The hierarchical model composition package in SBML is better
illustrated using an example. Assume there is a chemical reaction
network as shown in Figure 8, where a molecule of A and B are
taken as the reactants of a certain reaction R1 to form a molecule
of C. In addition, a molecule of C is used to form a molecule of
D through reaction R2. In this model, species A and D are put
on a port, where the former is on an input port and the latter is
on an output port. This chemical reaction network can be used
to construct a hierarchical model as shown in Figure 9. In this
model, the top-level model contains two instances, C1 and C2,
of the chemical reaction network shown in Figure 8. In addition,
the top-level model has three species X, Y, and Z, where species X
replaces species A in instance C1, species Y is replaced by species
D in C1 and replaces species A in C2, and species Z is replaced by
species D in C2. Note that when a species in the top-level model
replaces or is replaced by a species in a sub-model, the two species
are effectively the same. Furthermore, reaction R2 in sub-model
instance C2 is deleted from the respective model.

7. HIERARCHICAL SIMULATION

Dealing with the hierarchy inherent in cellular population models
can be difficult because there are many dependencies that need to
be handled. Therefore, it is a common practice for many modeling
tools to flatten (inline) the hierarchy of a model before simulation.

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 5


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

c1 (27 G5
represCirc represCirc represCirc
G
represCirc

Cl4
represCirc

A4

( internal Cell

(ol )

FIGURE 8 | Simple chemical reaction network.

In other words, a typical simulator would instantiate copies of
each sub-model and perform replacements and deletions during
this flattening process resulting in a potentially much larger model
that no longer includes any hierarchical modeling constructs. This

example

E22 C24 (er )
represCirc represCirc represCirc
FIGURE 7 | Cellular population visualization in iBioSim.
A B X
input internal internal
Porg A

Port A
Y

example

(

Z
internal

J

FIGURE 9 | Hierarchical model example.

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 6


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Table 1 | Comparison of flattening to simulation runtime.

Grid size Flattening (s) Simulation (s)
2x2 1.101 0.488
4x4 9.482 2.458
6x6 40.065 8.408
8x8 119.619 24.272
10 x 10 285.714 62.709

approach has several disadvantages. First, the flattening routine
causes the size of the model representation to grow quickly, con-
suming a lot of computational resources. Second, the flattening
process itself can be very time consuming. Using the simulator
described in Stevens and Myers (2012), the time that iBioSim
takes to flatten out a grid model composed of various numbers of
repressilator components is shown in Table 1. According to this
table, the time it takes to flatten out the hierarchy of a model can
actually be larger than the time required to simulate the top-level
model.

This fact motivated the development of the hierarchical sim-
ulation method explained in Section 7.1. Section 7.2 illustrates
the hierarchical method through an example. Section 7.3 presents
extensions to the hSSA to support additional SBML constructs,
such as, rules, events, and constraints.

7.1. hSSA OVERVIEW

Our hierarchical simulator avoids the cost of flattening while pre-
serving identical simulation results through several steps. First,
in the preamble stage, the simulator locates the sub-models, {M,
.. .» My}, used by the top-level model, Mo. The simulator, however,
only stores in memory one copy of each unique type of sub-model.
The state of the simulator is now a vector of state vectors (i.e.,
x = (x%,...,x?) where x' is the state corresponding to model M;).
Currently, the simulator only supports two-levels of hierarchy, so
sub-models, which have sub-models are still flattened.

The SSA is modified as shown in Algorithm 2 to support hier-
archical simulation. Structurally, the algorithms are similar. The
main difference is the introduction of v to indicate the model for
the reaction to be executed. Since there is only one copy of each
unique sub-model stored in memory, the key challenge is that
replacements and deletions must be performed on the fly during
simulation making each step a bit more involved.

In the description of the algorithm below, the notation
replaces(Sf, S}) is used to indicate that species Slk in model M}

replaces species S]! in model M), and the notation delete(R]k)

indicates that reaction R¥ is to be deleted from model M;.

In the hSSA, replacements must be considered when determin-
ing the initial state, which is accomplished with Algorithm 3. First,
the initial state vector is set to the initial value defined within each
model. Next, each state in the top model, x? must be updated to
take the value, xjk, of the initial state of a species S}‘ when that

species is specified to replace the top-level species S?. Finally, the
algorithm updates any species in a sub-model, which is replaced by
a species at the top-level. These steps are necessary to ensure that
the states of species involved in replacements coincide initially.

Algorithm 2: Hierarchical SSA.

1 Input: Hierarchical reaction model, M = (Mp, . ..
2 Output: Time series simulation, a;

a = ();

(t,x) := initialize(M);

while ¢t < timeLimit do

a=a-(t,x);

(a, ag) := computePropensities(M, x) ;

7 := computeNextReactionTime(ap);

(v, p) := selectNextReaction(a, ap);

10 ({t,x) = ({Et+7,x+ Vu);

1 performReplacements(M, x, reactants(R;;) U
products(Ry)));

] Mp>s

D= R B 7 I S )

Algorithm 3: initialize(M).

1 xX:= <m8,....,xp>;

2 for k ::1t0p30

3 | fori:=1ton’do

4 for j := 1 to n* do

5 if replaces( SJ]-“, SY) then
6 | 2y = xf,

7 for k :=1to pdo

s | fori:=1ton’do

9 for j := 1 to n* do

10 if replaces( SZQ, S jk ) then
1 | xf = s

-
(5]

return (tg, X);

Algorithm 4: computePropensities(M, x).

ag = 0;
for [ :=0topdo
for j := 0 to m' do
if delete(RY) then
l._
‘ a; = 0
else
L rl
| ah = KT ()™
ag = ag + aé-
9 return (a, ag);

A 1 AW N =

2

Deletions are considered when evaluating reaction propensi-
ties. Namely, in Algorithm 4, the propensity of a deleted reaction
is set to zero, so it does not participate in the simulation. The total
propensity calculated, ay, is the sum of the propensities for all the
non-deleted reactions in all models.

Computing the next reaction time is the same as for the orig-
inal SSA, but the computation of the next reaction is modified as
shown in Algorithm 5. Namely, the sum must be over all reactions
in all models, and return both the model, M,, and the reaction,
R;\i’ in this model to execute.

Finally, the current time is advanced to the next time step and
the state of the model M, is updated as a result of the reaction
R}, . The state of reactant and product species for this reaction that

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Algorithm 5: selectNextReaction(a, ap).

1 a:=0,rp =uniform(0,1);
2 for k:=0topdo

3 for j := 0 to m” do
4 a:=a+ a?;
5 if a > ro - ag then
6 | return (k, j);
7 return (p, mP);

Algorithm 6: performReplacements(M, x, Y).

1 for y{ € Y do

2 if v # 0 then

3 for i := 1 to n’ do

4 if replaces( y?, ys) V replaces(ys, y? ) then
0._ ,v.

5 yz T y§ s

6

7

8

9

x := performReplacements(M, x, {yV});
else
for k :=1topdo

for i := 1 to n* do

10 if replaces( yg, yf ) V replaces( yf, yg ) then
n | v =g

12 return x;

are involved in replacements must be updated in order to ensure
that the values of these species continue to coincide throughout
simulation. Namely, Algorithm 6 is passed a set of species, which
have been updated. For each of these species, ygk , if this species is
not from the top-level model (i.e., i # 0), then it must check if this
species is involved in a replacement with a top-level species, y?. If it
is, this top-level species must be updated, and this algorithm must
be called recursively to perform replacements on y?. Otherwise,
if this is a top-level species (i.e., . =0), then it must check if it is
involved in a replacement for any species at a lower-level. If it is,
then this species must be updated to take this value.

1.2. EXAMPLE

To better illustrate how the algorithm works, the hierarchical
model described in Section 6 is used as an example. In hSSA, the
input is a collection of models where M represents the top-level
model, and there are p sub-models. In this particular case, there are
two sub-models where M represents instance C1 and M, repre-
sents instance C2. The output is a times series simulation o, which
is set to be initially empty. The first step in the initialization process
is to set initial time to be equal to zero and the state vector x to
contain the initial amount of each species in each model as shown
in row Initial in Table 2. Note that the state vectors in C1 and C2
are equal since they refer to the same model definition. Once the
state vectors are populated with the initial amount of each species,
the simulator handles replacements. First, the simulator handles
the case where a species in a sub-model replaces a species in the
top-level model. Once this step is completed, the simulator is going
to handle the case where a top-level species replaces species in sub-
models. In the example, the value of species X perculates down to
species A in instance C1. The same holds for the case where species

Table 2 | The initial value of the state vector of the top-level model
under top and the initial value of the state vector of the models C1
and C2 given in Figure 8, and how replacements affect the state
vector of each model.

Top C1 C2

Initial 0 5 10 10 0 10 10 0 O O 1 1M 0 O
Before 0 5 10 10 0 10 10 0 0 0 10 10
After 0o 5 0 0 0O 5 10 0 0 0O 0 1M 0 O

In this particular model, speciesY in the top-level model is replaced by species D
in C1 and the value of Y is updated accordingly. Similarly, species Z in the top-level
model is replaced by species D in C2. In addition, species X is replacing species
Ain C1 and species Y is replacing A in C2.

Table 3 | Propensity for each reaction and the total propensity, which
is the sum of all reaction propensities.

Reaction propensities

C1 Cc2 Total
a az a az ao
5 0 0 0 5

Table 4 | The next reaction time is computed and the next reaction
time is selected, which is a random variable drawn from an
exponential distribution where the mean is the inverse of the total

propensity.
T v 18
0.1 C1 R1

The next reaction to fire is selected based on the reaction propensities. That is,
the next reaction is random with probability proportional to the contribution of
this reaction’s propensity to the total propensity.

Y replaces A in sub-model C2. Table 2 shows the final values once
all replacements are handled.

After initialization is done, the simulator enters the loop. First,
the simulator records the current state of the simulation. Then, the
propensities for each reaction are calculated along with the total
propensity as shown in Table 3. The next reaction and the next
reaction time are computed afterward. From Table 3, it is possible
to notice that the only possible reaction to be selected is reaction
R1 in C1 given that it is the only reaction that has a propensity
greater than zero. Table 4 shows the computed time for the next
reaction to occur, as well as, the next reaction to be fired. The last
step is to update the state of the simulation. Time is advanced to
the next time step and the state vector x is updated based on the
stoichiometry of the species involved in the selected reaction as
shown in Table 5.

These steps are repeated until the current time exceeds the time
limit. Assuming the current time is still lower than the time limit,

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 8


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Table 5 | Amount for all species in the hierarchical model after the first
iteration.

Top C1 Cc2

t XY Z ¢t A B C D t A B C D

0 5 0 O 0 5 10 0 O 0 0 10 0 0
0.1 5 0 01 4 9 1 0 01
01 4 0 O 01 4 9 1 0 01 O 10 0 O

o
o
S
o
o

Reaction R1 is selected, where a molecule of A and a molecule of B are con-
sumed for the production of a molecule of C. Since species A in C1 is involved in
a replacement, the new value of A needs to be percolated up to X in the top-level
model. Now, the value of X is 4.

Table 6 | Propensity for each reaction for the second iteration, as well
as, the total propensity.

Propensities

C1 c2 Total
a az a az aop
3.6 1 0 0 4.6

Note that reaction R2 in sub-model C1 can be fired now, since a molecule of C
is produced in the last iteration.

Table 7 | Amount for all species in the hierarchical model after the
second iteration.

Top C1 C2

0 5 0 O 0 5 10 0 O 0 0 11 0 ©0
01 4 O 01 4 9 1 0 01 O 10 0 O
03 4 1 0 03 4 9 0o 1 03 1 07 0 O

o

The total amount of C is 0 and the amount of D is 1 in sub-model C1. The state
update for species D is effectively affecting the state of Y in the top-level model,
and consequently, species A in C2 since Y replaces A. In the update function, the
value of D in C1 is percolated up to speciesY in the top-level model and the value
of Y is percolated down to species A in C2.

another iteration is performed. First, the current state of the sim-
ulation is recorded. Then, the propensities are computed as shown
in Table 6. The next step is to compute the next reaction time,
which, in this case, is 0.2. The next reaction selected is R2 in
sub-model C1. Once the next reaction is selected, the state of
the simulation is updated. Time is advanced to the next time step
and the state vector x is updated after firing reaction R2 in C1.
Table 7 shows the state after firing reaction R2 in C1 and handling
replacements in the second iteration.

After recording the state of the simulation, the propensities are
calculated as shown in Table 8. Up until this point, C2 is unable
to fire any reaction. However, species A in C2 has a molecule now,
which enables reaction R1 to fire. The next reaction time that is
drawn from an exponential distribution with mean 1/ag is 0.2.

Table 8 | Propensity for each reaction and the total propensity for the
third iteration.

Propensities

c1 c2 Total
al az al az ao
3.6 0 1 0 4.6

Table 9 | Amount for all species in the hierarchical model after the
third iteration.

Top C1 Cc2

0 5 0 O 0 5 10 0 O 0 0 10 0 0
01 4 0 O 01 4 9 1 0o 01 O 10 0 O
03 4 1 0 03 4 9 o 1 03 1 0 0 0
05 4 0 0 05 4 9 0 0 05 O 9 1 0

In this iteration, reaction R1 in C2 is selected and, in this reaction, a molecule of
both species A and B is consumed for the production of a molecule of C. Since
the amount of A is changed, the value of species Y in the top-level model and
species D in C1 must be updated accordingly.

Table 10 | Propensity for each reaction and total propensity for the
fourth iteration that illustrates deletion in hierarchical models.

Propensities

C1 c2 Total
a az a az aop
3.6 0 0 0 3.6

When a reaction is deleted from the model, the propensity is always zero.

The next reaction selected in this iteration is reaction R1 in C2.
Once again, the state of the simulation is updated by advancing
time to the next time step and the reaction is fired. The new state
is shown in Table 9.

Something interesting happens in the fourth iteration. After
recording the state of the simulation, the propensities are calcu-
lated. Even though reaction R2 in C2 could, in theory, be fired
since this reaction requires only a molecule of C, the propen-
sity is zero as shown in Table 10. This is because the reaction is
deleted, causing the reaction propensity to be always zero. That
is, this reaction can never be fired. One final note, although in
this example duplicate copies of local and top-level variables con-
nected through replacements are shown, as a further memory
saving optimization, our implementation only keeps one copy of
these variables.

1.3. EXTENSIONS TO hSSA TO SUPPORT SBML

While the algorithm presented in Section 7.1 is limited to SBML
models composed of only species and reactions, the actual imple-
mentation of our hierarchical simulator supports nearly all SBML

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 9


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Algorithm 7: Extended Hierarchical SSA.

Algorithm 8: performAssignmentRules(M, x).

1 Input: Hierarchical reaction model, M = (Mo, ..., Mp);

2 Output: Time series simulation, «;

3 a:=();

4 (t,x) := initialize(M);

s (Ey, Ep) := initializeEvents(M);

6 while ¢t < timeLimit A checkConstraints(M, x) do

7 a = a-(t,x);

8 (a, ap) := computePropensities(M, x);

9 7 := computeNextReactionTime(ag);

10 tpi=1+17;

1 (tg, Ey, Er) := handleEvents(M, t, x, Eyy, E7);

12 iftp < tp then

13 (v, ) := selectNextReaction(a, ag);

14 (t,x) == (tr, X + V,);

15 x := performReplacements(M, x, reactants(R};)
U products(RZ));

16 x := performAssignmentRules(M, x);

17 else

18 | (t,x,Ey, Er) = fireEvents(M, tg, X, Ey, E7);

Level 3 Version 1 core constructs, such as assignment rules,
events, and constraints. The modifications necessary to support
these are similar to those for reactions. Namely, deleted elements
are dropped from sub-models, math expressions are computed
on local states, and care must be taken to ensure that top-
level model and local sub-model states for variables involved in
replacements must always coincide throughout simulation. Algo-
rithm 7 shows how these features can be incorporated into hSSA,
and the rest of this section describes the modifications in more
detail.

In core SBML, there are five types of objects that can take a
value: compartments, species, parameters, species references, and
reactions. Algorithm 7 extends the state vector, x, to take values
of all of these types. Elements can have an initial assignment or be
involved in an assignment rule that changes the value at the start-
ing point of simulation. Thus, Algorithm 3 takes into account
whether a variable’s value is determined by one of these. If so, the
math is evaluated and the initial value of the object is updated
accordingly. Additional SBML constructs that are not described
are fast reactions, delay functions, algebraic rules, and rate rules.

The extended hSSA supports assignment rules, where a vari-
able’s value is associated with a math function. The algorithm for
performing assignment rules is shown in Algorithm 8. This algo-
rithm goes through each assignment rule, AR, in each model. In
this function, if the assignment rule AR in the model i for object
j exists, and the assignment rule is not deleted, then the math
associated with the rule is evaluated and the state vector x gets
updated. Since the variable associated with the rule can partic-
ipate in a replacement, replacements for this particular variable
must be performed. Since assignment rules can affect the math of
other rules, they need to be evaluated until there is no change in
the evaluations.

Another extension to the hSSA algorithm is the support for
constraints, which are terminating conditions to the simulation.

1 repeat

2 x' =x;

3 for i := 0topdo

4 for j :=0ton' do

5 if (exists(ARS) A= delete(ARé»)) then

6 X = performAssignmentRule(AR;7 X);

7 x := performReplacements(}/, x,
{variable(ARz-)});

s until x = x’;
9 return x;

Algorithm 9: checkConstraints(M, x).

1 fori:=0topdo

2 | forj:=0toc do

3 if ﬂdelete(cjl:) then
4 if ~C’(x) then

5 | return false;
6 return t{rue;

Algorithm 10: initializeEvents(M).

1 By =0

2 Er =0

3fori:=0topdo

4 for j:=0toe'do A
5 if - delete(E}) N (- trigger(E})

V- trigger[nitial(E]i-))) then

Ey == Ey U{(i,5)};
7 return (Ey, Ep);

In each model, there are ¢ constraints in a set of constraints, C.
Simulation ends if any constraint in C evaluates to false. At the
beginning of each iteration, hSSA evaluates all of the constraints
in each model that are not deleted using the function illustrated
in Algorithm 9.

SBML models include a powerful discrete-event formalism,
which adds much of the complexity to Algorithm 7. To sup-
port events, Algorithm 10, Algorithm 11, and Algorithm 12 are
added. Two sets are introduced in these algorithms: Eyy and ET.
The untriggered events are stored in the set Eyy and the triggered
events are stored in the set Er. These sets are initialized using
Algorithm 10. Each model i has ¢ events, E!. Each event is ana-
lyzed during the initialization process. If an event is deleted, the
event is not evaluated since deletion on events prevents them from
ever being fired. However, non-deleted events require their initial
condition or trigger condition to be evaluated, where the initial
condition of a certain event E ]’ is evaluated using triggerlnitial(Eji)

and the trigger condition is evaluated using trigger(E]?). All events

that are initially false or the trigger condition is evaluated to false
are inserted into Ey.

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 10


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Algorithm 11: handleEvents(M, t,x, Ey, Er).

1t = o0;

2 for i :=0topdo

3 | forj:=0toe'do

4 if delete(EY) then

5 | continue;

6 if {(i,7)} N Ey # 0 then

7 if trigger( E]‘ ) then

8 tp := t+ delay(E});

9 if tp < tp then

10 ‘ tp =1p;

1 Er = ETU{@F?Z'?]'?X)};

12 Ey = Ey — {{i.5)}:

13 else

14 if (— trigger( E; ) A persistent( E; )) then
15 Er :=removeEvent(Er, 1, j);

16 Ey = Ey U{{i,5) };

17 else

18 tp = getNextEventTime(Er, i, 7) ;
19 iftF <tg then

20 | tg=tF;

21 return (tg, Ey, E7);

Algorithm 12: fireEvents(M, x, tg, Ey, Er).

t:=1tg;

repeat

F = getEvents(ET, t);

(tg, v, p,x"):= getHighestPriority(M, F);

for j :=0ton” do

if (exists(EA(v, i1, j))) then

x := performEventAssignment(M, v, p, j,x);
x := performReplacements(}M, x, {z} });
x := performAssignmentRules(M, x);

(tg, Ey, ET) := handleEvents(M, ¢, x, Ey, Er);

1 until £ # (;

2 return (t,x, By, Ep);

o R N N R W N -

e
<

After initializing the model and the event sets, the hSSA needs
to handle events using Algorithm 11. The algorithm keeps track
of tg, the time of the next event scheduled to fire. Algorithm 11
loops through each event, if event (E]?) is deleted, then the algo-
rithm does nothing. Otherwise, the algorithm checks if the event
becomes enabled and ready to fire. An event is scheduled to fire
when its trigger condition is evaluated to true and the trigger con-
dition previously evaluated to false. Thus, the function checks if
event (E ]?) exists in Ey, since the set contains events that previously

evaluated to false. If event (E J’ ) is in Ey, then the trigger condition
is evaluated. If the event is triggered, then the time tp in which
the event is going to be fired is calculated, where fF is the current
time, t, plus the delay associated with the particular event, where
the delay is evaluated using delay(Eji). If this event is scheduled to
take place before the earliest event previously scheduled, then the
next event time tg is updated and set to be equal to tg. The event is
added to the triggered events set ET along with the time the event

is supposed to fire and the current state of the simulation. The
state vector x is needed because events can use the values from
trigger time. The event must also be removed from Ey. On the
other hand, if the event (E!) is not in Ey, then the event needs
to be evaluated again and checked if the event is still allowed to
fire. That is, if the event trigger is evaluated to false and the event
is not persistent, given by persistent(E]?), then all instances of this
event in the set E are removed from the set and the event is added
to the set Ey. If the event is enabled, then the firing time of this
event is retrieved using getNextEventTime(Er, i, ). If this event
is scheduled to happen before the current scheduled event, then
the time of the next event gets updated to this event’s firing time
to reflect the fact that this event takes precedence over the other
evaluated events.

After handling the events, the algorithm needs to decide
whether the next action is to fire a reaction or an event. In order to
do so, the algorithm needs to keep track of two additional times:
tg and tg. The former indicates the time of the next reaction and
the latter indicates the time of the next event, and whichever is
scheduled to happen first takes precedence over the other. If there
is a reaction preceding the events, then the algorithm performs
the same way as in Algorithm 2 in Section 7.1. The only differ-
ence is that the extended hSSA supports assignment rules, where
a variable’s value is associated with a math function. After firing
the reaction, replacements must be performed, followed by assign-
ment rules that need to be evaluated due to the change in the state
of the variables caused by the reaction.

If, on the other hand, there is an event scheduled to take place
before the next reaction, all events preceding the next reaction are
fired using Algorithm 12. In this algorithm, the current time is
advanced to the next event time. Then, all events that are enabled
are retrieved using getEvents, which returns a set of all events that
are scheduled to fire at tg, and this set is assigned to set F, which is
a set local to the fireEvents function that keeps track of the events
that are ready to fire. The next event to fire is selected from F using
the function getHighestPriority, which selects event | in model v
based on the priorities of the events scheduled to fire. This function
also returns the state vector x’, which is the state of the simulation
when the event was triggered. For each object in model v, there is a
check if the selected event has an event assignment for object x}’. If
it does, then the math associated with the event assignment is eval-
uated and x gets updated accordingly. Since the variable involved
in the event assignment can be involved in a replacement, replace-
ments must be performed to maintain consistency of the objects.
Assignment rules are performed afterward, since the update in x
can cause a change in the assignment rules’ math function. After
all the assignments rules are performed, events need to be handled
again since an event assignment or assignment rule can trigger a
new event.

8. RESULTS

While the complexity of the algorithm from a theoretical stand-
point has not changed, the hSSA provides substantial improve-
ments in performance relative to flat simulation methods. The
hierarchical simulator performance is compared against the SSA
simulator in Stevens and Myers (2012). Tests are performed using
an Intel (R) Core (TM) i5 CPU 2.80 GHz and 4 GB RAM. The

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 11


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

first test consists of a top-level grid model that is populated with
repressilator sub-models without replacements or deletions. The
test is performed using 4, 16, 36, 64, and 100 sub-models, and
the total runtime results are shown in the left plot of Figure 10.
The increase in runtime for hierarchical simulation is clearly more
scalable than for flat simulation. The plot on the right in Figure 10
shows the results in simulation time using both approaches. It
is possible to observe that hSSA performed almost equally com-
pared to the simulation that flattens out the hierarchy and better
for a 10 x 10 grid model, since the hSSA deals with smaller data
structures.

A second test is performed using a top-level model populated
with repressilator circuits in which the degradation reaction of the
GFP reporter protein is deleted from all sub-models, and the GFP
protein is replaced by a top-level GFP protein that tracks the total
amount across all sub-models.

Performance tests are performed using 1, 4, 9, 15, 25, and 50
sub-models, and the total runtime results are shown in the left
plot of Figure 11. These results show that even with the added
complexity of replacements and deletions, the performance of the
hierarchical simulator still scales much better than an SSA simu-
lator that uses flattening. The plot on the right of Figure 11 shows
the run time results of only simulation using both approaches
for the test where the connection of sub-models are customized
using replacements and deletions. Note that these results are for
single runs. It is possible to observe that hSSA has some over-
head, which implies that, for a sufficient large time limit, the time
required to simulate SSA with flattening and hSSA will intersect,
and thus, the flattening algorithm is compensated over a long
run or multiple runs. However, for our application, we are inter-
ested in shorter individual runs for visualization of population
dynamics.

Performance Comparison Without Deletions and Replacements

200 T T T T T T T T T
—&— Flatten

180 —&— Hierarchical

160 +

140 1

Running Time (s)
= | o o [==]
T T T T

B
[=]
T

20+

1} 10 20 30 40 50 60 70 80 90 1
Number of Submodels

FIGURE 10 | Comparison of performance of SSA using flattening and our hierarchical approach. The plot on the left shows the total running time for both
approaches, and the plot on the right shows only the running time for both approaches without taking into consideration the time to flatten out the hierarchy.

Performance Comparison Without Deletions and Replacements
60 T T T T T T T T D
—&—Flatten
—+&— Hierarchical

&0

=
(=]

Running Time (s)
w
o

20

0 10 20 30 40 50 60 70 80 90 100
Number of Submodels

Performance Comparison Using Deletions and Replacements

T T T T T T T T T

m
[=]

—&— Flatten
—H8&— Hierarchical []

W oW B B
e - O O
T T T T

L L L

[N
o
T

Running Time (s)
n
(4]
L

| | 1 |
0 5 10 15 20 25 30 35 40 45 50
Number of Submaodels

without taking into consideration the time to flatten out the hierarchy.

FIGURE 11 | Comparison of performance of the SSA using flattening and our hierarchical approach for a model that includes replacements and
deletions. The plot on the left shows the total running time for both approaches, and the plot on the right shows only the running time for both approaches

Performance Comparison Using Deletions and Replacements
20 T T T T T T

—&— Flatten
181 —H8&— Hierarchical

(=]
T
L

Running Time (s)
=]

0 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 a0

Number of Submodels

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 12


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

Performance Comparison Without Deletions and Replacements

T T T T T T T

T T
—&— Flatten
—&— Hierarchical

w
2]

w
=
T

[N] w w
=] o ]
T T T

[N]
2]
T

Mermory Consurmption (MB)

\

N
]
T

0r @

10 20 30 40 50 60 70 80 90 100
Number of Submodels

deletions.

FIGURE 12 | Comparison of memory consumption of the SSA using flattening and our hierarchical approach. The plot on the left shows the comparison
of memory consumption for a model without replacements and deletions and the right plot shows the results for a model that includes replacements and

Performance Comparison Using Deletions and Replacements
T

T T T T T T T T

1]
=

—&— Flatten
—8&— Hierarchical

Mermory Consurnption (MEB)

N w w w w
o o - N w
T T T T T

N
@
T

7le—el o : : : :

. L L
) 10 15 20 25 30 35 40 45 50
Number of Submodels

For both tests described in this section, analysis of memory
consumption has been performed. The left plot of Figure 12
shows the results for the model with a population of repressilator
circuits in sub-models that have no interaction between each other.
The model suggests that hSSA takes less space over the long run
compared to the flattening approach. Similarly, for the model cus-
tomized with connections of sub-models using replacements and
deletions, hSSA still takes less space as shown in the right plot of
plot of Figure 12.

9. DISCUSSION

This paper proposes hSSA, a hierarchical simulation method for
the analysis of genetic circuits. This method is intended for the
analysis of dynamic systems. Results have shown that the extra
time spent in the preamble stage of the simulation of a hierar-
chical model is substantially reduced by not flattening out the
hierarchy while the simulation time is essentially equivalent. This
fact might be counterintuitive since the hierarchical simulator has
to perform replacements and deletions on the fly. However, the
time spent on this task is more than compensated by the fact that
the hierarchical method avoids flattening and deals with smaller
data structures. The total simulation time for the hierarchical sim-
ulator grows at a nearly linear increase with respect to model
size, whereas the simulation time for a flat simulation has an
exponential rate.

Even though the proposed method is more inefficient for mul-
tiple simulation runs as shown in Figure 13, the proposed method
is beneficial to some particular applications. Using the 7 x 7 grid
model we compared the performance of the hierarchical method
and the method that flattens out the hierarchy, we see that if you
perform more than 12 simulation runs, the method with flatten-
ing is better. However, the hierarchical simulator is intended for
single runs, where the user is interested to see whether the model is
behaving as expected. If the user wants to see the average behavior
of the model and perform multiple runs, then it is preferable for
the user to simulate using hSSA to ensure the model of interest is

Performance Over Number of Simulation Runs
for 77 Grid Model Using Deletions and Replacements
300 T T
—&—Flatten

—+&— Hierarchical

250+

200+

150 F

Running Time (s)

100 -

50F

1
1] <] 10 15
Number of Simulation Runs

FIGURE 13 | Comparison of performance for many simulation runs of
the SSA using flattening and our hierarchical approach for the 7 x 7
grid model that includes replacements and deletions. Note that the
time spent on flattening is compensated when you do multiple runs since
the hierarchical simulation method has some overhead when there are
custom connections between top-level model and sub-models.

meeting the expected requirements do before performing multiple
runs using the flattening method. Furthermore, population mod-
els, which this method aims for, does not require multiple runs
since the stochastic nature of each cell in the population is captured
by each sub-model, where the average behavior of the population
model is the average of each cell.

One of the limitations of the proposed simulator is that it sup-
ports only two-levels of hierarchy since sub-models are flattened
out. Although the algorithm can be applied to many levels of hier-
archy recursively, limiting the hierarchy to two-levels is chosen

www.frontiersin.org

November 2014 | Volume 2 | Article 55 | 13


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Watanabe and Myers

hSSA for SBML models

because population models have regular constructs enclosed in
sub-models. The proposed algorithm only needs to flatten one of
each sub-model, and this operation is not as complex as flattening
out the entire model.

While the hierarchical simulator is promising, there are many
extensions that can be implemented in the future. The next step
is to support dynamic events to model cell division and death,
which add or remove models from the simulation dynamically. We
feel that the hierarchical simulator is better suited to such chang-
ing model structures, and this requirement is actually a major
motivation for the development of this simulator. Another future
enhancement is dynamic model abstraction. In previous work, sig-
nificant improvements in analysis time are achieved by removing
unimportant details using automated model abstraction before
simulation, which improves simulation time while still delivering
accurate results (Kuwahara et al., 2006; Madsen et al., 2012b). A
dynamic hierarchical simulator has the potential to allow these
abstractions to be performed on the fly to manage complexity
as needed to balance computational cost with accuracy. Finally,
given that dynamic hierarchical models are inherently concur-
rent, parallel processing can also be explored to further improve
simulation time.

AUTHOR CONTRIBUTIONS
All the authors in this paper contributed equally to the work.

ACKNOWLEDGMENTS

The authors of this work are supported by the National Sci-
ence Foundation under Grant No. CCF-1218095. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation. We would also like to
thank Jason Stevens who developed the original non-hierarchical
simulator. Funding: National Science Foundation under Grant No.
CCEF-1218095.

REFERENCES

Anderson, J. C,, Clarke, E. J., and Arkin, A. P. (2006). Environmentally controlled
invasion of cancer cells by engineering bacteria. J. Mol. Biol. 355, 619—627.
doi:10.1016/j.jmb.2005.10.076

Brazil, G. M., Kenefick, L., Callanan, M., Haro, A., de Lorenzo, V., Dowling, D.
N, et al. (1995). Construction of a rhizosphere pseudomonad with potential to
degrade polychlorinated biphenyls and detection of bph gene expression in the
rhizosphere. Appl. Environ. Microbiol. 61, 1946—-1952.

Cases, 1., and de Lorenzo, V. (2005). Genetically modified organisms for the envi-
ronment: stories of success and failure and what we have learned from them. Int.
Microbiol. 8,213-222.

Elowitz, M., and Leibler, S. (2000). A synthetic oscillatory network of transcriptional
regulators. Nature 403, 335-338. doi:10.1038/35002125

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem. 81, 2340-2361. doi:10.1021/j100540a008

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003).
The systems biology markup language (SBML): a medium for representation

and exchange of biochemical network models. Bioinformatics 19, 524-531.
doi:10.1093/bioinformatics/btg015

Kaern, M., Elston, T. C., Blake, W. J., and Collins, J. J. (2005). Stochasticity in
gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451-464.
doi:10.1038/nrg1615

Kuwahara, H., Myers, C., and Samoilov, M. (2010). Temperature control of fim-
briation circuit switch in uropathogenic Escherichia coli: quantitative analysis
via automated model abstraction. PLoS Comput. Biol. 6:¢1000723. doi:10.1371/
journal.pcbi.1000723

Kuwahara, H., Myers, C., Samoilov, M., Barker, N., and Arkin, A. (2006). “Automated
abstraction methodology for genetic regulatory networks,” in Transactions on
Computational Systems Biology VI. eds C. Priami and G. Plotkin (Springer Berlin
Heidelberg), 150-175. doi:10.1007/11880646_7

Lucks, J., and Arkin, A. (2011). The hunt for the biological transistor. IEEE Spectr.
48, 38-43. doi:10.1109/MSPEC.2011.5719724

Madsen, C., Myers, C., Patterson, T., Roehner, N., Stevens, J., and Winstead, C.
(2012a). Design and test of genetic circuits using iBioSim. Des. Test Comput.
IEEE 29, 32-39. doi:10.1109/MDT.2012.2187875

Madsen, C., Myers, C., Roehner, N., Winstead, C., and Zhang, Z. (2012b). “Uti-
lizing stochastic model checking to analyze genetic circuits,” in Computational
Intelligence in Bioinformatics and Computational Biology (San Diego, CA: IEEE),
379-386.

Myers, C., Barker, N., Kuwahara, H., Jones, K., Madsen, C., and Nguyen, N. (2009).
“Genetic design automation,” in Computer-Aided Design — Digest of Technical
Papers, 2009. ICCAD 2009. IEEE/ACM International Conference on. San Jose, CA.

Myers, C. J. (2009). Engineering Genetic Circuits. Chapman and Hall/CRC.

Nguyen, N., Myers, C., Kuwahara, H., Winstead, C., and Keener, J. (2010). Design
and analysis of a robust genetic Muller c-element. J. Theor. Biol. 264, 174-187.
doi:10.1016/j.jtbi.2009.10.026

Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M.,
et al. (2006). Production of the antimalarial drug precursor artemisinic acid in
engineered yeast. Nature 440, 940-943. doi:10.1038/nature04640

Ruder, W. C,, Lu, T., and Collins, J. (2011). Synthetic biology moving into the clinic.
Science 333, 1248-1252. doi:10.1126/science.1206843

Savage, D., Way, J., and Silver, P. (2008). Defossiling fuel: how synthetic biology can
transform biofuel production. ACS Chem. Biol. 3, 13-16. do0i:10.1021/cb700259j

Stevens, J., and Myers, C. (2012). Dynamic modelling of cellular populations within
iBioSim. ACS Synth. Biol. 2,223-229. doi:10.1021/sb300082b

Watanabe, L. H., and Myers, C. J. (2014). “Hierarchical stochastic simulation of
genetic circuits,” in Proceedings of the Symposium on Theory of Modeling & Sim-
ulation — DEVS Integrative, DEVS’14 (San Diego, CA: Society for Computer
Simulation International), 37:1-37:8.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 September 2014; accepted: 29 October 2014; published online: 28
November 2014.

Citation: Watanabe LH and Myers CJ (2014) Hierarchical stochastic simulation
algorithm for SBML models of genetic circuits. Front. Bioeng. Biotechnol. 2:55. doi:
10.3389/fbioe.2014.00055

This article was submitted to Synthetic Biology, a section of the journal Frontiers in
Bioengineering and Biotechnology.

Copyright © 2014 Watanabe and Myers. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

November 2014 | Volume 2 | Article 55 | 14


http://dx.doi.org/10.1016/j.jmb.2005.10.076
http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1093/bioinformatics/btg015
http://dx.doi.org/10.1038/nrg1615
http://dx.doi.org/10.1371/journal.pcbi.1000723
http://dx.doi.org/10.1371/journal.pcbi.1000723
http://dx.doi.org/10.1007/11880646_7
http://dx.doi.org/10.1109/MSPEC.2011.5719724
http://dx.doi.org/10.1109/MDT.2012.2187875
http://dx.doi.org/10.1016/j.jtbi.2009.10.026
http://dx.doi.org/10.1038/nature04640
http://dx.doi.org/10.1126/science.1206843
http://dx.doi.org/10.1021/cb700259j
http://dx.doi.org/10.1021/sb300082b
http://dx.doi.org/10.3389/fbioe.2014.00055
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

	Hierarchical stochastic simulation algorithm for SBML models of genetic circuits
	Introduction
	Genetic circuit models
	Chemical reaction models
	ODE simulation
	Stochastic simulation
	Cellular population models
	Hierarchical simulation
	hSSA overview
	Example
	Extensions to hSSA to support SBML

	Results
	Discussion
	Author contributions
	Acknowledgments
	References


