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Due to their sensitivity and speed, mass-spectrometry based analytical technologies are
widely used to in metabolomics to characterize biological phenomena. To address issues
like metadata organization, quality assessment, data processing, data storage, and, finally,
submission to public repositories, bioinformatic pipelines of a non-interactive nature are
often employed, complementing the interactive software used for initial inspection and
visualization of the data. These pipelines often are created as open-source software allow-
ing the complete and exhaustive documentation of each step, ensuring the reproducibility
of the analysis of extensive and often expensive experiments. In this paper, we will review
the major steps which constitute such a data processing pipeline, discussing them in the
context of an open-source software for untargeted MS-based metabolomics experiments
recently developed at our institute. The software has been developed by integrating our
metaMS R package with a user-friendly web-based application written in Grails. MetaMS
takes care of data pre-processing and annotation, while the interface deals with the creation
of the sample lists, the organization of the data storage, and the generation of survey plots
for quality assessment. Experimental and biological metadata are stored in the ISA-Tab
format making the proposed pipeline fully integrated with the Metabolights framework.

Keywords: metabolomics, ISA-Tab, pipeline, data analysis, LC-MS, GC-MS

INTRODUCTION
The possibility of performing untargeted phenotyping and char-
acterize in a semi-quantitative way complex phenomena has been
driving the success of untargeted metabolomics over the last
10 years (Patti et al., 2012; Cho et al., 2014). Among the possible
technological solutions, which can be used to perform untargeted
metabolomics, mass-spectrometry based approaches are promi-
nent, mainly due to their sensitivity and speed. In many cases, the
mass spectrometers are coupled with chromatographic separation
like in gas chromatography mass-spectrometry (GC-MS) or liq-
uid chromatography mass-spectrometry (LC-MS) (Theodoridis
et al., 2012). As an alternative, chromatography-free approaches –
like direct infusion mass-spectrometry (DIMS) or flow injection
(Fuhrer and Zamboni, 2015) – are also possible, in particular,
to perform high-throughput screening, but in this paper, we will
focus on the former.

A typical experiment deals with the analysis of tens to hun-
dreds of samples, characterized by several thousands of meta-
bolic features. These numbers are likely to increase further,
considering the rapid evolution in automation and instrumen-
tal resolution and sensitivity. Technological development has a
profound impact also on the operation of the analytical lab-
oratory, where the sample/method management is often inte-
grated into a laboratory information management system (LIMS).
The explosion of available data and the growing need of large-
scale high-throughput experiments require the development of
automatic data storage, handling, and analysis solutions. These are

of paramount importance for several practical and fundamental
reasons:

• It is impossible to analyze manually the huge amount of
data produced by complex and expensive holistic untargeted
experiments.

• Reproducibility in the data analysis of huge datasets is an issue,
in particular, if it is performed by interactive tools, which are
not keeping track of the different steps. To prevent this issue,
data processing routines should be stored and made available as
a part of the publication process.

• Meta information on the sample should be stored and organized
in open-source formats using codified terms and ontologies to
allow for automatic information retrieval and data integration.

• Raw data are precious – in some cases, they are the results of
analysis that cannot be replicated – so storage organization is of
high importance.

• The use of open access repositories for raw data is expected to
become a standard for the publication (Kirwan et al., 2014).

To fulfill the previous needs, it is necessary to introduce new
tools and new concepts in all the steps of a metabolomics experi-
ment, from sample collection to final data publication. Due to the
complexity of the task and the conflicting needs of flexibility and
robustness, the use of a single software package is often impractical
and it is common to rely on pipelines.
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Franceschi et al. Data processing in MS-based metabolomics

FIGURE 1 | Block diagram of the typical metabolomic experiment.

In a pipeline, each separate node performs its task auto-
nomously and the results are “piped” to the next step. This type of
design is particularly efficient because each node can be developed
using the most appropriate tool. Additionally, pipelines are flex-
ible, because each element can be upgraded or tailored without
tweaking the complete analysis workflow. For this reasons, sev-
eral popular software tools like Knime (Warr, 2012)1 or Galaxy
(Giardine et al., 2005; Blankenberg et al., 2010; Goecks et al.,
2010)2 offer a high-level graphical interface for the design of
data analysis pipelines. The attractiveness of the “pipeline” idea
is also demonstrated by the development of web-based solution
for the analysis data, like XCMSonline (Tautenhahn et al., 2012b)3,
Metaboanalyst (Xia et al., 2009, 2012)4, or MetDat (Biswas et al.,
2010) [see also Brown et al. (2005), Tohge and Fernie (2009)]
for metabolomics. A web-based solution has the advantage of
hiding to the final user all the details of the data processing
machinery; unfortunately, it can be difficult to transfer the huge
amounts of raw data produced by big -omics experiments. The
algorithms running“behind the scenes”ensure good reproducibil-
ity of the data analysis process – at least in the short term. Some
issues, however, could show up if one wants to reproduce the
results of several years back, in particular, if they were obtained
with a different version of the pipeline. New software releases
indeed may include improved processing algorithms or new sets
of default processing parameters. This implies that, for guarantee-
ing reproducibility, the version number of all the elements of the
pipeline should be stored, and a repository for old versions must
be available.

1http://www.knime.org/
2http://galaxyproject.org/
3http://xcmsonline.scripps.edu/
4http://www.metaboanalyst.ca/MetaboAnalyst/

If one considers the case of metabolomics, the block diagram
(Figure 1) of the typical experiment includes the following major
steps:

1. Metadata organization,
2. Data acquisition and quality assessment,
3. Data conversion, storage, and organization,
4. Data processing,
5. Annotation,
6. Statistical data analysis,
7. Data submission to public repositories.

The objective of this paper is to give a general account of each
step from the point of view of the data analyst, highlighting central
ideas and specific challenges. To make our survey more practical,
each topic will also highlight some of the software solutions, which
have been developed by the metabolomic community so far. The
aim is not to present a comprehensive list, but instead to focus the
key elements of the global picture. In the second part of the paper,
we will also present the pipeline we have been developing at our
institute, followed by an example application on a test experiment
on grapevine leaves.

METABOLOMIC WORKFLOW IN DETAILS
In this section, each element of the block diagram is described in
more details, referring to some of the more common strategies
available for the community.

METADATA
To be able to tackle relevant scientific questions, metabolomics
have to adopt technologies and workflows, which can lead to
“interoperable bioscience data” (Sansone et al., 2012). To fulfill
this need, the experiments have to be well and consistently doc-
umented with a sufficient level of contextual information. For
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metabolomics, a strong effort toward standardization has been
performed earlier by ArMet (Jenkins et al., 2004) and more recently
by the Metabolomics Society with its Metabolomics Standard Ini-
tiative (Sansone et al., 2007). Different expert working groups have
been identifying the minimal reporting standards for the biolog-
ical context metadata, the chemical analysis, the data processing.
More recently, standardization in metabolomics has become the
core of the COSMOS initiative5 within the seventh Framework
Program of the European Commission. The minimum reporting
standards depends often on the type of study and should docu-
ment the nature of the samples, the design of the experiment, and
the details of the analytical pipeline (e.g., the LC-MS protocol). In
the case of the biological source in plant studies, for example, one
should include specie, genotype, organ, organ specification, cell
type, subcellular location, and biosource amount. All this infor-
mation should be provided relying as much as possible unique
and well codified terms (ontologies). In practice, however, the use
of ontology repositories could be non-trivial due the presence of
synonyms or to the absence of terms describing a specific study or
class of samples.

Proposed strategies
Considering the wealth of information needed to document prop-
erly each metabolomics experiments, a dedicated software solution
can be of great help. In this way, human error can be reduced at
minimum. Metadata should also be stored in open (and human
readable) text formats, to allow their fast and automatic min-
ing and interconversion. This type of information, then, can be
used to automatically generate consistent sample names, avoiding
mistyping or duplications.

SetupX (Scholz and Fiehn, 2006) is an example of software to
store the details of a biological experiment into a database using
publicly available taxonomic and ontology repositories, while
the elements of the study design are employed to schedule and
randomize data acquisitions.

A popular alternative to SetupX is ISAcreator. ISAcreator is
a cross-platform java tool developed within the Isatools initia-
tive (Rocca-Serra et al., 2010)6. ISAcreator guides the user in
the process of inserting the metadata. In the background, they
are stored in a specific text format (ISA-Tab), which has been
designed to flexibly fit diverse scientific demands. Also, in this
case, the description relies as much as possible on publicly available
taxonomic and ontology repositories.

DATA ACQUISITION AND QUALITY ASSESSMENT
The data acquisition step is always managed by the instrument
control software, which takes care of the sequential analysis of the
samples contained in a “sample list.” The sample list can be gener-
ated manually inside the instrument software, or can be imported
from an external file. Considering that the data analysis pipeline
can produce the sequence file, this second option is the way to go
when minimizing human intervention.

To obtain high-quality data, it is important to realize that the
performance of the analytical method may change over time. This

5http://cosmos-fp7.eu/
6http://www.isa-tools.org/format.html

can profoundly affect the output of the experiment, in particu-
lar, in the case of long runs (instruments have to be periodically
cleaned and calibrated, chromatographic columns are aging, etc.).
For this reason, it is important to constantly monitor the quality
of the analysis and to fully randomize the sample list to be sure
that the factor of the study can be decoupled from any “analytical”
perturbations. It is important to point out that analytical stability
is not an absolute concept, but has to be judged in relation to the
biological variability of the samples.

Proposed strategies
The commonly accepted practice to monitor drifts in the sam-
ple or in the analytical pipeline and to allow the equilibration of
the analytical system is to include quality control (QC) samples
(Sangster et al., 2006; Gika et al., 2014). QCs are also fundamental
to correct for batch effects in large-scale profiling studies where it
is impossible to include all the samples in the same analytical run
(Dunn et al., 2011; Kirwan et al., 2013). A QC sample is something
that is injected several times during the experiment so any changes
in the results of its analysis are due to analytical drifts. Commonly,
QC samples are either mixtures of chemical standards or pooled
samples, similar to the ones under analysis (Dunn et al., 2011;
Chen et al., 2014). The pooled QC has the advantage of being a
more faithful representation of the “chemical” space spanned by
the real samples. A good solution is to use QC samples of both
types. How many of them should be included in the sequence has
been already the subject of extensive investigation (Kamleh et al.,
2012; Godzien et al., 2014).

In terms of quality assessment, it is common practice to mon-
itor the signal of the internal standards added to the samples. A
more general solution is to periodically process the acquired data
and visualize them by a tool like principal component analysis
(PCA) (Brown et al., 2005; Theodoridis et al., 2008). In the score-
plot, QC samples should cluster together and no sign of drift with
the injection order should be visible. The relative standard devia-
tion (RSD) of the intensity of the features across the QC samples is
another important parameter that can be used to assess the qual-
ity of the analytical run. A distribution of the RSDs peaking below
the 20% is considered a sign of good reproducibility (Dunn et al.,
2011; Godzien et al., 2014).

At this level of the metabolomic workflow, the implementation
of an automatic pipeline can give several advantages. First, it can
easily create a fully randomized sample list with the appropriate
number of QC samples using the files containing the experimen-
tal metadata. In this way, randomization is done by a computer
and is bias-free; manual intervention is minimized and a coherent
sample naming is ensured. Additionally, the pipeline can be easily
used to generate QC plots to get an almost “real-time” feedback
on the experimental run.

DATA CONVERSION, STORAGE, AND ORGANIZATION
All mass spectrometers save raw data in proprietary formats. This
lack of standardization is a strong limitation for the generation
of “interoperable bioscience data” (Sansone et al., 2012). Many
metabolomics laboratories are equipped with instruments of dif-
ferent models and different vendors and in such a situation data
exchange and data comparison can easily become a nightmare. In
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an ideal world, raw data could be converted into open formats
and then stored, in view of their analysis and submission to pub-
lic repositories. Unfortunately, the real situation is not so simple:
the conversion of raw data is possible, but an important part of
the analytical information (configuration of the mass spectrom-
eter and of the chromatograph, etc.) cannot be easily extracted.
To avoid loss of precious information, then, it is commonplace to
store the raw data in both formats, open and proprietary. This has
to be taken into account when designing the data analysis pipeline
and the storage space. To reduce space requirements data com-
pression is advisable (Teleman et al., 2014), because open-source
files can be non-compressed.

Proposed strategies
For the conversion of raw data in proprietary formats, several
open-source standards are available. Among them, the common
data format (CDF) is quite popular. Unfortunately, CDF files are
not suitable to store multi-event MS experiments in a single file and
are not designed to store spectral metadata (e.g., collision energy,
precursor, etc.). More recently, XML-based solutions have been
implemented [like mzXML (Pedrioli et al., 2004), mzML (Martens
et al., 2011), etc.] and in this case multi-event experiments are
supported.

As a general rule, data export is possible by using vendor-
specific acquisition software, but unfortunately, a batch mode is
not always supported, leading to long and tedious point-and-click
sessions. As an alternative, the proteowizard (Kessner et al., 2008;
Chambers et al., 2012) suite can be used for batch mode conver-
sion, ideal for inclusion in a pipeline. The software is able to use the
original vendor-specific libraries, which are available if the vendor
data analysis software is installed. Unfortunately, not all types of
files can be converted with the current version of the software: the
most important exception is formed by the Waters QTOF RAW
data for which the lock mass recalibration is not applied during
conversion.

After conversion, the data have to be stored in a safe place and
the best system to do that depends on the specific IT resources
at hand. The cross-platform ISACreator software can be used to
create a compressed archive by using information contained in the
ISA-Tab file.

DATA PROCESSING
The term “data processing” commonly indicates the process
of summarizing data into a matrix with the intensity of each
experimental variable across all samples. This data matrix is
then the starting point for the subsequent statistical analysis. In
MS-based investigations, the experimental variables are mass-to-
charge ratios (m/z), in the case of instruments without chromato-
graphic separation, or tuples mass-to-charge ratio/retention time,
for the more common LC/MS or GC/MS platforms. Some analyt-
ical platforms also implement ion mobility devices to separate the
different ionic species, thus, adding a third “coordinate” to each
variable. However, achieving a good chromatographic alignment
across the various injections correcting for mass and retention
time shifts is the first goal. This is done to make sure that one
is comparing the same variable across all the samples. While the
good stability of modern mass spectrometers guarantees a good

reproducibility in the m/z dimension (accuracies below 3 ppm are
common nowadays), the reproducibility in the chromatographic
dimension can be an issue, in particular, in LC-MS. QC samples
mentioned earlier can be used to monitor these types of problems.

Metabolomics aims at the comparison of the (relative) concen-
tration of metabolites across samples. Unfortunately, the variables
measured by MS-based technologies in most cases are not metabo-
lites, but features. The problem is that there is no one-to-one
correspondence between features and metabolites, because ion-
ization is a complex process and several ions are generated from
the same neutral molecule. In almost all cases, tens of different
features in the data matrix represent each molecule. This redun-
dancy further decreases the sample-to-variable ratio: cases where
the number of samples is (much) smaller than the number of vari-
ables are called “fat” data matrices. In such a case, the statistical
tools used for biomarker selection have to deal with the“multiplic-
ity” problem, which actually limits the capacity of finding robust
and consistent biomarkers, even from datasets with many samples
(see later on).

To reduce the impact of this issue, it is necessary to take explic-
itly into account the relations among the different features, and
to “group” them together. For each metabolite, this should lead
to the reconstruction of its compound spectrum. These groups
can be created by using chromatographic information (features
coming from the same metabolite are co-eluting by definition)
or by profiting from known chemical relations among the ions
to identify isotopes and common adducts. At this level, it is also
possible to take into account that the correlation of the different
features across the different samples to increase the selectivity of
the grouping step.

At the end of this phase, the most representative feature of
each metabolite (or the pseudospectrum itself) can then be used
to measure the relative concentration of each metabolite in the
different samples, and to produce the “final” data matrix.

Proposed strategies
Data processing can be performed by using many different algo-
rithms, and an extensive description of their specific steps is out
of the scope of the present paper. The interested reader should
refer to the documentation of each specific software package or to
some comprehensive software review [e.g., Katajamaa and Oresic
(2007), Castillo et al. (2011)]. As a general consideration, however,
it is important to say that all the algorithms have advantages and
limitations. For this reason, there is no ultimate solution, and – as
always in metabolomics – it is necessary to find a good compro-
mise. Vendor-specific softwares are provided by all the instrument
manufacturers, and it is also possible to rely on cross-platform
solutions like the open-source MZmine (Pluskal et al., 2010) and
OpenMS (Sturm et al., 2008) or the freeware MetAlign (Lommen,
2009).

Some of these approaches have a graphical user interface; oth-
ers can be implemented in graphical software suites or web-based
interfaces to make them easily accessible to the lab scientist. As
already discussed, however, graphical interactive tools are not
ideal for pipelines, and scriptable solutions are to be preferred.
Among these, a place of merit is held by the R [R Core Team
(2014)] package XCMS (Smith et al., 2006). The development of
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the software started in 2006 and has gained momentum in the
last years, also thanks to several ancillary R packages, which have
been expanding its functionalities. The fact that it is written in R
makes its integration with cutting-edge statistical packages trivial.
Recently, the XCMS development team has been working on the
integration of XCMS with ISA-Tab (González-Beltrán et al., 2014).

Also, feature grouping can be performed by different algo-
rithms, e.g., the correlation-based R package CAMERA (Kuhl et al.,
2011) and the clustering-based MSclust software (Tikunov et al.,
2012).

ANNOTATION
The association of (groups of) experimental features to specific
metabolites is commonly referred as “annotation” and it is, most
likely, the biggest challenge for untargeted metabolomics exper-
iments (Brown et al., 2009; Neumann and Böcker, 2010; Prasad
et al., 2011; Dunn et al., 2013). As in the case of the meta informa-
tion, the Metabolomic Standard Initiative recommends minimum
reporting standards for annotation. The guidelines propose four
different “confidence” levels of annotation. They go from “Iden-
tified Compounds” – for which the identification is confirmed
by a comparison with the results of the analysis of a pure chem-
ical standard – to “Unknown” – in the cases where nothing is
known. The two intermediate levels are assigned to putatively
annotated compounds or putatively annotated classes of com-
pounds. For a certain identification, then, it is necessary to analyze
a pure chemical standard in the same conditions as the samples
(same chromatography, same MS method), complementing the
mass information with an “orthogonal” property as the retention
time.

All approaches that rely on the analysis of a set of chemical
standards, however, suffer of two major drawbacks: first, in many
cases it is necessary to re-measure the database of standards when
the analytical method changes; second, not for all metabolites a
commercial standard is available, in particular, for products of
specialized metabolism. This second point is of particular impor-
tance for biological systems with high chemical diversity like plants
or microorganisms. In addition, chemical standards can be very
expensive.

The implementation of retention time prediction algorithms is
a way to circumvent the first problem and reduce the experimen-
tal work. This approach gives good results in GC due to its higher
separative potential and the much higher standardization of GC
columns. Its extension to LC is the subject of important research
efforts (Boswell et al., 2011; Creek et al., 2011; Hall et al., 2012;
Stanstrup et al., 2013).

If a database containing chromatographic information is not
available, it is also possible to rely on “pure” MS databases contain-
ing full scan information and fragmentation (MS/MS) spectra.
This type of resource is often freely available online and there is
an important effort by the scientific community to improve the
quality, coverage, and standardization of online MS databases.
Beyond this, annotation can be improved not only by taking
advantage of many sources of external information like exper-
imental metadata but also by the biological relations between
the (partially) annotated metabolites (Creek and Barrett, 2014;
Morreel et al., 2014).

At the end of all these steps, however, a big fraction of the
features is still composed of unknown features, which – at the
best – have been grouped together into putative pseudospectra.
In this specific case, an interesting resource to go further can be
represented by in silico fragmentation engines, which are used to
propose MS spectra on the bases of the molecular properties of
the molecules. The outcomes of these algorithms can be used as a
helpful starting point to design further experimental assays aiming
at a definitive chemical identification.

Proposed strategies
Highly informative annotation databases based on the analysis
of pure chemical standards are developed in many laboratories,
often using in-house or proprietary software. As in the case of
raw data conversion, proprietary solutions can be easier to set up,
but they have their limits as far as cross-platform/cross-laboratory
portability is concerned.

In the case of open-source solutions, the R package metaMS
(see later on) implements a strategy to generate in-house anno-
tation databases both for LC and GC, based on the analysis of
injections of (mixtures of) chemical reference standards.

In the case of pure MS databases, which are easier to compare
across different instruments and different laboratories, it is possi-
ble to rely on rich online resources like “The Human Metabolome
Database” (Wishart et al., 2007)7 and Mass Bank (Horai et al.,
2010)8, the RIKEN ReSpect database for phytochemicals (Sawada
et al., 2012), and the Metlin database (Tautenhahn et al., 2012a) to
name a few. For a current list of available resources in the domain
of plant biology, refer to Fukushima and Kusano (2013). Some
of these databases can also be can be automatically queried to
automatically confirm or propose metabolite annotation.

As far as “in silico” aided annotation, one could refer to the
MetFrag fragmentation engine (Wolf et al., 2010), which can be
incorporated into an R pipeline by using the (still experimental)
MetFragR package9. Another interesting resource is the recently
developed CFM-ID software package and web server (Allen et al.,
2014), which offers an accessible and open software architecture.
To improve annotation, in silico predictions can also be coupled
with multistage MSn data (Ridder et al., 2013).

As an alternative, an interesting approach is the one followed
by the SIRIUS (Rasche et al., 2010) software, which uses the “simi-
larity” of the fragmentation trees to assign unknowns to chemical
and metabolic classes.

STATISTICAL DATA ANALYSIS
The development and application of statistical methods to
metabolomics datasets is a full research field on its own and can-
not be covered in this paper. The interested reader is referred to
several review papers [e.g., Hendriks et al. (2011)]. In this context,
however, it is useful to highlight some general properties of untar-
geted metabolomic datasets, which make their statistical analysis
particularly challenging.

7http://www.hmdb.ca/
8http://www.massbank.jp/
9http://github.com/c-ruttkies/MetFragR
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Raw metabolomics data are often characterized by “unwanted”
variability of biological and technological nature. To try to account
for these effects, it is necessary to perform sample normalization
(De Livera et al., 2012) and this step should not interfere with the
statistical analysis. Batch-to-batch variability is a particular case of
technical variation, which is particularly important for large-scale
studies. As already mentioned, QC samples can be used to mini-
mize the impact of this phenomenon (Dunn et al., 2011; Kirwan
et al., 2013).

From a more fundamental point of view, untargeted
metabolomics experiments almost invariably result in “fat” data
matrices where the number of variables by far exceeds the num-
ber of samples, and this tendency is aggravated by the steady
increase in sensitivity of the new analytical platforms. In terms
of statistical analysis and biomarker selection, these types of data
are particularly challenging due to multiplicity issues (Franceschi
et al., 2013). In addition, the features are often not independent
and highly correlated, as a result of the ionization process itself,
but also because of biological relations among the various metabo-
lites. Even though an efficient annotation process would transform
a feature-based data matrix into a compound/metabolite-based
one, the result usually shows more metabolites than samples.
For this reason, scientists often organize the different metabolites
into higher level “networks” based on widespread chemical reac-
tions (oxidation, reduction, . . .) or on prior metabolic knowledge
(Creek and Barrett, 2014; Morreel et al., 2014).

DATA SUBMISSION TO PUBLIC REPOSITORIES
As a fundamental principle, the data supporting any scientific
work must be made available to the research community to allow
independent evaluation of the results. This practice has the addi-
tional value of contributing to the incremental progress of science,
since new evidence or new experiments can be integrated with the
established body of knowledge.

As is already the case in many other -omics technologies, the
availability of the raw data is going to become a prerequisite for
publication. To be useful, raw data should be made available in
open formats, accompanied by a set of standardized metadata
and organized into coherent repositories, the philosophy behind
open-source data analysis pipelines.

Proposed strategies
As far as metabolomics experiments are concerned, an important
repository for public datasets is the Metabolights Project (Haug
et al., 2012) at the European Bioinformatic Institute (EBI)10.
Datasets can be submitted in ISA-Tab format and can be made
publicly available for the research community. The use of ISA-Tab
ensures a high-level of quality and standardization of the datasets.
The need of high-quality data open access repositories for -omics
data is also demonstrated by “Scientific Data” initiative of the
Nature Publishing Group11. In that journal, MetaboLights is listed
among the “Recommended data repositories” for metabolomics
data.

10http://www.ebi.ac.uk/metabolights/
11http://www.nature.com/sdata/

SOFTWARE TOOLS
This section describes the pipeline developed at our institute
(partially), addressing the aforementioned challenges.

MetaDB
To store and organize metabolomics data, a web-based software
platform called MetaDB was developed. MetaDB is designed to
make the implementation of a robust metabolomic data man-
agement workflow in the routinary laboratory practice. For each
experiment, the interface requires as input the metadata as ISA-Tab
files prepared by ISAcreator. Metadata are then used to create the
randomized MS acquisition sequence and to store the data at the
end of the experiment. MetaDB acts also as a high-level interface
to the metaMS R package, which is used for data processing and
peak list generation (see the following section for further details).

To keep data organized and ensure confidentiality the software
requires a login and stores data for each user separately. Spectra
data, results, and metadata can be uploaded, and later searched
and downloaded again. Due to these functionalities, MetaDB can
be used as a simple LIMS system.

The workflow of MetaDB consists of six different steps (see
Figure 2):

1. Upload of metadata in ISA-Tab format.
2. Preparation of MS acquisition sequence, including sample

randomization.
3. Upload of raw and derived spectral data files.
4. Data processing for feature alignment and detection with

metaMS.
5. Visualization of data for quality assessment.
6. Preparation of data for upload to public repositories.

Steps 2–5 might have to be repeated to ensure the best analyti-
cal reproducibility. Between step 5 and 6, there may be additional
data processing steps, currently not performed in the MetaDB
workflow, but these can easily be included. To guarantee the repro-
ducibility of each processing step, the software is returning also a
log file (R_library_versions.log) with the version number of the R
libraries loaded in background.

Description of metadata in ISA-Tab format
Metadata are inserted into MetaDB using the ISA-Tab file format.
ISA-Tab was chosen for two different reasons. First, it is the format
used by public data repositories such as MetaboLights. Second,
convenient tools for creating and validating these files are already
available (ISAcreator). The use of ISAcreator, also ensures the use
of standardized terms for the description of the biological samples
and of the analytical protocol.

Preparation of MS data acquisition sequence
After inserting metadata, an acquisition sequence is automatically
generated. This sequence is based on a predefined pattern that
includes the samples in randomized order, separated by blank
injections (Blank) and QC samples. The nature of these QC sam-
ples depends on the experiment, but often a pooled sample is
used, or, alternatively, a mixture of chemical standards (StdMix).
The frequency and the number of these QC samples is a parameter
stored in the MetaDB configuration settings.
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FIGURE 2 |The six steps in the MetaDB workflow. (1) Metadata is uploaded
to MetaDB using ISA-Tab formatted files. (2) A MS acquisition sequence is
generated with randomized samples. (3) After MS data acquisition, raw and

derived spectral data files are uploaded to MetaDB. (4) Data are processed
using MetaMS. (5) Quality control of acquired data. (6) Data are prepared for
storage and possibly for upload to public repositories such as MetaboLights.

Besides the important aspect of sample randomization, the
use of an automatically generated acquisition sequence ensures
a correct linking of the sample names with the spectral data files,
preventing possible typing errors, which may occur during man-
ual preparation of a sample list. From MetaDB, the acquisition
sequence can be exported as a comma separated values (CSV)
file and directly imported in the platform-specific MS Instrument
control software.

Upload of raw and derived spectral data files
In many cases, the final acquisition sequence might differ from the
one proposed by MetaDB. Typically, this happens because some of
the samples or even parts of the acquisition have to be repeated,
due to instrument failures or low quality acquisitions. To account
for this common case, the actual sequence can be uploaded to
MetaDB at the end of the experimental run. Also, at this level, the
software checks the consistency between the acquisition names
and the raw files present in the acquisition folder.

At the end of the acquisition run, the raw data are uploaded to
MetaDB and automatically linked to their corresponding samples.
MetaDB takes care of uploading the files on a network-attached
storage (NAS) disk, connected with MetaDB. Alternatively, data
can be compressed into a ZIP archive, which is uploaded through
a web-interface. In order to be processed by the pipeline, the raw
data have to be converted to open-source formats. As already
discussed CDF, mzXML, or mzML files are commonly gener-
ated, either directly by the MS instrument control software or
alternatively using external tools such as Proteowizard. After the
conversion, those files are also uploaded to MetaDB in the same
way as raw data. In a future version, direct transformation of raw
files to derived spectral data files might be integrated into MetaDB.

MetaMS data processing for feature alignment and detection
Data processing is performed in background by the metaMS R
package (see the following section). The user simply selects the
set of processing parameters from a dropdown list, for clarity, all
the parameters are associated to the name of the instrument used
in the data acquisition phase. Additional sets of processing set-
tings can be made available to the user as described in the metaDB
manual. At this stage, it is possible to restrict the retention time
considered in the data analysis. This can sometimes prevent sam-
ple misalignments. If a metaMS in-house database is available, it
can be used to generate annotation information. For GC data, this
is based on matching pseudospectra, for LC data individual peaks
are matched.

This data analysis step can be repeated as often as necessary.
After data processing is finished, the final peak table produced by
metaMS can be either downloaded as a CSV file or as a binary
RData file.

Quality control plots
After processing data with metaMS, MetaDB implements some
basic plots, based on PCA and RSD calculation to make a quick
survey of the analytical run and, if needed, suggests repeating some
of the injections. As discussed in the previous sections, in a suc-
cessful run, the cloud of “real” samples should be clearly separated
from the QC injections and the blanks in the PCA scoreplot. This
type of visualization allows the detection of sample drift, outliers
or batch effects. Since PCA results are very much dependent on
the scaling of the data, several types of scaling are available. As a
further QC check, MetaDB displays a histogram showing the dis-
tribution of the RSDs of the intensities of the features across the
QC samples.
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To correct for small differences in the efficiency between the
different samples within the analytical run, it is also possible to
perform total ion current (TIC) normalization. Besides, the PCA
and RSD plots, MetaDB also produces a plot showing the inte-
grated TIC over each sample. This survey plot can reveal the
presence of a global change in the sensitivity of the analytical
platform.

Prepare data for storage
Once data processing is finished, the results and the raw data can
be added to the ISA-Tab files containing the metadata, and stored
either locally or in a web-based repository.

Source code of MetaDB, the installation description, and
user manuals containing further technical information can be
obtained from GitHub12. An Ubuntu 14.04 VirtualBox with
preinstalled metaMS, web-framework and example data can
be downloaded at https://drive.google.com/file/d/0B09xZzKu_
n8yem9hdWY0VjQ2eDQ/view?usp=sharing.

MetaDB is written as a three-tier Java application using the
Grails framework (version 2.2.3). MySQL (version 5.5) is used as
a relational database. CSS layout and Javascript functionalities are
based on the Twitter Bootstrap framework (version 3.0.2). The
installation requires Java 1.7 and Tomcat 6.

All the Java code used for parsing the ISA-Tab files was
taken from ISAcreator (version 1.7.5)13. ISA-Tab validation is
achieved using the ISAcreator configuration (MetaboLightsCon-
fig20130507) taken from MetaboLights (see text footnote 10).

MetaMS
MetaMS (Wehrens et al., 2014) is an add-on to XCMS, avail-
able from the Bioconductor repository, developed specifically in
the context of untargeted metabolomics providing facilities for
building in-house databases of chemical standards. In the pack-
age, the key processing parameters are organized within a specific
S4 class. With the associated methods, it is straightforward to
define a new set of processing parameter optimized for the specific
chromatographic and mass spectrometric conditions.

MetaMS can be used to process LC-MS and GC-MS analytical
runs. For a detailed description of the GC-MS/LC-MS workflow,
the reader can refer to the vignettes of metaMS. In summary, for
LC-MS, the main part of the metaMS pipeline is similar to the
XCMS pipeline, consisting of peak picking, grouping, and align-
ment. The additions from metaMS focus on improved annotation
using in-house databases, an m/z and intensity-dependent mass
accuracy window and an explicit definition of minimal support
for annotation. The outcome is a matrix summarizing for all sam-
ples the intensities of the aligned peaks. The GC-MS pipeline in
metaMS differs somewhat from the standard XCMS workflow,
working on so-called pseudospectra rather than individual peaks.
Here, the output is a relative intensity measure for chemical com-
pounds rather than individual peaks. The compounds may be
annotated (when there is a match with the database), or labeled as
Unknowns.

12http://github.com/rmylonas/MetaDB
13http://github.com/ISA-tools/ISAcreator

ILLUSTRATIVE STEP-BY-STEP WORKFLOW
In this section, we describe a complete metabolomic data analysis
workflow on a test set of samples using our previously described
pipeline.

SAMPLE DESCRIPTION
Grape leaves were obtained from Regent and Phoenix varieties
cultivated at experimental vineyards in Rattey (Mecklenburg West-
Pomerania, North Germany) and San Michele all’Adige (Trentino,
North Italy). Adult, undamaged, and healthy leaves from above
the grape main zone were sampled at the development stage of
the berries when the grape had ~70% of their size (July 2012).
Four leaves were collected for each plant, from 10 different vines,
in order to have 10 biological replicates for each combination
of variety and country. The Italian samples were directly frozen
and stored at −80°C, while the German grape samples were
frozen under liquid nitrogen, packed in dry ice, and shipped to
Italy within 24 h and stored at −80°C. The samples were ana-
lyzed by ultra performance liquid chromatography-time of flight
mass-spectrometry (UPLC-QTOF-MS) with the analytical proto-
col described in the Supplementary Material. QC samples were
obtained by mixing an aliquot of the powder obtained from the
different samples.

METADATA
An ISA-Tab file containing the metadata information of the exper-
iment was created with ISACreator and is available at the Metabo-
Lights website (MTBLS137). All necessary information concern-
ing the experiment and the samples were entered as described
in the MetaboLights user manual. Since at this stage the final
order of the acquisition is not known, MS Assay Names were
left free.

MS DATA ACQUISITION, CONVERSION, AND STORAGE
The ISA-Tab file was uploaded to the metaDB web-interface to
prepare the randomized sample list. The analytical sequence has
the following pattern: at the beginning, there is 1 Blank, 1 chem-
ical standard mix, followed by repetition of 4 samples, 1 StdMix
until there are no samples left. The acquisition sequence was then
exported as a comma separated version (CSV) file and directly
imported into MassLynx (Waters Corporation) to set up the acqui-
sition run. After the analytical run, the raw data were converted
to CDF by using the Databridge conversion software included
in Masslynx (Waters Corporation). The raw data and their con-
verted version were uploaded to the final storage space through
MetaDB.

DATA PROCESSING
Once extracted files were added (indicated by a blue “processed”),
they were selected in the web-interface and analyzed using
metaMS. All runs apart from the blank injections and the standard
mixtures were selected. The data with retention times lower than
1 min and higher than 21 min were disregarded, annotation was
not performed. The data were preprocessed with a set of parame-
ters optimized for the specific chromatographic and instrumental
conditions. The specific settings are included in the test virtual
machine.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology December 2014 | Volume 2 | Article 72 | 8

https://drive.google.com/file/d/0B09xZzKu_n8yem9hdWY0VjQ2eDQ/view?usp=sharing
https://drive.google.com/file/d/0B09xZzKu_n8yem9hdWY0VjQ2eDQ/view?usp=sharing
http://github.com/rmylonas/MetaDB
http://github.com/ISA-tools/ISAcreator
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Franceschi et al. Data processing in MS-based metabolomics

FIGURE 3 | Principal component analysis scoreplot produced by metaDB on the example dataset. Different colors are used to identify the two different
sample classes and the QCs. The different samples can be identified also by their sample names. This feature can be useful for the fast identification of critical
samples.

QUALITY ASSESSMENT
Principal component analysis was used to check the quality of the
injection. The resulting scoreplot is displayed in Figure 3. The
points in the figure show the position of the different samples
in the plane of higher variance. From the plot, the separation of
the samples coming from the different grape varieties is clearly
visible. One can see that the QCs constitute a tight cluster in the
middle of the “real” samples. This behavior is the indication of
a good analytical reproducibility because it shows that the vari-
ability due to the analytical platform (the spread of the black
points) is much smaller than the biological variability between
the samples.

Figure 4 shows how the integral of the TIC varies over the
full analytical run of 50 injections (~20 h). As expected, the effi-
ciency of the instrument is decreasing as the ionization source gets
less efficient. This plot does not indicate the presence of partic-
ularly critical injections, which would require the re-injection of
some of the samples. Taken together, the two quality plots indicate
a satisfactory analytical run. The experimental raw data can be
then uploaded to metaDB, which will take care of their organiza-
tion and long-term storage. At this stage, the peak table generated
by metaMS can be downloaded and used for further statistical
analysis.

CONCLUSION
The use of robust and reproducible data analysis pipelines is a key
prerequisite to exploit fully the analytical potential of untargeted
metabolomics and de facto is mandatory to achieve scientifically
reproducible results.

FIGURE 4 | Variation of the integral of theTIC over the analytical run.

Pipelines can be realized in many different ways, but the
use of high-level scripting languages like R or Python represent
an ideal solution in term of robustness, speed of development,
computational efficiency and reproducibility. In particular, they
allow implementing in a modular and easy way cutting-edge
bioinformatic tools for metabolomics.
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To make these solution available and useful in the daily labora-
tory activity, the pipeline should be integrated with independent
user-friendly skins, which take care of inserting them in the rou-
tinely analytical workflow, minimizing manual intervention as
much as possible and maximizing the amount of high quality
meta information.

The combined use of metaMS and MetaDB represent our solu-
tion to this growing need of standardization, both tools are open
source and they have been designed to integrate smoothly with the
EBI-EMBL Metabolight initiative.

FUTURE WORK
MetaDB has been designed with the objective of matching the
needs of researchers working in the laboratory while main-
taining the minimal requirements of a robust metabolomics
study. The inclusion of metaMS opens up all tools available in
the XCMS/CAMERA software suites; in order to enhance user-
friendliness and usability, processing parameters are grouped and
stored in separate chunks, allowing the easy selection of “stan-
dard” settings for specific instruments. MetaDB is not designed
to perform parameter optimization, which should be done man-
ually at a lower level. It could, e.g., be useful to include in
a separate template the possibility of optimizing the process-
ing parameters, which could then be saved as metaMS settings
object. The implementation of automatic algorithms to per-
form this optimization step (Brodsky et al., 2010) could also be
possible.

A specific workflow to process the injections of the pure chem-
ical standards and generate the database used for annotation,
already part of the metaMS package, is planned for a forthcoming
version of MetaDB.

SUPPLEMENTARY MATERIAL
The details of the analytical method used for the analysis of the test
dataset are provided as supplementary material.The Supplemen-
tary Material for this article can be found online at http://www.
frontiersin.org/Journal/10.3389/fbioe.2014.00072/abstract
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