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Tandem repeats (TRs) are frequently observed in genomes across all domains of life. Evi-
dence suggests that some TRs are crucial for proteins with fundamental biological func-
tions and can be associated with virulence, resistance, and infectious/neurodegenerative
diseases. Genome-scale systematic studies of TRs have the potential to unveil core
mechanisms governing TR evolution and TR roles in shaping genomes. However, TR-
related studies are often non-trivial due to heterogeneous and sometimes fast evolving TR
regions. In this review, we discuss these intricacies and their consequences. We present
our recent contributions to computational and statistical approaches for TR significance
testing, sequence profile-based TR annotation, TR-aware sequence alignment, phyloge-
netic analyses of TR unit number and order, and TR benchmarks. Importantly, all these
methods explicitly rely on the evolutionary definition of a tandem repeat as a sequence
of adjacent repeat units stemming from a common ancestor. The discussed work has
a focus on protein TRs, yet is generally applicable to nucleic acid TRs, sharing similar
features.

Keywords: tandem repeats, molecular evolution, protein domain, tandem repeat annotation, sequence profile
model

Tandem Repeats in Genomic Sequences

A tandem repeat (TR) in genomic sequence is a subsequent recurrence of a single sequence motif.
TRs are described by the length of the minimal repeating motif (unit), the number of units,
and the similarity among its units. The similarity of initially identical TR units fades with time
through point mutations and indels, masking their shared ancestry. Diverged TR units, even when
unrecognizable by eye, canmaintain structural similarity over long evolutionary times [e.g., Figure 1
in Kajava (2012)]. While the mechanisms shaping TRs are poorly understood, they can evolve by
duplication/loss of TR units, recombination, and gene conversion (Pearson et al., 2005; Richard et al.,
2008). TRs canmutate by replication slippage (Levinson andGutman, 1987; Ellegren, 2000), whereby
the mispairing of a slipping-strand during the DNA synthesis causes a loss or gain of units as loops
of TR units form hairpin structures (Mirkin, 2006).

Tandem repeats are frequent in coding and non-codingDNA in species throughout the kingdoms
of life. Genomic TRs are a rich source for genetic variability, providing a wide range of possible geno-
types at a given locus (Nithiananthrajah and Hannan, 2007) and apt opportunity for selection, not
only on long evolutionary scales but also during somatic cellular processes. Particularly staggering
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FIGURE 1 | Tandem repeats in genomic sequences. (A) An example TR
with three units and the corresponding MSA of its units. (B) Different parts of a
TR motif (R= right and L= left) have different histories after a single duplication

with shifted TR units. Shown are these duplication histories as phylogenies of
the right and left parts of the TR motif. (C) Five scenarios of overlapping and
non-overlapping TR annotations.

variation in TR unit lengths and numbers is characteristic to
genomic TRs, such as ribosomal DNA arrays crucial for the
translation machinery, and satellite DNA comprising the main
component of functional centromeres (Richard et al., 2008). In
protein-coding genes, mutations in TRs are likely to alter the
structure/function of the protein product. Even in non-coding
TRs, mutations can have serious fitness consequences by affect-
ing gene regulation, transcription, and translation (Usdin, 2008).
Crucially, TRs have attracted attention because of their medi-
cal relevance: many human proteins with TRs have been linked
to monogenic disorders, typically affecting the nervous system
(Siwach and Ganesh, 2008; Hannan, 2010). There is a high inci-
dence of TRs in virulence factors of pathogenic agents, toxins, and
allergens (Jorda et al., 2010).

The Methodological Challenges for
Tandem Repeats Detection

Systematic analyses of genomic TRs will help to better understand
the biological processes governing and governed by TRs and their
functional relevance. Such studies rely on the large-scale TRs
detection (TRD). Numerous methods for TRD have been devel-
oped. Yet, since they are based on different algorithmic paradigms
and heuristics, there is a large discrepancy between TR anno-
tations produced by different algorithms for the same sequence
(Leclercq et al., 2007; Merkel and Gemmell, 2008; Mudunuri
et al., 2010; Schaper et al., 2012). For example, with four TRD
methods applied to the human proteome, themajority of TRswere
annotated by a single detector, only 9.8% were annotated by two
and a meager 1.1% by at least three (Schaper et al., 2012).

The TR heterogeneity contributes to the large variability among
TRD methods. The TRD is relatively simple for identical units.

If the TRmotif is unknown, this task is computationally expensive
for long sequences, requiring an exhaustive search with no infor-
mation on TR unit length, number, or position in the sequence
(search space in O(N3) for sequence length N). Substitutions and
indels in the TR region cause major challenges to TRD: with
decreasing unit similarity, TR regions become hard to discern.
Indels introduce length variability between individual TR units,
increasing the TR search space to O(2NN3).

Furthermore, the original TR unit boundaries can be shifted
due to new unit duplications (Figure 1A, Benson and Dong, 1999;
Rivals, 2004). Clear boundaries are preserved only in some cases,
for example, when protein TRs are confined by the exon structure.
Therefore, unambiguously dividing a TR region into units of sim-
ilar lengths may not accurately reflect the TR duplication history.
Occasionally, the TR history is described by different phylogenies
for different parts of the TR motif (Figure 1B). Thus, defining the
consensus TR motif is problematic, and TRD methods typically
differ in the predicted unit lengths and boundaries.

Ultimately, TRD methods differ by TR definitions. One TR
definition borrows from string matching in computer science,
whereby TRs are defined by a repetitive regular expression, allow-
ing for a fixed proportion of dissimilar characters among TR
units. This viewpoint enables straightforward exhaustive TRD
algorithms, but lacks biological interpretation. Alternatively, from
a structure perspective, protein TRs may be defined by structural
repetitions, which allows TR detection for structurally conserved
TR units, even with low sequence similarity [see, e.g., the struc-
tural TR database Repeats DB, Di Domenico et al. (2014)]. Yet,
defining structural repeats is in itself problematic. Finally, the
evolutionary definition states that a TR stems from ancestral unit
duplications. This viewpoint has a direct biological interpretation
reflecting the TR generating mechanism. Most TRD methods,
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however, lack an explicit TR definition, which obscures the search
objective and TRs are typically detected by empirical properties
of unit similarity. This further impedes the ability to evaluate
the statistical properties of a method. Improving TRD requires
a rigorous statistical framework based on a clear TR definition
described as a biologicallymeaningfulmathematicalmodel. Then,
a genuine TR can be distinguished from a non-TR sequence by
comparison with a model describing random sequences. Relying
on a mathematical TR model means that the TRD method’s
behavior can be predicted for different scenarios, including the
evaluation of false predictions.

One possibility is to define TR units as related by a common
ancestral unit under a Markov substitution model and a standard
phylogeny model reflecting the unit duplication history (Schaper
et al., 2012). The evolutionary distance t from currently observed
TR units to their common ancestor can be estimated bymaximum
likelihood. For any tentative TR region with predicted units, this
conveniently allows for statistical hypothesis testing using a likeli-
hood ratio test (LRT; Schaper et al., 2012). The null hypothesis
“t=∞” represents that the estimated evolutionary distance is
so large that TR units have no common origin and could have
appeared by chance. Rejecting the null suggests that the given
units are related (with finite t) and therefore are assumed to be
TRs by definition. Such approach provides a statistical framework
to validate predicted TRs, filtering out potential false positive
predictions.

The variability in TR annotations produced by different TRD
methods warns against relying on one specific algorithm. Dif-
ferent methods not only achieve optimal power for different
combinations of TR divergence and unit length, but also vary in
their accuracy across the TR space. Therefore, to obtain the most
complete and accurate set of TR annotations for a given sequence,
we suggest thatmultiple TR detectors should be used [maximizing
the number of true positives, e.g., as in Pellegrini et al. (2012)]
followed by validation with an LRT (controlling false positives at
a fixed significance level).

Annotating TRs with Sequence Profile
Models

Many common protein domains found in tandem are listed in
sequence profile databases, such as Pfam (Punta et al., 2011),
PROSITE (Sigrist et al., 2010), SMART (Letunic et al., 2012),
Repbase (Jurka et al., 2005), and Dfam (Travis et al., 2013). For
example, of all de novo annotated TRs with unit length ≥15, we
found that only few had not been described in Pfam (2.1% in
Arabidopsis thaliana and 11.5% in human). Thus, TR annotation
can profit strongly from the existing databases.

Profile-based annotation typically relies on sequence profile
hidden Markov models (HMMs). Circular connections in an
HMM allow the annotation of full TR units (Bucher et al.,
1996; Schaper et al., 2014), as implemented in pftools (Sigrist
et al., 2013) and in our Python TR Annotation Library TRAL
(http://elkeschaper.github.io/tral/). General profile HMM anno-
tation can be used to detect TRunits [e.g., HMMER; Eddy (2011)],
but a subsequent analysis is required to annotate the whole TR

region, potentially including diverged TR units that, without
considering the whole TR region, lack statistical significance.

Importantly, sequence profile HMMs can be used to refine
de novo annotations. De novo detected TR units provide seed
motifs that can be converted to sequence profile models (e.g., with
hmmbuild from the HMMER package). These models can then
be used to re-annotate sequences. The advantage is twofold: first,
the quality of annotation is homogenized among TRs from dif-
ferent TRD methods; second, annotations on homolog sequences
become comparable.

An Example Pipeline for Meta-Prediction of
Genomic TRs

A plausible TR annotation pipeline in three steps could be (1)
identify a putative TR unit seed motif; (2) detect all tandem
occurrences of this motif in the sequence, forming a putative TR;
and (3) for each putative TR validate its statistical significance and
filter out redundant predictions. We describe this TR annotation
workflow inFigure 2; all functionalities are implemented in TRAL
(http://elkeschaper.github.io/tral/).

Tandem repeat seed motifs are obtained from sequence profile
databases and multiple de novo TRD algorithms. Circular profile
HMMs are built from these TR seeds and consequently used
to annotate TR regions in a sequence. All annotated TRs must
be statistically validated, for example, using an LRT. A multiple
testing correction may be required dependent on the application
[e.g., Saville (1990)]. TRs that fail the test are assumed to be false
positive predictions and are discarded. Combining several meth-
ods leads to redundant predictions, which is not limited to the rare
case where two TR predictions fully coincide. Due to differences
in predicted unit boundaries or unit numbers, it is often difficult
to decide whether two overlapping TR annotations describe the
same TR or, rather, nested or neighboring TRs (Figure 1C). To
filter redundant predictions, several ad hoc criteria may be used.
For example, overlapping TRs may be seen as redundant (the

FIGURE 2 | Overview of a generic TR annotation workflow.
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required degree of overlap demands another ad hoc decision;
Figure 1C, b–d). Using the evolutionary TR definition, we pro-
pose one possible criterion based on the representation of a TR
region as a multiple sequence alignment (MSA) of its TR units.
Characters grouped in one MSA column are assumed to derive
from a common ancestral character. Given this, one of two TR
annotations may be seen as redundant if the characters in two
annotations are grouped into columns similarly by the two corre-
spondingMSAs (Figure 1C, b). Model-based test statistics may be
defined to recognize redundant TRs, deciding if two independent
TR models provide a better description of these TRs compared to
one common model.

We used de novo and profile-based methods to annotate TRs
in the entire UniprotKB/Swiss-Prot (UniProt Consortium, 2014,
v2013-08) with the proposed pipeline (Figure 2). A considerable
proportion of these sequences contain TRs: 46% in Eukaryotes,
29% in Archaea, and 27% in Bacteria. These TRs, across all king-
doms of life, are dominated bymicrosatellite (typically< 10 bp) or
short minisatellite TRs (~10–100 bp) with few units.

Probabilistic MSA with TRs

When aligning homologous sequences, often we are not aware
of the presence of TRs. Yet, due to uneven TR unit gain/loss
among the homologs, TR-containing MSAs are error-prone, since
standard indel penalty schemes do not account for the potential
variation in TR region length. Some MSA methods accounting
for sequence repeats produce local alignments (Raphael, 2004;
Phuong et al., 2006; Treangen et al., 2009). However, a global
alignment is required for evolutionary inferences, such as for the
estimation of TR unit history. Sammeth and Heringa (2006) pro-
posed a global MSA method with fixed TR unit boundaries. Yet,
unit boundariesmay be distorted by indels, slippage, and recombi-
nation. Modeling TRs explicitly in the MSA graph representation
allows TR units to start at any position, adequately penalizing
indels corresponding to unit gains/losses, and to reconstruct the
evolutionary history of TR unit events. The implementation Pro-
GraphMSA+TR (Szalkowski and Anisimova, 2013) uses a prob-
abilistic phylogeny-aware approach similar to PRANK (Löytynoja
and Goldman, 2005), achieving not only improved alignment
quality, but also a posteriori estimation of rates of evolutionary
events, such as TR unit indels. For example, ProGraphMSA+TR
was applied to leucine-rich repeats (LRRs) in a gene family of
type III effectors determining the pathogenicity in agriculturally
important bacteria Ralstonia solanacearum. The estimates of TR
indel frequencies in different clades of a gene phylogeny suggested
that TR indel rate variation contributes to the diversification of
this protein family [Figure 9 of Szalkowski andAnisimova (2013)].
Variation in LRR unit numbers might contribute to adaptive
processes in this gene and to pathogenesis on different plant hosts.

Phylogenetic Approach to Study the
Evolution of TRs

Tandem repeat unit phylogenies reconstructed from homolo-
gous TRs carry much evolutionary signal, even with short units

(Schaper and Anisimova, 2014; Schaper et al., 2014). These
phylogenies inform about unit duplication histories and TR unit
gain/loss rates, allowing to study selection on TRs and their
functional relevance. Clustering patterns in TR unit phylogenies
describe the unit conservation between species. If the TR unit
number and order in orthologs regions from different species are
perfectly conserved throughout the evolution, then the phylogeny
of all TR units consists of clades formed by orthologous unit
copies, each reflecting the phylogeny of the whole region (or
species) [Figure 1B of Schaper et al. (2014)]. In contrast, if TR
regions are fully separated, then a speciation event is followed by a
series of TR unit gain/loss events, and the TR unit phylogeny con-
sists of species-specific monophyletic clades of TR units [Figure
1A of Schaper et al. (2014)].

Tandem repeat unit phylogenies from pairs of orthologs can
be used to backtrack the evolution of TRs from a single species
(Schaper et al., 2014) or across an entire species tree – using
the all-against-all pair-wise approach (Schaper and Anisimova,
2014). In contrast to multispecies TR unit phylogenies, for pair-
wise TR unit phylogenies, the statistical significance of observ-
ing perfect conservation and separation patterns is computed
exactly (Schaper et al., 2014). On the other hand, multispecies
TR unit phylogenies suffer fewer reconstruction errors due to
the additional information on the unit evolution from additional
orthologs.

Our large-scale analyses of eukaryotic proteomes revealed an
extremely deep conservation of some protein domain TRs (dTRs),
many dating to hundreds million years ago and some even to
the times of separation between human and yeast (0.6–1.6 billion
years ago) or red algae and green plants (~1.6 billion years ago).
Conserved dTRs span much of the TR diversity of proteomes.
For example, in human 81% of detected distinct dTR types have
been conserved at least to the ancestor of mammals at least in
one protein (Schaper et al., 2014). The distribution of conserved
domain types is highly heterogeneous: 68% of all conserved dTRs
are described by only 5% of all TR types detected in human.
Yet, many conserved TRs are rare and occur only in a single
protein. Similar numbers were observed in plants (Schaper and
Anisimova, 2014).

In contrast, very few dTRs have separated between closely
related species. In human, dTRs separated within mammals are
dominated by zinc finger repeats (~50%), followed by DUF1220
(~8%; Schaper et al., 2014). In A. thaliana, dTRs separated within
magnoliophytes are dominated by LRRs (~40%), followed by
ankyrin (~12%) (Schaper and Anisimova, 2014). For both species,
separated dTRs are enriched in de novo annotations, i.e., rare and
presumably recent dTRs, which are perhaps more prone to unit
gains/losses due to relaxed selection or due to higher mutation
rates as a result of a high among-unit sequence similarity.

Simulating Genomic TRs

Benchmarking and hypothesis testing in bioinformatics must
often rely on simulated data since the truth is rarely known. For
example, only the observation of identical TR units qualifies them
as a true TR with certainty. Yet this is only the simplest scenario,
which is of little practical relevance. With diverged or shifted TR
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units, unbiased benchmarks are challenging to construct from
real data. Model-based simulation offers a powerful means to
benchmarking and hypothesis testing in bioinformatics studies
of TRs. Simulations enable comparisons of competing hypothe-
ses and help to reveal methodological weaknesses or detect and
estimate important factors. Simulations are not only crucial for
benchmarking new TRD methods, but also to study the under-
lying evolutionary mechanisms of genomic TRs. For example, to
describe the biological mechanisms for specific TR types, patterns
or parameter estimates observed in these data can be compared
with those obtained from sequences simulated with alternative
models of TR evolution. Sequences with TRs may be generated
not only with the dedicated models of evolution by unit gain/loss
with fuzzy units boundaries, e.g., SlippageSim (Szalkowski and
Anisimova, 2013), but also with other general sequence sim-
ulators that allow gene family evolution by mutations, indels,
gene gain/loss, recombination, etc. [e.g., Dalquen et al. (2012)].
For example, sequences with TRs of different divergence and
unit lengths were used to benchmark the MSA method Pro-
GraphMSA+TR that accounts for sequence TRs (see above). The
evaluation of the power of TRD methods also relies on simulated
sequences with TRs (the alternative hypothesis). Yet the high
power is irrelevant without the evaluation of false positive TRD
rates, which must be done on TR-free data (the null hypothesis).
Furthermore, simulated TR-free data helps to validate TR-specific
findings: the comparison of patterns found in simulated TR-free
sequences with those observed in sequences with TRs serves to
disentangle TR-specific findings from those that may occur in

genomic sequences in general. A simple approach is to simulate
TR-free data by drawing k-mers from a (k - 1)-th order Markov
model based on empirical frequencies (Robin et al., 2007). In
contrast to drawing single characters from their frequency distri-
bution, simulating k-mers mimics natural local correlations while
choosing small k minimizes the chance of hidden TRs within
a k-mer.

Conclusion and Perspectives

Tandem repeats are diverse in their size, type, unit similarity,
and distribution across genomes.Methods discussed above enable
accurate detection of TR orthologs with strongly conserved unit
configurations, or on the contrary, with highly changing unit
numbers. Due to the heterogeneity of TRs, large-scale studies
should be followed up by studies that focus on specific TR
types and their effects on molecular processes. Our TR scans
of eukaryotic proteomes provide a plentitude of cases to inves-
tigate with respect to their functional roles. While many TRs
were linked to key functions, phenotypic changes, or disease
predisposition, the biological mechanisms generating and pre-
serving TRs in genomes are poorly understood. New studies
of genomic TRs only fuel our fascination with these genomic
features, calling for further research and for the development of
dedicated methods. Further development of rigorous statistical
models of TR generating mechanisms will help to improve TRD
methods, and to shed some light on biological forces shaping these
sequences.
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