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We present results of our machine learning approach to the problem of classifying GC-MS
data originating from wheat grains of different farming systems. The aim is to investigate
the potential of learning algorithms to classify GC-MS data to be either from conven-
tionally grown or from organically grown samples and considering different cultivars. The
motivation of our work is rather obvious nowadays: increased demand for organic food
in post-industrialized societies and the necessity to prove organic food authenticity. The
background of our data set is given by up to 11 wheat cultivars that have been cultivated
in both farming systems, organic and conventional, throughout 3 years. More than 300
GC-MS measurements were recorded and subsequently processed and analyzed in the
MeltDB 2.0 metabolomics analysis platform, being briefly outlined in this paper. We further
describe how unsupervised (t-SNE, PCA) and supervised (SVM) methods can be applied
for sample visualization and classification. Our results clearly show that years have most
and wheat cultivars have second-most influence on the metabolic composition of a sam-
ple.We can also show that for a given year and cultivar, organic and conventional cultivation
can be distinguished by machine-learning algorithms.

Keywords: metabolome informatics, statistics, metabolomics, computational metabolomics, organic farming, food
authentication, machine learning

1. INTRODUCTION
The increasing awareness of the benefits of healthy eating has
tremendously risen the popularity of organic food – a development
that was not least stirred up by the manifold food scandals grab-
bing the headlines in recent years. Directly resulting from this pop-
ularity but in particular from organic food’s great market potential,
there emerged a significant interest in the authenticity of food
declared as organic (Capuano et al., 2013). Metabolomics tech-
nologies have proven successful for several task of food authenti-
cation (Cubero-Leon et al., 2014). In this study, we investigate the
potential of metabolomics profiling techniques, bioinformatics,
and machine learning to distinguish organically grown wheat from
conventionally grown wheat. To this end, a total of more than 300
gas chromatography-mass spectrometry (GC-MS) measurements
from both types of treatments were recorded and analyzed. Sam-
ples comprised 11 different wheat cultivars from up to 3 different
years, obtained from the DOK field trial in Switzerland (Mäder
et al., 2002). This comprehensive field trial compared organic
and conventional farming systems, using strictly controlled condi-
tions. In previous work (Bonte et al., 2014), we already presented
metabolite profiling data obtained from the DOK wheat samples of

the harvest year 2007. Röhlig and Engel (2010) have applied princi-
pal component analysis (PCA) and analysis of variance (ANOVA)
to a very similar dataset. In the scope of this work, we substantially
extended the DOK data basis from 2007 by additionally analyz-
ing samples from the 2009 and 2010 harvest years. The particular
focus of this work was placed on the potential of machine learning
methods as tools for automated data classification. Furthermore,
the new approach is metabolite-agnostic: it does not rely on correct
metabolite identification and it does not rely on single biomarkers
with significant level differences. The latter is a core advantage of
this approach, as literature reveals that only slight (not significant)
metabolite level changes can be accounted on the farming systems
(Röhlig and Engel, 2010; Laursen et al., 2011; Bonte et al., 2014).

All GC-MS measurements were automatically preprocessed
and then carefully annotated in our MeltDB 2.0 metabolomics
analysis platform (Neuweger et al., 2008; Kessler et al., 2013).
MeltDB allowed us to apply a well-established routine in high-
dimensional molecular data analysis. After preprocessig (peak
picking, normalization, profiling, etc) the data is represented as
a table of dimension n×D, with n= number of samples and
D= signal dimension (i.e., the metabolic profile). The first aim
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is to search for hidden regularities, relationships, and correlations
in the data. To this end, unsupervised learning, i.e., dimensional
reduction can be applied. Concretely, the two unsupervised meth-
ods, principal component analysis (PCA) and t-distributed sto-
chastic neighbor embedding [t-SNE, (van der Maaten and Hinton,
2008)], were used to investigate the inter- and intra-class variances
in the entire dataset as well as in particular subsets of the data.

Second, the data was analyzed toward the question, if it
can be classified into distinct semantic categories (like conven-
tional/organic treatment in this case). We, therefore, applied the
two supervised machine learning methods random forests [RF,
(Breiman, 2001)] as well as support vector machines [SVM, (Vap-
nik, 1999)]. The overall aim was to establish a classifier to dis-
tinguish between organic and conventional wheat, despite the
influences of the years of growth and different cultivars.

In the following, the analytical approach is described in detail,
as well as the separation results for the investigated factors treat-
ment, cultivar, and year. All presented computational methods
were implemented within the MeltDB 2.0 platform and can be
applied on other datasets as well.

2. MATERIALS AND METHODS
2.1. PLANT MATERIAL
Wheat grains of up to 11 different cultivars originated from the
DOK (D: bio-dynamic, O: bio-organic, K: “konventionell” Ger-
man for conventional, i.e., integrated, farming system) field trial,
which is located at Therwil (7°33’ E, 47°30’ N) close to Basel
(Switzerland). Detailed information on the DOK long-term field
trail is given by Mäder et al. (2002). Wheat grains of the cultivar
Runal were analyzed from the 3 harvest years, 2007, 2009, and
2010. In 2008, wheat was not grown in the trial. Further, the 10
wheat cultivars“Rouge de Bordeaux,”“Mont Calme 245,”“Probus,”

“CCP” (composite cross-population; for ease of reading CCP is
referred to as a cultivar), “Scaro,” “Sandomir,” “DJ 9714,” “Anto-
nius,”“Caphorn,” and “Titlis” were integrated into the wheat plots
of the long term trial of the harvest year 2007. In the 2010 culti-
vation period, cultivars “Mont Calme 245” and “DJ9714” were not
available, leaving the remaining 8 cultivars mentioned previously
for analysis in this work. A detailed description of the layout and
design of the experiment comprising all winter wheat cultivars was
published (Hildermann et al., 2009).

Thus only some essential information about the DOK field trial
is considered here. The trial comprises several organic and con-
ventional farming systems, each system being repeated in four field
plots. The experimental design was a split plot with systems as the
main factor and wheat cultivars as the secondary factor. For this
work, we choose to analyze the two farming systems, biodynamic 2
(D), (henceforth, organic) and conventional (M). These two farm-
ing systems were quite different with respect to fertilization and
further plant treatment (see below), but at the same time, were still
within the range of standard organic and conventional farming.

The organic system received composted manure and slurry at
a fertilization level of 1.4 livestock units per hectare, equivalent to
66 kg N(total) ha−1. Fertilization in the conventional system was
done exclusively with mineral fertilizerat 140 kg N(total) ha−1.
Both farming systems also differed in plant protection practice.
The conventional system followed the guidelines of integrated
farming, using fungicides, insecticides, and herbicides only if
needed. The biodynamic farming allowed only mechanical plant
treatments and indirect methods to control weeds, pests, and
diseases. Grains of both farming systems were harvested when
completely ripe, with moisture content below 140 g kg−1. Of each
of the four individual field plots per agricultural system, one
sample was taken for each cultivar and farming system. Before

Table 1 | Parameters that were applied for preprocessing tools.

Tool Description Parameter Value

Warped peak detection Mexican-wavelet based peak detection, which can be rerun locally

(at certain RT).

FWHM 7

SN 10

RISimple Detects and tags retention indices based on heir characteristic spectra. Ion filter 57, 71, 85, 99

Multiple profiling Gives peaks across chromatograms a common TAG if they are similar. Retention time window 20–35 s

Reference list Annotates peaks that match reference spectra, uses dot-product. RT Window 20 s

Table 2 | Number of samples for each combination of factors “farming system,” “year,” and “cultivar.”

Farming system Year Cultivar

Antonius Caphorn CCP DJ 9714 Mont

Calme 245

Probus Rouge de

Bordeaux

Runal Sandomir Scaro Titlis Σ

Conventional organic 2007 7 8 7 7 8 7 7 8 6 6 8 160

8 7 7 7 7 8 8 7 8 7 7

Conventional organic 2009 8 16

8

Conventional organic 2010 8 8 7 8 8 7 8 7 8 137

8 8 8 8 8 7 7 7 7
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FIGURE 1 |The principal component analysis on the entire dataset of all samples throughout all years, cultivars, and treatments show that the first
two components mainly separate samples by the factor year. A separation by the factor farming system is not possible.

further experimental usage, grain material was stored at a constant
temperature of 18°C.

2.2. WHEAT SAMPLE PREPARATION AND GC-MS ANALYSIS
Cleaning of wheat samples from impurities and broken grains,
grain storage, grinding and extraction as well as measurement
of metabolites using GC-MS analysis was exactly performed as
described by Bonte et al. (2014).

2.3. DATA PROCESSING IN MeltDB 2.0
All data gained by GC-MS analysis were preprocessed and anno-
tated within the MeltDB 2.0 metabolomics software platform.
Peaks were obtained using the Warped Peak Detection tool. Reten-
tion indices were obtained semi-automatically, using MeltDB’s
RISimple tool and a manually defined list of expected retention
times for each batch of measurements. Next, a profiling was run
to annotate peaks that are common throughout multiple chro-
matograms, i.e., they have a similar retention index and a similar
EIC spectrum. Similarly, all chromatograms were matched against
reference spectra to annotate peaks as identified compounds were

possible. However, the subsequent approach does not rely on
the identification of compounds, but rather uses it to limit the
feature space to molecules of potential biological interest. The
parameterizations for these processing tools can be found in
Table 1.

Results from automated metabolite identification were revised
manually to discard erroneous annotations, but also to manu-
ally create annotations that were missed in a few chromatograms
only. Peaks that were missed in a minority of samples only, were
requantified using the Warped Peak Detection tool. Subsequently
all data in the obtained feature table was centered and scaled
using R.

In total, 313 samples were analyzed. From the years 2007, 2009,
and 2010 these comprise 160, 16, and 137 samples, respectively.
How many cultivars were available in each year is mentioned in
Section 2.1. For each combination of year and cultivar, 13–16
samples comprising duplicate metabolite extractions for grains
from most field plots were analyzed. From these, one half was
treated organically, and the other half was treated conventionally.
A detailed listing of all samples is given in Table 2.
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FIGURE 2 | A principal component analysis performed on a dataset from 1 year only will mainly cluster samples by their cultivar, regardless of the
applied farming system. This PCA is based on samples from the year 2007.

2.4. UNSUPERVISED LEARNING/DIMENSIONAL REDUCTION
The result of the preprocessing step is an n×D data table (n= 313,
total number of samples (years, cultivars and treatments com-
bined); D= 36, number of compounds consistently annotated in
all samples). Additionally, subsets of this data table, for example,
all samples from only 1 year or cultivar, have been analyzed too.
Although it may be tempting to instantly apply supervised learning
to the problem of classifying the data rows into conventional and
biological treatment, we first applied some information visualiza-
tion in advance to avoid unpleasant black box effects and to gain a
mental model of the data. Information visualization uses different
data displays which are inspected by human experts to understand
the data or to build hypotheses for the hidden structures in the
data. These are the foundation for any subsequent attempt to apply
supervised learning. We propose to inspect displays obtained with
two different dimensional reduction techniques. First, we applied
PCA since this is a well-established statistics tool in high dimen-
sional data analytics and is fully sufficient to understand data with
a linear substructure. Since data stemming from systems biology
experiments can not be expected to have such intrinsic linear struc-
ture, we used another method which has been proposed in the field

of machine learning, the t-SNE. In several real world applications
for computational biology (Jamieson et al., 2010; Bushati et al.,
2011; Abdelmoula et al., 2014), t-SNE has shown to be capable
of projecting non-linear data structure while well preserving the
local features (i.e., neighborhoods) of the data.

The dimensional reductions were performed using the R sta-
tistical software (R Development Core Team, 2011) and the “tsne”
package by Donaldson (2012).

2.5. SUPERVISED LEARNING/CLASSIFICATION
The same n×D data table was used to explore whether a machine
learning algorithm such as the Support Vector Machine [SVM,
(Vapnik, 1999)] with a polynomial kernel (Karatzoglou et al.,
2004) can be trained to classify the data rows into conventional
and biological treatment. In a first step for each subset (e.g., data
from 1 year only), the machine learning algorithm was trained
and tested on 80% of the data (randomly selected). Afterwards,
the remaining 20% out-of-the-bag data was used for validation,
i.e., to finally evaluate the performance of the classifier construced
using the 80% of the data. To train and optimize the SVM, a
parameter tuning was performed using a 25-fold resampling for
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Leave-Group-Out-Cross-Validation (LGOCV) of the training par-
tition. For this cross validation, again 75% of the training partition
were used for training, and 25% were used for validation in each
iteration. The best set of parameters, that led to the best accuracy
according tothe LGOCV, was then once more validated on the 20%
of the data that was kept back initially. The classification results
on these latter 20% were evaluated in a confusion matrix to infer
the accuracy of the trained SVM.

Using the very same subsets and partitions random forest [RF,
(Liaw and Wiener, 2002)] were performed as well. The RF train-
ing was done with a 20-fold resampling and a parameter tune
length of 12.

Supervised machine learning methods were performed in R as
well, using the “caret” package (Kuhn, 2008; Kuhn et al., 2008).

3. RESULTS
3.1. UNSUPERVISED LEARNING/DIMENSIONAL REDUCTION
Both, PCA (in the first two principal components, see Figure 1)
and t-SNE, are capable of separating the presented wheat sam-
ples into clusters according to the factor year. Within 1 year,

the PCA will group samples according to cultivars, though with
considerable overlap as can be seen in Figure 2. Conversely, within
one cultivar samples will be grouped according to the year (see
Figure 3). When 1 year and one cultivar are investigated in any
combination, all data typically clusters into the two groups repre-
senting either dynamically or conventionally grown wheat. Most
of these clusters show at least some overlap though. Figure 4 plots
the second and fourth principal components of the PCA that has
already been introduced in Figure 3. In this particular case, it is
clearly visualized how the fourth principal component can be used
to separate the samples according to the levels organic and con-
ventional. The t-SNE method is less applicable to smaller datasets
and thus was applied to the complete data table only. Figure 5
shows how t-SNE groups all samples by year at first, and then
into subclusters according to their cultivars. The latter subclusters
themselves are again split in two groups each, which correspond to
the two farming systems, as can be seen in Figure 6. Figures 5 and
6 again visualize strikingly how the metabolic profile is mainly
influenced by year, then by cultivar, and at least by the farming
systems.

FIGURE 3 | Similar to Figure 1, in the principal component analysis on a dataset of only one cultivar – here “Runal” is shown – the first principal
components separate samples by factor year.
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FIGURE 4 | Plotting samples from one cultivar (here “Runal”) along the principal components two and four show that a separation by farming
system might be possible, even though the main variance is caused by the factor year.

Nevertheless it is still obvious that the treatment caused mea-
surable differences in the metabolic composition of the wheat sam-
ples. The first two principal components of the PCA in Figure 3
already reveal that the clusters for the years 2007, 2009, and 2010
are split in themselves to form subclusters of conventionally and
organically grown wheat. This points out that later principal com-
ponents with different loadings may expose structures in the data
that are mainly based on the factor treatment.

3.2. SUPERVISED LEARNING/CLASSIFICATION
The results from the PCAs revealed that there are structures in
the data that allow for a separation of conventionally and organ-
ically grown wheat. Even though the main clustering is driven
by factor year, these clusters still form subclusters according to
cultivar, which again are clustered by the two farming systems.
These substructures suggest that SVMs can be constructed to win
classifiers for the problem. In fact, SVMs trained and tested on the
entire dataset (all years, all cultivars, both treatments) to classify
by treatment reached an accuracy of 0.9032 (p-value= 1.486e–
11, see Table 3) on the validation set. Even better accuracies can
be observed when investigating subsets of the data (for example,

accuracy= 0.9677, p-value= 3.746e–08 within year 2007). But the
smaller the subsets, the smaller the testing partitions, the less rep-
resentative are any outcomes. Thus we will not trust the classifiers
for in-cultivar or even in-year-and-cultivar problems to be flaw-
less, even though in these cases accuracy values may approximate
one easily.

The interesting question would be, if it is possible to obtain
such a trained classifier from a number of (past) years that can
then be applied to classify samples from another (e.g., the present)
year. This, however, turns out to be not possible on the basis of
the available data from the three growing seasons. For example,
when a SVM, trained on data from 2007, is applied to classify data
from 2010 it performs with an accuracy of 0.5547, which is hardly
favorable to plain guesses. The reason for this poor performance
seems to be the massive influence of the seasonal conditions, i.e.,
the factor “year.” This calls for continuing research using more
samples from more years and cultivars to cover the molecular
variance more appropriately. Estimations on the variable impor-
tance (Kuhn et al., 2008) for the 3 years were calculated based
on the SVM results and added to the supplemental information.
Here it is striking that e.g., myo-inositol, which has previously
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FIGURE 5 |The t-SNE method applied to all samples results in clusters and sub clusters formed according to the factor year and cultivar, respectively.

been reported as a potential marker for farming systems (Röhlig
and Engel, 2010; Bonte et al., 2014), was most important for clas-
sification in 2007 but almost least important in 2009 and 2010.
Such inhomogeneous variable importances additionally suggest a
year-by-year strategy for training and classification.

Table 3 summarizes the SVM results. Please note that classifi-
cation results for year 2009 are not reported here: with only one
cultivar (Runal) and thus only 16 samples, the subset is too small to
generate reliable results. The 2009 samples are part of the analysis
of the entire dataset, though.

Overall random forest (RF) as described in the methods section
led to similar classification results, but showed slightly lower
accuracies in the in-year subsets. Thus no detailed results are
shown in the manuscript. However, we explicitly do not suggest to
ignore random forest as a potential alternative for support vector
machines in this scope.

4. DISCUSSION
The main goal of this study was to investigate whether a clas-
sification of organically and conventionally grown wheat can be
done, based on GC-MS metabolite measurements of wheat grains

from different years and cultivars. Results from the unsupervised
machine learning methods PCA and t-SNE show that the strongest
variation in the data can be found in samples from different years.
This may be, in part, due to different environmental influences and
also due to systematic errors that inevitably will occur in analyses
from different years. Other studies report on the same obstruc-
tive effects (Röhlig and Engel, 2010; Laursen et al., 2011). On the
other hand though, this allows to extend the data basis every year.
This demands robust classifiers that are able to cope with these
kinds of problems, besides “distracting” factors like year and culti-
var. Further studies will additionally have to consider geographical
influences on the metabolic composition of wheat grains.

Peaks from all 313 samples have been carefully annotated to
achieve 36 consistently quantified features throughout the entire
data set. These have first been explored with dimensional reduc-
tion methods like PCA and t-SNE to find the predominant struc-
tures in the data table. Then, supervised machine learning methods
have been trained and applied to investigate in how far classifiers
for organically and conventionally grown wheat can be created.

The considerably strong differences in samples from different
years make it impossible though, to apply a classifier that was
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FIGURE 6 |The same t-SNE result as in Figure 5, but colored by farming system: clusters representing cultivars form subclusters according to the
factor farming system.

Table 3 | Results of the support vector machines, trained and tested on different subsets of all samples.

Trained on Tested on nTest Accuracy NIRa p-Valueb Sensitivity Specificity PPVc NPVd

2007 2007 31 0.9677 0.52 3.75e–08 1 0.9375 0.9375 1

2010 2010 26 0.8846 0.5 4.40e–05 0.9231 0.8462 0.8571 0.9167

2007 2010 137 0.5547 0.5 0.1333 0.2754 0.8382 0.6333 0.5327

2010 2007 160 0.5562 0.51 0.1177 0.8101 0.3086 0.5333 0.625

2007, 2009, 2010 2007, 2009, 2010 62 0.9032 0.5 1.49e–11 0.9032 0.9032 0.9032 0.9032

Measures are given for the evaluation results and are based on the confusion matrix for classification as biological or conventional farming system.
aNo information rate: the larger class percentage.
bExact binomial test [accuracy > NIR].
cPositive predictive value.
dNegative predictive value.

trained using data from year a1 to distinguish data from another
year a2. To create a classifier for any year ax, data from this ax must
be part of the training data set. PC analyses also suggest that it
will be benefical to concentrate on one cultivar or to have a broad

data basis of many cultivars to cover variances that derive from
this factor.

Support vector machines trained and applied on all samples
from the same year, as well as SVMs trained and tested on all years,
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performed with high accuracies above or close to 0.9. This clearly
outperforms the ability of PCA to separate samples according to
the applied farming system, unless samples derive from the same
cultivar. For comparison, we also performed a study using Ran-
dom Forests (Breiman, 2001) instead of SVMs for classification.
Random Forests (RF) have the advantage to be much faster and
more efficient than SVMs and they have the potential to offer
some insight into the semantics of the decision function, but the
parameters are more difficult to optimize. However, the classifica-
tion performances were only slightly different from those obtained
with SVMs and inferior in in-year analyses, so we did not include
those in the manuscript.

The here presented machine learning tools are not meant to
substitute traditional statistical methods, such as ANOVA, but
provide a metabolite-agnostic approach for sample classification
where reliable biomarkers are not known. Additionally, they may
contribute a starting point for focused statistical analyses of sin-
gle compounds that appear promising according to the computed
variable importance estimations.

An analytical approach that aims more for specific compounds
as biological markers can be found in the publication of Bonte
et al. (2014), where more traditional statistical methods have been
applied. The methods presented in the manuscript at hand do not
depend on the identification of compounds or the determination
of the biological meaning of any features. The approach rather
relies on a consistently annotated data set. Nevertheless, it is con-
structive to do compound identification to be able to base further
biomarker research on these studies. Additionally, reducing the
feature set to verified biological compounds minimizes the risk of
systematic errors through background noise. Variable importance
estimations based on the SVM results of the 3 years have thus been
added to the supplemental information. The integration of the
discussed approaches might finally lead to a set of metabolites that
can be used as reliable biomarkers for conventional or biodynamic
farming systems.
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