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A current bottleneck in GC–MS metabolomics is the processing of raw machine data into a
final datamatrix that contains the quantities of identified metabolites in each sample. While
there are many bioinformatics tools available to aid the initial steps of the process, their use
requires both significant technical expertise and a subsequent manual validation of iden-
tifications and alignments if high data quality is desired. The manual validation is tedious
and time consuming, becoming prohibitively so as sample numbers increase. We have,
therefore, developed Maui-VIA, a solution based on a visual interface that allows experts
and non-experts to simultaneously and quickly process, inspect, and correct large numbers
of GC–MS samples. It allows for the visual inspection of identifications and alignments,
facilitating a unique and, due to its visualization and keyboard shortcuts, very fast interac-
tion with the data.Therefore, Maui-Via fills an important niche by (1) providing functionality
that optimizes the component of data processing that is currently most labor intensive to
save time and (2) lowering the threshold of expertise required to process GC–MS data.
Maui-VIA projects are initiated with baseline-corrected raw data, peaklists, and a database
of metabolite spectra and retention indices used for identification. It provides functionality
for retention index calculation, a targeted library search, the visual annotation, alignment,
correction interface, and metabolite quantification, as well as the export of the final data-
matrix.The high quality of data produced by Maui-VIA is illustrated by its comparison to data
attained manually by an expert using vendor software on a previously published dataset
concerning the response of Chlamydomonas reinhardtii to salt stress. In conclusion, Maui-
VIA provides the opportunity for fast, confident, and high-quality data processing validation
of large numbers of GC–MS samples by non-experts.
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INTRODUCTION
Metabolomics is a field of study in which several different
technologies are employed to identify and quantify metabolites
in a given sample. Common technological platforms include
nuclear magnetic resonance (NMR), liquid-chromatography
mass-spectrometry (LC-MS), and gas chromatography–mass
spectrometry (GC–MS). While the large variety of chemical char-
acteristics of metabolites in biological samples is such that a com-
plete metabolomic coverage, including lipids [a field of research on
its own that has been termed lipidomics (Blanksby and Mitchell,
2010)], requires a combination of several technological platforms
(Zhang et al., 2012). GC–MS technology combines high resolving
power (Dunn et al., 2011), reproducibility (Pietzke et al., 2014),
and a robust identification of a broad range of metabolite classes
(Sumner et al., 2003).

One bottleneck in GC–MS metabolomics studies is the pro-
cessing of raw machine data into a final datamatrix that con-
tains metabolite abundances for every sample measured. Several
processing steps are required, and usually include mass-specific

baseline correction, smoothing, peak detection, retention index
(RI) calculation, metabolite identification and alignment (IAA),
and quantification. In addition to vendor software shipped with
mass spectrometers, several freely available software packages exist
to process GC–MS data, including, but not being limited to, XCMS
(Smith et al., 2006), MzMine 2 (Pluskal et al., 2010), MetAlign
(Lommen, 2009), TagFinder (Luedemann et al., 2008), Maltcms
(Hoffmann et al., 2012, 2014), and others (Jonsson et al., 2005).

While these solutions allow for an automatized sample pre-
processing, their use requires significant technical expertise and
time to optimize parameters, which is often difficult to accomplish
in biologically focused laboratories. Even after optimization of
algorithm parameters, manual validation is nonetheless required
for high-quality datasets and quickly becomes prohibitively time
consuming as sample numbers increase (Coble and Fraga, 2014).

We have, therefore, developed a collection of software mod-
ules named VIA (Visual Identification and Alignment) that is
aimed at providing a fast, user-friendly, and simultaneous man-
ual inspection and correction of identifications and alignments of
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large numbers of GC–MS samples. It is based on Maui (Maltcms
User Interface, http://maltcms.de/maui/index.html), a freely avail-
able, open-source, NetBeans Rich Client Platform-based GC–MS
processing software. Maui-VIA also contains modules for RI cal-
culation, a targeted library search for metabolite identification,
metabolite quantification, and the export of the final datamatrix,
which contains the user-validated metabolite abundances for every
sample in the project. Maui-VIA, therefore, fills an essential niche
to ensure dataset quality and validity irrespective of the software
used for preprocessing steps, sample number, and user (software
is available at http://bimsbstatic.mdc-berlin.de/kempa/software/
kempaSoftware.html).

MAUI-VIA – PREPROCESSING OF DATA AND MAUI-VIA
SETUP
Depending on the MS vendor, a variety of acquisition and pre-
processing software is available. ChromaTOF (version 4.50.8.0),
the software shipped with the GC–TOF–MS used in this study
(Leco-Pegasus III-TOF-MS-System, Leco), was used both for data
acquisition and preprocessing. In the context of this paper, we
will define preprocessing as the following steps as carried out in
ChromaTOF: resampling of data (optional, sample reduction rate:
4, mass bins: 70–600, export: peg format), mass-specific baseline
correction, smoothing, and peak detection (baseline offset: 1, data
points used for smoothing: 13, peak width: 4, signal-to-noise ratio:
50, number of apexing masses: 2). Raw data and peaklists (required
fields: Name, Retention Index, Area, UniqueMass, Quant Masses,
R.T. (s),S/N, Integration Begin, Integration End,Full Width at Half
Height) were then exported (netcdf and csv file formats, respec-
tively). While Maui-VIA works fastest when using netcdf files, it
is also possible to import raw files in the open mzML format
(Martens et al., 2011). Peaklists should be converted to the csv file
format exported by ChromaTOF and must contain the required
fields mentioned above.

It is important to note that in addition to the samples of inter-
est, a wash sample that only contains the alkane mixture used for
the determination of RIs should be measured. The wash sample
will later be used to facilitate the correct determination of alkane
retention times in each sample to calculate peak-specific RIs.

Maui-VIA is based on the Netbeans Rich Client platform and
is written in the Java programming language, making its use oper-
ating system independent. For its installation and execution, it
is, therefore, necessary to install the Java Virtual Machine (JVM).
Depending on the project size, processing in Maui-VIA might be
memory intensive. It is, therefore, advised to allocate at least 4
gigabytes (GB) of RAM to the JVM, and at least 3 GB of RAM to
Maui-VIA itself by modifying the –Xmx tag in its configuration
file (installationFolder/Maui-VIA/etc/Maui-VIA.conf).

MAUI-VIA METABOLITE DATABASES
Metabolite databases that can be imported into Maui-VIA are in
the text-based msp format that was developed by the National
Institute for Standards and Technology. The Lib2NIST and NIST
MS Search programs are freely available and are able to convert and
export into msp format (http://chemdata.nist.gov/mass-spc/ms-
search/, http://chemdata.nist.gov/mass-spc/ms-search/Library_
conversion_tool.html).

In addition to the msp format requirements, Maui-VIA
requires the metabolite database entries to contain the metabo-
lite name, derivatization information, derivatization product,
retention index preceded by “RI:”, and the name of the data-
base, separated by underscores. A specific example would be:
Phenylalanine_(1TMS)_BP_RI:1551_pubDB.

The entries must be unique and contain all five elements. The
database library that was used to analyze the Chlamydomonas
reinhardtii dataset described in this paper, containing correctly
structured metabolite entries, is available online.

MAUI-VIA PROJECT SETUP, DATA IMPORT, AND
METABOLITE DATABASE CONVERSION
A new project is created with the baseline-corrected raw files
(netcdf or mzML format) of a measurement batch. All files need
to be associated with a “treatment” attribute that can be used to
group related samples. Once a project is successfully created in the
form of a db4o database (https://source.db4o.com/db4o), the user
needs to import a peaklist in ChromaTOF format for each sam-
ple as well as a metabolite database in msp format that will later
be used to identify metabolites in the samples. All functionality is
accessible by a right-click on the project and traversing the menus
displayed. The metabolite database needs to be converted within
Maui-VIA for subsequent visualization.

While the previous steps complete the required project setup,
the user is provided with the option of loading a file specifying
quantification masses for metabolites present in the provided data-
base. The file should contain one line per metabolite identifier in
the provided database, each line containing the full metabolite
database entry name and the desired quantification mass/es (for
multiple masses, separated by semicolons), separated by tabs. An
example file is available online.

For every database entry for which quantification masses are
not specified in the file, or in the case of the user providing no
quantification mass file, the quantification will be performed using
the five masses with highest intensity of the library spectrum,
excluding all masses below 85 and the masses 147 and 148, lat-
ter of which result from the trimethylsilyl (TMS) derivatization
and are, therefore, not metabolite specific.

MAUI-VIA RETENTION INDEX DETERMINATION
The user is required to provide the number of alkanes present in
the mixture used in the project as well as their approximate reten-
tion time in the wash sample. This information is used to identify
the alkane peaks in the wash by searching for the peaks with maxi-
mal intensity considering only the alkane-specific masses provided
by the user (for electron ionization, for example, the masses 71,
85, and 99). These peaks are matched by calculating the minimal
difference between candidate peak and provided alkane retention
times. The alkane peaks identified in the wash are used to produce
a “wash database,” containing the spectra and retention times of
the alkanes identified in the wash.

Maui-VIA then performs a targeted search for the alkanes in
all samples by comparing the wash database alkane spectra and
peak spectra found within a time window of ±15 s in each sam-
ple. Spectral comparisons are scored throughout Maui-VIA by a
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cosine similarity score between the two mass spectrum vectors A
and B, and are calculated as follows:

similarity =

∑n
i=1 Ai x Bi√∑n

i=1 (Ai)
2 x

√∑n
i=1 (Bi)

2

This similarity score is multiplied by a factor of 1000 to obtain a
more convenient number format. The peaks that were assigned the
highest similarity score are putatively assigned the alkane names
and are subsequently visualized in the Maui-VIA IAA interface,
where they can be inspected and, if necessary, corrected. Once all
alkanes have been assigned in all samples, RIs of all peaks in all
samples are calculated by linear interpolation (Kovats, 1958; van
Den Dool and Kratz, 1963; Strehmel et al., 2008).

MAUI-VIA REVERSE SEARCH
After the RI correction has been applied to the project, the user
is ready to identify metabolites in the samples of interest. There
are two principle ways of putatively identifying peaks in a sam-
ple: (1) every peak in every sample could be compared to entries
in a metabolite database and, if a match is found, be assigned an
identity (here termed “forward search,” the strategy employed by
ChromaTOF) or (2) a database of metabolites of interest can be
used to search for the presence of its entries in the samples of
interest (here termed “reverse search”).

One complication of the first strategy is the possibility of assign-
ing a single metabolite identifier to multiple peaks in a single
sample. False positives in this untargeted search are theoretically
minimized by setting a minimum similarity score required for
putative identification; however, experience has shown that setting
a single threshold for a broad range of metabolites is difficult since
an appropriate threshold for a metabolite of interest is likely either
too stringent or insufficiently stringent for many others. Striking
a compromise results in labor-intensive inspection and correction
of great numbers of both false positives and false negatives.

Maui-VIA, therefore, employs a reverse search (RS). All peaks
within an RI window of±13 RI units of each sample are compared
to the respective entries in the provided metabolite database. The
comparisons are ranked by the cosine similarity score penalized
for large RI deviations (see Table 1). The peak with the highest
score is putatively identified, provided that its similarity score is
greater than the threshold score of 800. Thus, at most one peak
is assigned a metabolite identifier per sample, while the score
threshold ensures a low rate of false positives for most database
entries.

Once the RS is completed, putative identifications are assigned
and can be inspected and, if necessary, corrected using the IAA
interface.

Table 1 | Similarity score penalties based on RI difference of peaks to

database entries.

RI difference (RI units) <1.5 >1.5 >3 >4 >5

<3 <4 <5

Score penalty (%) 0 3 5 7 15

MAUI-VIA VISUAL IDENTIFICATION AND ALIGNMENT
INTERFACE
The Maui-VIA IAA interface is composed of two windows, each
of which displays one of the two principle pieces of informa-
tion obtained from GC–MS methods to identify metabolites. The
RIView window displays the distribution of peaks in a sample
according to their RI and, therefore, visualizes GC retention time
(Figure 1). The MSView visualizes peak spectra, therefore repre-
senting the information obtained by the MS (Figure 2A). Both the
RIView and MSView visualizations are based on the Java charting
library JFreeChart (http://www.jfreechart.org/).

The IAA was designed with the intention of allowing the visu-
ally guided alignment and annotation of a large number of samples
at the same time to allow for a fast recognition of IAA errors. Align-
ment, in the context of this paper, does not result from an initial
grouping of features that are then collectively identified. Rather,
the RS putatively identifies metabolites in each sample individ-
ually, which simultaneously produces a putative alignment. Both
can then be inspected and corrected using the IAA.

The crucial difference to most other visualizations of GC–MS
data is the abstraction of chromatograms into a binary represen-
tation. Each peak detected in a sample is represented by a vertical
bar, whose size is independent of the underlying peak shape and
size, and whose position is specified by the peak apex RI (Figure 1).
This simplification allows a user to immediately grasp the struc-
ture of acquired data, and alignments of peak groups become
immediately obvious. The first row of the chart is always occu-
pied by the database whose metabolite entries were searched for
in the samples, followed by the samples themselves. The database
entries can be traversed by the “previous” and “next” buttons of
the RIView.

The three rows highlighted in the RIView are represented in the
MSView, which is composed of four rows of mass spectrum charts
(Figure 2A). The first row displays the spectrum of the currently
selected library peak in the middle panel as well as the difference
between all spectra of currently annotated sample peaks and the
library spectrum in the left panel. Quantification masses for the
current metabolite are indicated in red in all spectra. In the right
panel, two buttons can be used to traverse the samples vertically
(indicated by the highlighting in the RIView) and a label displays
the number of currently annotated samples for the selected library
metabolite (Figure 2A).

The three rows below represent the highlighted sample rows in
the RIView. The middle spectrum of each row corresponds to the
spectrum of the currently selected peak in the corresponding sam-
ple (colored blue in the RIView; putative identifications of other
library entries are red; already corrected and confirmed identifi-
cations are gray or green if currently selected), while the spectrum
panels to the left and right represent the spectra of those peaks that
are immediately to its left and right, respectively. Spectrum charts
also include information on the cosine similarity score of each
peak calculated by the RS as well as the quantification mass spe-
cific and total intensities of each peak. The buttons “previous” and
“next” (Figures 2B,C) in each row allow for the horizontal traver-
sal of samples, leading to updates of the mass spectrum charts
in the MSView (Figure 2A, fourth row) and the RIView peak
coloring (selected peak orange, previous putative identification
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FIGURE 1 |The IAA RIView. The “RS” (reverse search) button initiates the
RS. The “SF” (save fusions) button saves fusions made in the IAA into the
project database. The dropdown list in the top middle allows the user to
directly jump to a metabolite database entry of interest, while the “Previous”
and “Next” buttons (also accessible via keyboard shortcuts as indicated on
the buttons) serve to traverse the database one entry at a time. The “AP”
button opens the MSView, and the “Export” button exports accepted peak
groups into a database container. The RI chart y-axis is populated by the

metabolite database followed by rows of samples, and peaks abstracted into
vertical bars are plotted along the x -axis according to their RI. Differently
colored peaks indicate different stages of processing: unknown peaks are
black, putatively identified peaks are red, the library entry currently selected
and its corresponding putative identifications in the samples are colored blue,
while the horizontal traversal within a sample as controlled by the MSView is
indicated by orange. The three highlighted rows of samples are displayed in
the MSView.

remains blue, Figure 1, lowest highlighted row). Samples in which
the database entry is not annotated appear blank in the MSView
and have no blue or orange peak in the RIView (Figure 1, high-
lighted middle row, Figure 2A, third row). The database as well
as vertical and horizontal sample traversal functions allows for
the fast exploration of measurement batches in the excess of 100
samples.

The second intention was to provide the ability to quickly cor-
rect IAA errors to ensure validity and expert-level data quality.
Inspection and correction speed are facilitated by all functions
being accessible by keyboard shortcuts. Vertical traversal allows for
the fast inspection of putative identifications. Horizontal traversal
allows for the fast scanning of surrounding peaks for each sam-
ple if the putative identification appears dubious. The functions
“Set Found” and “Set NotFound” allow the user to add and remove
putative identifications from samples, respectively (Figures 2B,C).
The “Fuse Left” and “Fuse Right” functions allow the user to fuse
the currently selected peak with the peak to the immediate left or
right, respectively (Figures 2B,C). The fusion simply recalculates
the peak RI to be the average of the two fused peaks, and sets the
new peak start and end scans to the first and last scan of the two
fused peaks, respectively. This function is useful in cases of incor-
rect peak deconvolution that occur in ChromaTOF, where masses
belonging to a single peak are split into two separate peaks. For
the reverse case, in which a single peak contains two co-eluting
metabolites, the “Duplicate” function is available (Figure 2D). It
duplicates all currently selected (blue in RIView) peaks, so that
one copy can be assigned to one of the two co-eluting metabolites

each. Please note that this is only valid if the metabolites do not
share any quantification masses. The “Accept Peak” button for
each row recalculates the similarity score for the currently selected
peak without the RI penalty used in the RS and assigns the cur-
rently selected database identifier (Figure 2C). For convenience,
the functions “Set AllFound” and “Set AllNotFound” enable the
user to add or remove putative identifications to/from all sam-
ples if it is obvious that the RS has failed due to insufficient peak
quality and/or intensity (Figures 2D,E). Similarly, “Fuse Region”
allows the fusion of peaks across all samples in a common, user-
specified RI window with a single function (Figure 2E). Once a
library metabolite is deemed correct, “Accept Group” locks the
annotation, meaning that the peaks have been validated, should
not be changed, and are ready to be exported (Figure 2E). “Enable
Edit” removes the lock, and makes peak groups accessible again
(Figure 2D). In combination, these functions allow the fast tra-
versal of the metabolite database one metabolite at a time, as well
as the inspection and correction of putative identifications of the
RS in all samples (please note that this is most efficiently and con-
veniently achieved by the use of two monitors, each displaying the
RIView or MSView).

Finally, the “Export” button in the RIView exports all accepted
peak groups into a peak group container (named “samplesPeak-
Groups”) (in the case of the RI calculation module, “Export”
calculates RIs for all peaks in all samples).

If the user’s methodological setup includes the addition of a
normalization standard to be able to correct for sample prepa-
ration and injection differences, she simply needs to include the
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FIGURE 2 |The IAA MSView. (A) The MSView is composed of four rows of
spectra and buttons that are accessible via keyboard shortcuts. The chart in the
middle of the top row displays the mass spectrum of the currently selected
library entry. The chart to the left shows the spectrum difference between the
library entry and putative assignments in the samples. Putatively assigned
metabolites in samples are displayed in the middle chart of the three rows
beneath, the charts to their left and right displaying the mass spectra of the
peaks to the immediate left and right, respectively. (B,C) The samples can be
traversed horizontally by the “Previous” and “Next” buttons of each row as
well as vertically by the “Previous Samples” and “Next Samples” buttons in the
right panel of the top row. Assignments of peaks in a sample can be removed

by the “Set NotFound,” and added by the “Set Found” buttons, respectively.
Peaks can be fused with their right or left neighbor using the “Fuse Left” and
“Fuse Right” buttons in each row. “Accept Peak” leads to the assignment of
the library identifier to the currently selected peak and recalculates the
similarity score. (D,E) Peaks containing a combined spectrum of co-eluting
metabolites can be duplicated with the “Duplicate” button. For convenience, it
is possible to add or remove peak assignments to/from all samples at once
with the “Set AllFound” and “Set AllNotFound” buttons, as well as to fuse
entire regions of peaks with the “Fuse Region” button. Once identifications
and alignments are confirmed, “Accept Group” locks the selection from further
editing and marks the identifications to be ready for export.

standard in the metabolite database provided and process it like
any other metabolite identification. The normalization of metabo-
lite intensities of each sample can then be carried out after data
export.

MAUI-VIA METABOLITE QUANTIFICATION AND EXPORT
Once the peak group container has been exported, the user can
quantify the metabolites in each sample. Since there is no perfect
rule for the choice of quantification masses, the default strategy
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was chosen to be the use of the five most abundant masses in
the library metabolite spectrum. This has proven to be a good
compromise between a robust quantification ensured by consid-
ering the abundance of several fragments of a metabolite, and a
specific quantification ensured by choosing masses that are not
likely shared by co-eluting metabolites. Since quantification mass
specificity cannot be guaranteed by any general strategy and is
dependent on the analyzed samples as well as the metabolites of
interest (Lisec et al., 2006), Maui-VIA allows the user to specify
quantification masses for every database entry to ensure quantifi-
cation specificity. A reasonable strategy, therefore, would be to use
the default of the five most abundant masses for most metabolites
and specifying quantification masses only for those known to have
co-eluting metabolites with identical masses.

Quantification is performed by collecting all scans of a peak as
defined by its peak boundaries determined by the peak calling

algorithm employed during preprocessing from the baseline-
corrected raw data files used to initiate the project. The sums of
the intensities of each quantification mass of all scans are summed,
leading to the determination of the summed peak area for all quan-
tification masses. This information is saved in the peak group
container. One advantage of this is that if it becomes apparent that
some quantification masses were poorly chosen, the user can sim-
ply delete the peak group container, reload an updated version of
the quantification masses file, re-export the peak group container,
and repeat the quantification step.

In order to export the final datamatrix, a right-click on
the peak group container offers an export option, followed by
an option of specifying a folder name. Two datamatrices are
exported in csv format, one containing the raw area peak val-
ues (“rawAreaMatrix.csv” – quantification of the peak detection
software if provided in the initially imported peaklists in the

FIGURE 3 | Metabolite responses to salt stress in
Chlamydomonas reinhardtii are indistinguishable when
comparing Maui-VIA with ChromaTOF. Statistical differences in
amino acids (alanine, isoleucine, phenylalanine, and proline),
tricarboxylic acid cyclic intermediates (citrate, fumarate, malate,
succinate), and glucose between the salt stress (150) and control

condition (0) are identical, independent of the software used (light
blue=ChromaTOF, orange=Maui-VIA). Metabolite levels are plotted
as the mean of the log2 transformation of the fold change of the
presented conditions to the untreated control time point of 0 h.
(t -test, FDR-corrected, ns, not significant, *p-value <0.05, ***p-value
<0.01, error bars display 95% confidence intervals, n=3).
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“Area” field), and the area peak values determined by Maui-VIA
(“AreaMatrix.csv”).

MAUI-VIA CHLAMYDOMONAS REINHARDTII USE CASE
To demonstrate the validity of the sample annotation and quan-
tification using Maui-VIA, nine samples of a previously published
C. reinhardtii dataset (Mastrobuoni et al., 2012) were processed
manually by an expert in ChromaTOF, and the result compared
to the same samples analyzed with Maui-VIA. The dataset con-
taining baseline-corrected raw files and peaklists, an example
metabolite database of nine metabolites, and a quantification mass
specification file is available online.

The dataset is composed of three biological replicates of three
conditions: (1) samples taken at the initial time point before the
application of a salt stress, (2) samples taken after a continu-
ous 150 mM sodium chloride salt stress for 24 h, and (3) control
samples taken after 24 h without salt stress.

The samples were normalized to the internal normalization
standard 13C-sorbitol. When plotting the log2 transformed value
of the fold change of the control and treatment samples after 24 h
to the initial condition, it is evident that the data obtained would
lead to identical conclusions independent of the software used for
analysis and metabolite class investigated (Figure 3). The minimal
differences likely result from the different quantification strate-
gies applied. Importantly, independent of the software used for
analysis, t -tests for all metabolites displayed in Figure 3 proved
to be qualitatively identical [statistically significant at α= 0.05,
false discovery rate (FDR)-corrected (Benjamini and Hochberg,
1995)], and the p-values themselves were strongly correlated
(Figure 4).

FIGURE 4 | p-values of metabolite differences obtained with Maui-VIA
and ChromaTOF strongly correlate. FDR-corrected p-values obtained for
each metabolite are plotted for Maui-VIA and ChromaTOF on the y -axis and
x -axis, respectively. p-values indicating statistical significance are indicated
in red, others in black. The r 2 value of the linear regression displayed
is 0.987.

CONCLUSION
Maui-VIA solves two principle issues currently pervasive to GC–
MS-based metabolomics research: (1) The time cost associated
with the production of validated, high-quality datasets of many
samples and metabolites and (2) the difficulty for non-experts
to process GC–MS data efficiently without requiring extensive
training to produce meaningful information. In our hands and
depending on project size and desired depth of analysis, Maui-
VIA has decreased processing time by around 5- to 10-fold. In
general, the more samples are contained in a project, the more
time is saved in comparison to other manual validation methods.
Furthermore and crucially important, its interface makes GC–MS
data processing seem intuitive even to complete novices, who have
been able to reproduce entire validated datasets in the excess of 50
samples annotated with at least 80 metabolites within a week of
beginning their metabolomics careers in our laboratory.

It is our hope that Maui-VIA will be helpful to experts by vastly
decreasing processing time in the face of ever growing experimen-
tal complexity and non-experts by making GC–MS technology
more accessible and intuitive.
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