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Rapid development of high-throughput
-omics (e.g., proteomics) and genetic engi-
neering technologies together with an array
of new metabolic modeling tools dur-
ing this century has led to the emer-
gence of new fields of biological research
termed systems biology and synthetic biol-
ogy. The successful exploitation of these
developments is evidenced by the cre-
ation of increasing number of genetically
engineered recombinant cells with supe-
rior characteristics (Jantama et al., 2008;
Becker et al., 2011) or totally novel func-
tions (Nakamura and Whited, 2003; Yim
et al., 2011; Paddon et al., 2013) for diverse
sectors such as chemicals and healthcare
(Huang et al., 2012; Lee et al., 2012; Sun
and Alper, 2014). However, there exists
a significant gap in bioprocess perfor-
mance between studies of the literature and
the requirements for an industrially fea-
sible bioprocess for chemical production
(Van Dien, 2013). Overall bioprocess per-
formance [productivity (gram/liter/hour),
titer (gram/liter) etc.] has to be increased
further for successful industrial-scale com-
mercialization to drive the shift from fossil
fuel to bioprocess-based chemical produc-
tion and cost-effective production of novel
drugs (Van Dien, 2013). Hence, there is
great need for novel approaches address-
ing these key challenges in chemical and
healthcare sectors.

POTENTIAL OF PROTEOME
OPTIMIZATION
With this opinion, we propose that a
novel approach of proteome optimiza-
tion carries a substantial potential for
addressing the aforementioned challenges

in bioprocess development. That poten-
tial arises from the fact that cells express
proteins not essential (e.g., flagellar, heat
or acid stress proteins) for growth under
well-controlled optimal conditions, typi-
cally realized in biotechnological processes.
This leads to non-efficient use of protein
synthesis capacity (translation machinery)
and energy for bioprocesses. As translation
capacity is believed to be one of the growth-
limiting factors, at least in the bacterium
Escherichia coli (Klumpp et al., 2013), syn-
thesis of non-essential proteins sequesters
ribosomes potentially lowering the syn-
thesis capacity of target molecule produc-
tion. Thus removing the expression bur-
den of non-essential proteins, i.e., creation
of lean-proteome strains, could enable to
specifically manipulate the allocation of
ribosomes for higher synthesis of pro-
teins leading to increased target molecule
production. Optimization of the cellular
proteome through experimental testing of
strains with optimized expression of non-
essential proteins and inclusion of protein
synthesis capacity constraints in metabolic
modeling could open a new avenue for the
creation of superior cell factories.

Initial experimental confirmation of the
potential of optimization of the layer of
protein synthesis capacity for increasing
the maximum specific growth rate (µmax)
of cells comes from two studies of E. coli
investigating the effects of heterologous
protein expression on µ (Scott et al., 2010;
Bienick et al., 2014). Both studies show for
several heterologous proteins (e.g., LacZ,
eGFP) that increasing their expression has
a linear negative effect on µ. Their data
suggest that for expression of every 1% of

heterologous protein per dry cell weight,
µ decreases by ~3%. It would be sensible
to assume that a similar correlation would
exist for the opposite case – decreasing the
fraction of non-essential proteins by 1%
would lead to an increase in µ by ~3%. Our
proposal is also supported by two studies of
Bacillus subtilis showing that reducing the
expression load of proteins non-essential
under bioprocess conditions by ~9% frac-
tion from the total proteome through the
deletion of the flagellar/motility regulator
gene sigD leads to a ~30% increase of both
µmax and biomass yield (Fischer and Sauer,
2005; Muntel et al., 2014). Further support
comes from recent experiments of D’Souza
et al. (2014), which show that deletion
of single amino acid, vitamin, or nucle-
obase biosynthesis genes from E. coli results
in higher µmax compared to the wild-
type strain when both strains are grown
on medium containing the amino acid,
vitamin, or nucleobase that the deletion
strain was auxotrophic for. These obser-
vations are consistent with earlier chemo-
stat studies with B. subtilis (Zamenhof and
Eichhorn, 1967) and E. coli (Dykhuizen,
1978) where mutants impaired in trypto-
phan biosynthesis demonstrate significant
fitness advantages in the presence of tryp-
tophan relative to prototrophic cells. More
importantly, D’Souza et al. (2014) show
that deleting genes with higher protein
expression cost leads to a greater growth
advantage.

The results presented above suggest that
proteome resource optimization through
decreasing the fraction of non-essential
proteins could lead to faster growth and
thus also to better bioprocess performance.
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For instance, target molecule productivity
could be increased in growth-coupled pro-
duction processes by enabling faster growth
at the same expression level(s) of target
molecule production-related proteins. On
the other hand, recombinant protein titers
could be significantly elevated by allocating
more proteome resources for target protein
expression at the expense of lower synthesis
of non-essential proteins even at the same
µ and/or protein synthesis rate.

REDUCED-GENOME APPROACHES
A conceptually similar approach of creating
reduced-genome strains for industrial pur-
poses has been applied in few cases before
(Pósfai et al., 2006; Mizoguchi et al., 2008;
Unthan et al., 2014; Xue et al., 2014). How-
ever, these efforts concentrated on reducing
the genome and neglected the effects of
gene deletions on the cellular proteome.
The approach of deleting large chunks
of the genome, instead of specific genes,
based on gene function and not on pro-
tein abundance was probably responsible
for the observed minor positive effects on
cellular growth and target molecule pro-
duction. While the latter studies focused
on large-scale genome reduction, exper-
imental technologies enabling more tar-
geted and accurate engineering of strains
with reduced load of gene expression have
recently emerged. Hence, now the success-
ful execution of the concept of targeted
optimization of the layer of protein syn-
thesis capacity is feasible due to the recent
rapid progress in proteome-wide absolute
quantitative proteomics (Arike et al., 2012;
Ahrné et al., 2013; Wiśniewski et al., 2014)
and high-throughput genome engineering
technologies [e.g., Multiplexed Automated
Genome Engineering (MAGE; Wang et al.,
2009), trackable multiplex recombineering
(TRMR; Warner et al., 2010)]. Thus, the
time is ripe to design and create lean-
proteome strains possibly leading to supe-
rior bioprocess performance.

CHALLENGES WITH PROTEOME
OPTIMIZATION
The main challenge with creating lean-
proteome strains is hitting the correct
genes/proteins, i.e., genes, which deletion
does not lead to detrimental effects. This
is a serious concern even in the most
studied bacterium E. coli since func-
tions for a third of its proteins are still

unknown (Keseler et al., 2013) while only
~300 proteins are considered essential
for E. coli (http://ecoliwiki.net/colipedia/
index.php/Essential_genes). It is impor-
tant to point out that knowing func-
tions/essentiality for more proteins is not
the objective per se – it is actually more
important to know the functions/
essentiality of the proteins with the
biggest translational burden (abun-
dance × length), as their deletion pre-
sumably leads to stronger effects. The
good news here is that for many organ-
isms, the proteome mass (a good proxy
for length) distribution follows the Pareto
principle – ~20% of proteins make up
~80% of the proteome mass (Ghaem-
maghami et al., 2003; Maier et al., 2011;
Schmidt et al., 2011; Valgepea et al., 2013).
Thus, instead of targeting hundreds of
genes/genome areas like in the reduced-
genome approach described above, one
could theoretically greatly increase the key
metrics of bioprocess performance (titer,
yield, productivity; Van Dien, 2013) by
deleting as few as ~10 non-essential genes
with the highest translational burden in
E. coli (in total 7% of proteome; Valgepea
et al., 2013) and substituting the“freed”7%
of the total proteome with target molecule-
related proteins. Importantly, current
mass-spectrometric techniques of absolute
proteome quantification (Arike et al., 2012;
Ahrné et al., 2013; Wiśniewski et al., 2014)
are accurate enough to determine the pro-
teins with the biggest translational burden
on the whole-proteome level.

STRATEGIES OF PROTEOME
OPTIMIZATION FOR CREATING
LEAN-PROTEOME STRAINS
The first and most important step toward
creating lean-proteome strains is absolute
quantitative proteome analysis of the initial
recombinant strain. Accurate characteriza-
tion of the full proteome is needed for the
compilation of lists of non-essential target
proteins with the biggest translational bur-
den. We propose two strategies for creating
superior lean-proteome strains by target-
ing proteins with the biggest translational
burden, currently specifically for E. coli:

1. The first strategy targets proteins
with known functions and presumably
unnecessary under optimal bioprocess

conditions, e.g., pH, temperature, oxy-
gen tension control; defined substrate
feed; stirring. These could be proteins
involved in stress responses (acid, heat,
and osmotic shock), alternative sub-
strate transport and catabolism and
cellular movement (flagellar).

2. The second strategy targets proteins
with unknown functions with the
biggest translational burden. Benefi-
cial for both approaches is the growth
screen of all the Keio collection single
(Baba et al., 2006) and double deletion
strains (personal communication with
Prof. Hirotada Mori) that can be used
to determine the genes/proteins, which
should and should not be targeted.

Another important step is the exper-
imental construction of lean-proteome
strains and selection for better production
strains. Instead of reducing the proteome
one protein at a time, one should target tens
of genes with an approach similar to MAGE
(Wang et al., 2009), which constantly gen-
erates genetic heterogeneity in the pool of
mutants allowing the generation of thou-
sands of lean-proteome strains within a
few days. The challenge of selecting for
better production strains could be tackled
by combining several screening methods.
First, one could screen for fast growth as
reduction of non-essential protein expres-
sion should lead to faster growth. Sec-
ond, high-producing strains could be iso-
lated using fluorescence activated cell sort-
ing (FACS) using a sensor system based
on a fluorescent readout corresponding to
target molecule levels.

POTENTIAL OF METABOLIC MODELING
Lastly, one would greatly benefit from an
in silico metabolic model, which would
enable quantitative prediction of the effects
of removing non-essential proteins on tar-
get molecule production. This should be
a model, which incorporates the cellu-
lar proteome with the two central fea-
tures of regulation of µ – cell geom-
etry and cell cycle – and ties the lat-
ter to the fluxes of flux balance analy-
sis (FBA)-type models for in silico analy-
sis and design of lean-proteome strains.
Recently, we have seen serious progress
into this direction by the development of a
novel single-cell model (Abner et al., 2013),
next-generation FBA-type of genome-scale

Frontiers in Bioengineering and Biotechnology | Systems Biology February 2015 | Volume 3 | Article 11 | 2

http://ecoliwiki.net/colipedia/index.php/Essential_genes
http://ecoliwiki.net/colipedia/index.php/Essential_genes
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valgepea et al. Lean-proteome strains for metabolic engineering

models of metabolism and gene expression
(O’Brien et al., 2013; Liu et al., 2014), and a
whole-cell model (Karr et al., 2012). Surely,
these models will be advanced further and
hopefully they will also be able to deter-
mine which genes/proteins to delete for
creating superior lean-proteome strains.

CONCLUSION
Based on the recent rapid advances in
high-throughput mutant generation and
proteomics technologies together with
the emerging novel whole-cell modeling
approaches, we conclude that the time is
ripe for the metabolic engineering com-
munity to directly focus on proteome opti-
mization leading to the creation of lean-
proteome strains with superior target mol-
ecule production characteristics.
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