
BIOENGINEERING AND BIOTECHNOLOGY
ORIGINAL RESEARCH ARTICLE

published: 12 December 2014
doi: 10.3389/fbioe.2014.00071

ncPred: ncRNA-disease association prediction through
tripartite network-based inference

Salvatore Alaimo1, Rosalba Giugno2*† and Alfredo Pulvirenti 2*†

1 Department of Mathematics and Computer Science, University of Catania, Catania, Italy
2 Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy

Edited by:
Alessandro Laganà, The Ohio State
University, USA

Reviewed by:
Helder I. Nakaya, Emory University,
USA
Mikhail P. Ponomarenko, Russian
Academy of Sciences, Russia

*Correspondence:
Rosalba Giugno and Alfredo
Pulvirenti , Department of Clinical and
Experimental Medicine, c/o
Department of Mathematics and
Computer Science, University of
Catania, Viale A. Doria 6, 95125
Catania, Italy
e-mail: giugno@dmi.unict.it;
apulvirenti@dmi.unict.it
†Rosalba Giugno and Alfredo
Pulvirenti have contributed equally to
this work.

Motivation: Over the past few years, experimental evidence has highlighted the role of
microRNAs to human diseases. miRNAs are critical for the regulation of cellular processes,
and, therefore, their aberration can be among the triggering causes of pathological phe-
nomena. They are just one member of the large class of non-coding RNAs, which include
transcribed ultra-conserved regions (T-UCRs), small nucleolar RNAs (snoRNAs), PIWI-
interacting RNAs (piRNAs), large intergenic non-coding RNAs (lincRNAs) and, the heteroge-
neous group of long non-coding RNAs (lncRNAs).Their associations with diseases are few
in number, and their reliability is questionable. In literature, there is only one recent method
proposed by Yang et al. (2014) to predict lncRNA-disease associations. This technique,
however, lacks in prediction quality. All these elements entail the need to investigate new
bioinformatics tools for the prediction of high quality ncRNA-disease associations. Here,
we propose a method called ncPred for the inference of novel ncRNA-disease association
based on recommendation technique. We represent our knowledge through a tripartite
network, whose nodes are ncRNAs, targets, or diseases. Interactions in such a network
associate each ncRNA with a disease through its targets. Our algorithm, starting from
such a network, computes weights between each ncRNA-disease pair using a multi-level
resource transfer technique that at each step takes into account the resource transferred
in the previous one.

Results: The results of our experimental analysis show that our approach is able to pre-
dict more biologically significant associations with respect to those obtained byYang et al.
(2014), yielding an improvement in terms of the average area under the ROC curve (AUC).
These results prove the ability of our approach to predict biologically significant associa-
tions, which could lead to a better understanding of the molecular processes involved in
complex diseases.

Availability: All the ncPred predictions together with the datasets used for the analysis
are available at the following url: http://alpha.dmi.unict.it/ncPred/

Keywords: ncRNAs-diseases association predictions, lncRNAs functional characterization, network-based
inference, tripartite networks, resource transfer algorithm

1. INTRODUCTION
In recent years, great efforts have been employed in the study
of non-coding RNAs (ncRNAs), a class of genes involved in a
wide variety of biological functions. Small ncRNAs, such as siRNA,
miRNA, and piRNA, are highly conserved in different species and
have a key role in transcriptional and post-transcriptional silenc-
ing of genes. Long ncRNA (transcribed RNA molecules whose
length is greater than 200 nucleotides) instead are poorly pre-
served and have the task of regulating gene expression through
mechanisms still largely unknown (Mercer et al., 2009; Ponting
et al., 2009; Wilusz et al., 2009). It has been shown that these mol-
ecules are involved in the regulation of gene expression by acting
as controllers of processes such as RNA maturation or transporta-
tion, or altering chromatin structure. ncRNAs have great variety
in structure and in gene regulation outcomes, however, several

similarities can be identified in the way they act (Wang and Chang,
2011).

The connection between diseases and de-regulation of small
ncRNAs has been established for years. However, recent studies
show that mutations and de-regulations of lncRNAs are heav-
ily involved in the development or progression of several diseases
(Wapinski and Chang, 2011). Alterations in the structure (primary
or secondary), or in the expression levels are the main underly-
ing causes of diseases, from cancer to neurodegenerative disorders
(Wapinski and Chang, 2011).

Pasmant et al. (2011) highlight how the expression of the
lncRNA ANRIL, antisense transcript to INK4b gene, is correlated
with the epigenetic silencing of INK4a, or p16 protein, which is
involved in the regulation of cell cycle. High levels of ANRIL
were found in prostate cancer tissues (Yap et al., 2010). Yap
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et al. (2010), also, hypothesizes that this transcript is an initi-
ating factor in tumor formation due to its silencing action on
the INK4b/ARF/INK4a locus. Other experimental evidence link
ANRIL de-regulation to a number of pathologies, including coro-
nary disease, intracranial aneurysm, and type II diabetes (Pasmant
et al., 2011).

Another example of correlation between lncRNAs and diseases
is the HOTAIR transcript, which is involved in the progression
of breast cancer by chromatin landscape remodeling (Burd et al.,
2010). In particular, increased expression of tHOTAIR is an index
of poor prognosis and tumor metastasis. Gupta et al. (2010) show
that HOTAIR is also responsible for invasiveness and metastasis in
epithelial cancer cells and its inhibition may lead to a reduction of
invasiveness in cells where PRC2 complex is highly activated.

Further evidence of lncRNAs-diseases correlation is the tran-
script called MALAT-1, an RNA of more than 8000nt present in
chromosome 11q13, whose over-expression is related to bad prog-
nosis in patients with non-small cell lung cancer (Ji et al., 2003). In
addition, the antisense transcript of β-secretase-1 (BACE1-AS) has
been identified in high concentrations in subjects with Alzheimer’s
disease and in amyloid precursor protein transgenic mice (Faghihi
et al., 2008).

Therefore, despite the enormous importance that ncRNAs
show in connection with several diseases, the number of enti-
ties, which somehow has been functionally characterized and
associated to diseases, is extremely small (Wapinski and Chang,
2011). For this purpose, the developing a methodology that is
able to predict ncRNA-disease interactions is crucial in order to
formulate new hypotheses on the molecular mechanisms under-
lying complex diseases, and to identify potential new biomark-
ers for their diagnosis, treatment and prevention. Despite the
use of such a methodology could be very helpful by making
the search for new associations more focused and less costly,
it must be emphasized that the task of determining, which
are beneficial remains a responsibility of bio-physicians. They,
indeed by identifying appropriate patient groups and properly
documenting such cases, can establish the actual relationship,
while also allowing a broader understanding of the underlying
phenomena.

In this direction, Yang et al. (2014) developed a method, which
exploits a bipartite network and a propagation algorithm to predict
new associations that can be evaluated through appropriate in vitro
experiments. Yang et al. (2014) based their method on the database
assembled by Chen et al. (2013): a collection of approximately 1028
experimentally validated interactions among 322 lncRNAs and 221
diseases. The database has been further extended, through deep lit-
erature mining, to include additional interactions. The database
includes also 478 experimentally validated interactions among 126
lncRNAs and 236 protein coding genes. For such genes a modu-
lation in expression values is known to be carried out by such
ncRNAs.

In this paper we present ncPred, a resource propagation
methodology, which uses a tripartite network to guide the infer-
ence process of novel ncRNA-disease associations. The tripartite
network allows the introduction of two levels of interaction:
ncRNA-target and target-disease. Here, we call targets a group
of biomolecules (i.e., genes, microRNAs, proteins) whose activity

is modulated by a ncRNA (e.g., regulation of expression, binding
to improve the efficiency of its activity, or binding to help the
formation of complexes). In this way, we can exploit the greater
quantity of known interactions between targets (i.e., proteins and
miRNAs) and diseases to build a wider knowledge base and obtain
a greater number of high quality predictions.

To perform a proper evaluation of our method, we applied
a k-fold Cross-Validation procedure to the (Chen et al., 2013)
database, remodeled to include information on targets. A fur-
ther analysis uses a database of experimentally verified inter-
actions between ncRNAs and miRNAs shown in Helwak et al.
(2013).

2. MATERIALS AND METHODS
2.1. ALGORITHM
Let O= {o1, o2, . . ., on} be a set of non-coding RNAs (ncRNAs), let
T= {t 1, t 2, . . ., tm} be a set of targets (i.e., genes, microRNA), and
let D= {d1, d2, . . ., dp} be a set of diseases. The ncRNA-target and
target-disease interactions can be represented in a tripartite graph
G(O, T, D, E), where E is the set of interactions (edges) between
nodes in O and T and nodes in T and D. Such a graph, can be rep-

resented by using a pair of adjacency matrices AOT
=

{
aOT

ij

}
n×m

and ATD
=
{

aTD
rs

}
m×p where aOD

ij = 1 if oi is connected to tj in

G, and aTD
rs = 1 if tr is connected to ds in G.

Our technique is based on the concept of resources transfer
within the network. We refer to Alaimo et al. (2013) for details
of resources transfer (drug-targeting) in bipartite networks. The
bipartite network carries a prior knowledge which can be used to
infer novel interactions. Starting from such a network, it computes
weights between each pair of target. Those weights can be seen as
the likelihood by which we can affirm that if a drug is associ-
ated with a target then it may be associated with another one. For
each prediction, the algorithm also associates a score indicating
the degree of certainty of the interaction.

In this paper, due to the tripartite network, we developed a
multi-level transfer approach that at each step takes into account
the resource transferred in the previous one (see Figure 1 for
an example). In the first level of the transfer, the resource is
moved from the nodes in T (targets) to nodes in O (ncRNAs)
and vice versa. In the second level, the resource is moved from D
nodes to T nodes and it is combined with the resource of the pre-
vious step. Then, the resources are moved back to the D nodes. In
this way, we define a methodology for the computation of a com-

bined weight matrix W C
=

{
wc

ij

}
m×p

, where wc
ij corresponds to

the likelihood allowing us to claim that if a ncRNA interacts with
a target ti then it may be associated with the pathology dj.

To compute such a matrix, we start by defining two partial
weight matrices corresponding to the intermediate levels of trans-
fer. These two matrices are then used to obtain the combined
weight matrix and, therefore, compute the recommendations.

Let k ′(x) be the degree of node x in the ncRNA-target sub-
network and k ′′(y) the degree of node y in the target-disease
sub-network.

The matrix W T
=

{
wT

ij

}
m×m

, associated with the first level of

transfer, can be defined as:
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FIGURE 1 | Operating principle of ncPred in a tripartite network. Here, we
represent ncRNAs in blue, targets in orange, and diseases in red. Without loss
of generality, and in order to simplify the reading of the image, we decided to
put λ1 and λ2 to 1, so as to obtain a uniform distribution of resources in the
network. In the first step, a resource is assigned to each target and disease

node (1). Thereafter, two separate transfer process are launched to compute
the resource in target nodes (2a, 2b) and disease nodes (3a, 3b). Finally,
resources are combined to obtain the total quantity in each disease node (4).
In (4), the literals are used only for example purposes due to lack of space.
They are to be replaced with the values computed in steps (2b) and (3b).

wT
ij =

1

k ′ (ti)
(1−λ1) k ′

(
tj
)λ1

n∑
l=1

aOT
li aOT

lj

k ′ (ol)
, (1)

where wT
ij corresponds to the likelihood that given a ncRNA inter-

acting with target ti, then it may also interact with target tj. By
using such an equation, we assign higher weights to the pairs of
targets that share many ncRNAs, rather than those who share only
a few.

The same applies to W D
=

{
wD

ij

}
p×p

, matrix associated with

the second level of the transfer, where:

wD
ij =

1

k ′′ (di)
(1−λ2) k ′′

(
dj
)λ2

m∑
l=1

aTD
li aTD

lj

k ′′ (tl)
. (2)

In equation 2, wD
ij indicates whether we can assert that given a tar-

get associated with the disease di, it may also be linked to the disease

dj. wD
ij is higher for the disease pairs, which are associated to many

common targets with respect to those with fewer common targets.
In equations 1 and 2, the λ1 ∈ [0, 1] and λ2 ∈ [0, 1] parameters

are used to tune the quality of the predictions. Parameter values
close to zero indicate that the resource of a node is computed as
the average of those in its neighborhood, while values close to
one indicate that the resource is uniformly distributed among the
nodes of its neighborhood. In terms of predictions, lambda values
close to zero correspond to conservative predictions, while values
close to one correspond to a larger number of predictions.

Therefore, the combined weight matrix W C
=

{
wc

ij

}
m×p

can

be obtained as:

wC
ij =

m∑
t=1

[
wT

it

p∑
r=1

(
aTD

tr · w
D
rj

)]
. (3)

In equation 3, the weight of a target-disease pair is computed by
taking into account both the targets with a similar neighborhood
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and the diseases with a similar neighborhood. In this way, a larger
weight is assigned to those pairs for which more frequently there
is a path, which passes through them.

Given the above weights, it is now possible to compute the
recommendation matrix R= {rij}n×p as:

R = AOT
·W C . (4)

We call each rij prediction score for the pair (i, j). For each ncRNA
oi, its list of predictions Ri can be obtained by selecting those

Table 1 | Description of the datasets: number of ncRNAs, targets and

diseases together with the count of interactions, average degree,

density, modularity, number of connected components, and average

path length.

Metrics Chen et al. (2013) Helwak et al. (2013)

ncRNAs 119 338

Targets 110 179

Diseases 514 134

ncRNAs–targets interactions 247 1699

Targets–diseases interactions 1005 1572

Average degree 1.572 5.025

Density 0.002 0.008

Modularity 0.609 0.274

Number of connected

components

24 1

Average path length 1.572 1.734

disease-prediction score pairs for which there is no path with oi

in the tripartite network. Such a list is sorted in descending order
with respect to the value of rij, as the higher the score, the greater
the belief that the ncRNA will have some connection with that
particular disease.

2.2. DATASETS AND BENCHMARKS
We evaluated our method using two datasets containing experi-
mentally verified interactions between ncRNAs, targets, and dis-
eases. The first data set (Figure S1 in Supplementary Material)
was built by collecting from (Chen et al., 2013) 478 interactions
between lncRNAs and genes. These interactions were mapped by
converting each target identifier to its Entrez Id. This allowed
us to remove about 230 duplicates or superseded interactions.
From the remaining targets, we then extracted 1005 experimen-
tally validated gene-disease associations by searching in DisGeNET
(Bauer-Mehren et al., 2010).

The second data set (Figure S2 in Supplementary Material) was
obtained by collecting about 4000 lncRNA-miRNA interactions
found by Helwak et al. (2013) by applying the CLASH methodol-
ogy (Kudla et al., 2011). Each association indicates that a lncRNA
contains one or more binding sites for miRNAs. From such a list,
we removed all targets not present in miR2Disease database (Jiang
et al., 2009), obtaining 1699 lncRNA-miRNA associations. Finally,
using Jiang et al. (2009), we recovered 1572 miRNA-disease asso-
ciations. Table 1 provides a summary of the two datasets together
with some metrics that can further elucidate their characteristics.
Moreover, in Figure 2, we calculated the degree distribution of the
two networks. These show that they can be considered scale-free
networks.

FIGURE 2 | Degree distribution of the two networks used as datasets: (A) Chen et al. (2013), (B) Helwak et al. (2013). The two plots are in log-log scale. As
can be seen the degree distribution for the two networks can be approximated to an exponential one. We can therefore assume that the two networks are
scale-free.
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For the evaluation of our method, we applied a 10-fold cross-
validation procedure repeated 30 times to obtain more reliable
results. Each fold is built in the following way. Given the tri-
partite graph, we selected all possible pairs of ncRNA-disease
interactions. Then, we randomly partitioned them into each
fold. We make sure that the tripartite network generated from
each fold is not disconnected. ncPred makes predictions only on
connected networks. We considered the following four metrics
(Alaimo et al., 2013) to assess the performance of our method:
precision and recall enhancement, recovery, personalization, and
Surprizal. The first two establish the ability of the method to
recover the interactions of the test set, therefore, obtaining bio-
logically relevant predictions. The other two measure the ability
of the method to propose unexpected interactions, which may
lead to novel insights onto ncRNA functions. Special care should
be given to the precision and recall enhancement metrics. They
measure the reliability of the prediction algorithm by compar-
ing the standard precision and recall with a null model. Such
a model is defined as a methodology that randomly assigns
ncRNA-disease pairs. This implies that values greater than one
are to be considered synonymous of higher quality and, therefore,
reliability.

3. RESULTS
As stated earlier, to evaluate the power of our method, we applied a
10-fold cross-validation procedure repeated 30 times and averaged
results to obtain more reliable estimates. In Table 2, we illustrate
the behavior of ncPred, comparing it with Yang et al. (2014), in
terms of precision and recall enhancement. The results demon-
strate that ncPred clearly outperforms its competitor. In particular,
we can see that while Yang et al. (2014) obtains a recall close to the
null model, ncPred has much better results. This is crucial since
the recall measures the ability of the algorithm to recover exist-
ing interactions in the network, and is therefore a sign of their
reliability, namely their biological relevance.

In Figure 3, we report the receiver operating characteristic
(ROC) curves computed on both datasets. The simulations were
repeated 30 times and their results were averaged to obtain a more
accurate evaluation. Both methods show a high true positive rate
against low false positive rate, although ncPred is clearly able to
achieve better results. This is also shown in Table 2, where we can
see a significant increase in the average area under the ROC curve
(AUC). Such a significance is further proved by the results shown
in Table 3. By applying the Friedman rank sum test, we determined
that the performance improvement achieved by our algorithm is

Table 2 | Comparison of ncPred andYang et al. (2014) through the precision and recall enhancement metric, and the average area under ROC

curve (AUC) calculated for each of the two datasets listed inTable 1.

Dataset eP(20) eR(20) AUC (20)

Yang et al. (2014) ncPred Yang et al. (2014) ncPred Yang et al. (2014) ncPred

Chen et al. (2013) 5.5113 12.3290 0.7297 1.6636 0.6217±0.0178 0.7566±0.0218

Helwak et al. (2013) 1.8654 5.8197 1.6509 5.6572 0.7069±0.0084 0.7669±0.0093

The results were obtained using the optimal values for λ1 and λ2 parameters as shown inTable 3.

FIGURE 3 | Comparison between ncPred andYang et al. (2014) by means
of receiver operating characteristic (ROC) curves, computed for the
recommendation lists built on our two datasets. Such curves measure the
quality of the algorithms in terms of false positives rate against true positives

rate. (A,B) are independent since computed on two separate datasets. The
significance of the difference highlighted between ncPred and Yang et al.
(2014) was measured by applying the Friedman rank sum test as assessed in
Table 4.
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statistically significant (i.e., the p-value is close to zero on both
datasets).

Regarding the parameters λ1 and λ2, we performed a compre-
hensive analysis to establish the relationship between them and
the prediction quality. In the supporting materials, we report the
results of such analysis. The results indicate that there is no specific
law, which governs their behavior. The peculiar characteristics of
each dataset greatly affect the performances and, consequently, the
parameters. It is, therefore, necessary to perform an a priori analy-
sis in order to determine, which values give the best results. In our
experiments, we used such an analysis to determine the best para-
meters in terms of precision and recall enhancement (see Table 4
for details on their values). By looking at the characteristics of our
data sets, the values obtained from such an analysis allowed us to
suppose that the two parameters are close to zero in Helwak et al.
(2013) dataset because of the greater density. This implies that to
maintain high quality predictions it is necessary to reduce their
number to avoid the introduction of noise. On the other hand, the
Chen et al. (2013) dataset has a lower density. This allows us to
produce a higher number of predictions before they start losing
quality. Therefore, this explains the lambda values closer to one. It
is important to point out that in order to determine the best para-
meters an analysis was performed considering only precision and
recall enhancement, since they are closely related to the biological
significance of the predictions. In this context, we report in Table 2
only precision and recall enhancement and the AUC, ignoring the
other metrics, which are available in the supporting materials.

Finally, assuming that the number of targets dominates the
ncRNA one, we can state that the computational complexity of
our method is O(m2p). However, it is quite straightforward to
implement parallelization and optimization techniques to make
the computation faster.

3.1. CASE STUDIES
The analysis of the predictions for each non-coding showed that
ncPred is able to find exactly the same predictions provided by Yang
et al. (2014). The main difference between the two algorithms lies
in the different scores given to each prediction. As highlighted
in the previous section, ncPred is clearly able to provide more
substantially accurate predictions.

Table 3 | Friedman rank sum test applied to establish the statistical

significance in the performance improvement of ncPred compared to

Yang et al. (2014).

Dataset Friedman χ2 p-Value

Chen et al. (2013) 1026.315 <2.2×10−16

Helwak et al. (2013) 6537.915 <2.2×10−16

Table 4 | Optimal values of λ1 and λ2 parameters for the datasets

used in our experiments.

Dataset λ1 λ2

Chen et al. (2013) 0.5 1

Helwak et al. (2013) 0.2 0.2

To further demonstrate the ability of our method, we reviewed
in detail the results of five diseases (i.e., Alzheimer’s Disease,
Myocardial Infarction, Pancreatic Cancer, Parkinson’s disease, and
Gastric Cancer) as case studies. The top 10 predicted genes for each
case are listed in Table 5. Table 5 also shows the rank obtained by
applying on our dataset, the Yang et al. (2014) method. In this con-
text, the two datasets were taken together in order to start from a
wider knowledge base.

3.1.1. Alzheimer’s disease
Alzheimer’s disease (AD) is one of the most common forms of
dementia (Hebert et al., 2003). Recent studies indicate that it
affects approximately 0.40% of the world population (Brook-
meyer et al., 2007). The disease is, at present, untreatable, and
it is characterized by a progressive loss of mnemonic, cognitive,
and intellectual capacity, which ultimately leads to the death of
the patient. Among the first 10 ncRNAs, we find PVT1 a lncRNA,

Table 5 | List of top 10 predictions computed by ncPred and their rank

obtained withYang et al. (2014) for five case studies (Alzheimer’s

Disease, Myocardial Infarction, Pancreatic Cancer, Parkinson’s

Disease, and Gastric Cancer).

ncRNA ncPred

rank

Yang

et al.

(2014)

rank

ncRNA ncPred

rank

Yang

et al.

(2014)

rank

ALZHEIMER’S DISEASE

PVT1 1 3 B2 SINE RNA 6 28

MEG3 2 19 TP53TG1 7 22

TUG1 3 32 WRAP53 8 23

lincRNA-p21 4 21 Kcnq1ot1 9 48

CDKN2B-AS1 5 20 Evf2 10 35

MYOCARDIAL INFARCTION

H19 1 43 Kcnq1ot1 6 23

SRA1 2 24 PVT1 7 47

TUG1 3 26 CDKN2B-AS1 8 25

7SL 4 29 B2 SINE RNA 9 17

BDNF-AS1 5 34 Airn 10 18

PANCREATIC CANCER

HOTAIR 1 16 PCAT1 6 40

LINC00312 2 15 ncRNACCND1 7 9

Kcnq1ot1 3 25 Six3OS 8 45

Xist 4 43 Airn 9 14

TERRA 5 10 RepA 10 47

PARKINSON’S DISEASE

PVT1 1 11 LINC00312 6 24

MEG3 2 16 TP53TG1 7 20

TUG1 3 26 WRAP53 8 21

BACE1-AS 4 23 CDKN2B-AS1 9 27

lincRNA-p21 5 19 B2 SINE RNA 10 40

GASTRIC CANCER

PTENP1 1 38 Evf2 6 60

LINC00312 2 15 Airn 7 13

Xist 3 1 TERRA 8 18

PCAT1 4 29 B2 SINE RNA 9 40

Six3OS 5 39 RepA 10 37
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which regulates the transcription of MYC on the long distance
(Carramusa et al., 2007). In Jiang et al. (2013), MYC has been char-
acterized as the source of the main pathway substantially active in
AD, thus having an important role in disease progression. Such a
discovery confirms that PVT1 could play a key role in the progress
of AD. We have also identified the lncRNA MEG3 that activates
TP53 and improves its binding affinity to target gene promoter
(Liao et al., 2011). TP53 was identified in Tan et al. (2012) as
potential biomarker for AD. Therefore, further analysis to confirm
MEG3 role in AD are needed.

3.1.2. Myocardial Infarction
Myocardial infarction (MI) is a heart condition that occurs when
the proper flow of blood to a part of the heart stops, and the heart
muscle is damaged due to lack of sufficient oxygen. Genome-wide
association studies have identified 27 epigenetic factors that are
associated with an increased risk of MI (Feero et al., 2011). For
example, the genomic locus 9p21 has one of the strongest asso-
ciations with the pathology (Feero et al., 2011). The majority of
such factors have been identified in regions implicated in other
heart diseases (Feero et al., 2011). Among our predictions, we
identified the lncRNA SRA1 that Friedrichs et al. (2009) found
crucial in cardiomyopathies. This leads us to assume a possible
link with MI. In the top 10 predictions we also found the lncRNA
7SL, which, by hybridizing to the reverse-Alu-element-containing
3′UTR of MnSOD gene, represses its expression (Lipovich et al.,
2010). Overexpression of MnSOD has been identified as a possible
protection against MI in transgenic mice (Chen et al., 1998). This
could be a cue for further investigations to understand the role
such a lncRNA.

3.1.3. Pancreatic cancer
Pancreatic cancer is an aggressive disease whose 5-year survival
rate is extremely low (Amundadottir et al., 2009). The analysis
of the predictions obtained by our algorithm has provided the
association with lncRNA HOTAIR, whose overexpression has been
associated with a poor prognosis in pancreatic cancer, as well as
show a pro-oncogenic activity (Kim et al., 2012). A further lncRNA
is Airn. The deletion of its promoter in paternal allele results in
aberrant activation of IGF2R (Nagano and Fraser, 2009), whose
polymorphisms are associated with an increased risk of pancreatic
cancer (Dong et al., 2012).

3.1.4. Parkinson’s disease
Parkinson’s disease (PD) is a degenerative disorder of the cen-
tral nervous system. The main cause of the disease is the death
of dopamine-generating cells in the substantia nigra. The cause
of this death is still unknown, nevertheless, the process of aging
and metabolic stress are its common triggers (Parlato and Liss,
2014). It is interesting to note that the response to stress con-
ditions and mechanisms for quality control are compromised in
patients with PD. The reduction in the transcription of rRNA
(ribosomal ribonucleic acid) is an important strategy to maintain
cellular homeostasis under stress. An altered transcription is asso-
ciated with neurodegenerative disorders. There are many triggers
for nucleolar stress, but they seem to depend on the extitp53 pro-
tein (Parlato and Liss, 2014). Our algorithm is able to identify
two probable lncRNA associated with this function: PVT1, also

associated with AD, whose gene locus is a target of p53 (Barsotti
et al., 2012), and MEG3 that promotes the expression of Tp53 and
increases the binding affinity to the promoters of its target (Liao
et al., 2011).

3.1.5. Gastric cancer
Gastric cancer is a disease typically characterized by an overall
5 years survival rate lower than 10%, mainly due to the plurality
of common symptoms that lead to treatments only in advanced
disease stages (Orditura et al., 2014). Among our predictions, we
find the lncRNA Xist. In Weakley et al. (2011), it was identified
as differentially expressed in stomach preneoplastic cells, which
could be a symptom of gastric cancer. Another factor could be the
lncRNA Evf2, which is a direct putative positive regulator of tran-
scription factor Dlx-2 (Lipovich et al., 2010). Increased expression
of Dlx-2 was correlated with more advanced stages of the disease
(Tang et al., 2013).

4. DISCUSSION
In this paper, we propose ncPred to predict novel associations
between ncRNAs and diseases. The aim is to compute ncRNA-
disease association’s prediction starting from a tripartite network.
Such a network integrates information on ncRNAs, targeting (i.e.,
those genes, microRNAs, proteins whose activity is affected by
non-coding RNA), and their associations with diseases in order to
improve prediction quality and accuracy.

Our experimental analysis shows that our approach predicts
more biologically significant associations with respect to Yang et al.
(2014). This assertion is confirmed by the results obtained in terms
of recall, which as described above measures biological quality of
results. The use of Friedman rank sum test also showed that the dif-
ference between our predictions and those of Yang et al. (2014) is
not random but due to a better interpretation of available informa-
tion. The results showed that our method could provide interesting
suggestions in the study of the implications between ncRNA and
pathologies. However, as stated in the introduction, the method
can only help to make such a search more targeted and less expen-
sive, offering a ranking of associations from more probable to less
probable. Determine whether those associations are useful still
remains within the competence area of bio-physicians that can
provide conclusive evidence by identifying suitable patients and
documenting such cases.

Despite what stated earlier, our method still has some limi-
tations that should be taken into account. Firstly, ncRNA-target
associations are still too small in number. It may be necessary to
resort to additional targeting prediction techniques so as to expand
original knowledge base. Secondly, the methodology does not use
the biological information accompanying each association (e.g.,
type of ncRNA-target interaction, conditions in which the target-
disease association was detected, tissues in which associations have
significance). For this reason, it may be useful to further expand
the methodology by using such additional information, which
could make the methodology more reliable in terms of significant
predictions.

SUPPLEMENTARY MATERIAL
In the Supplementary Material (Data Sheet 1.pdf) we report the
ncPred parameter tuning further details concerning the compari-
son with Yang et al. (2014). The Supplementary Material for this
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