ORIGINAL RESEARCH ARTICLE
published: 24 April 2015
doi: 10.3389/fbioe.2015.00048

{fromtiers im
BIOENGINEERING AND BIOTECHNOLOGY

=

Lauric acid production in a glycogen-less strain of
Synechococcus sp. PCC 7002

Victoria H. Work ', Matthew R. Melnicki?, Eric A. Hill?, Fiona K. Davies?, Leo A. Kucek?, Alexander S. Beliaev?
and Matthew C. Posewitz?*

" Civil and Environmental Engineering Division, Colorado School of Mines, Golden, CO, USA
2 Microbiology Group, Pacific Northwest National Laboratory, Richland, WA, USA
3 Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA

Edited by:
Anne M. Ruffing, Sandia National
Laboratories, USA

The cyanobacterium Synechococcus sp. Pasteur culture collection 7002 was genetically
engineered to synthesize biofuel-compatible medium-chain fatty acids (FAs) during pho-
toautotrophic growth. Expression of a heterologous lauroyl-acyl carrier protein (C12:0-ACP)
thioesterase with concurrent deletion of the endogenous putative acyl-ACP synthetase
led to secretion of transesterifiable C12:0 FA in COy-supplemented batch cultures. When
grown at steady state over a range of light intensities in a light-emitting diode turbidostat
photobioreactor, the C12-secreting mutant exhibited a modest reduction in growth rate and
increased O, evolution relative to the wild-type (WT). Inhibition of (i) glycogen synthesis
by deletion of the glgC-encoded ADP-glucose pyrophosphorylase (AGPase) and (i) protein
synthesis by nitrogen deprivation were investigated as potential mechanisms for metabo-
lite redistribution to increase FA synthesis. Deletion of AGPase led to a 10-fold decrease
in reducing carbohydrates and secretion of organic acids during nitrogen deprivation con-
sistent with an energy spilling phenotype. When the carbohydrate-deficient background
(AglgC) was modified for C12 secretion, no increase in C12 was achieved during nutrient
replete growth, and no C12 was recovered from any strain upon nitrogen deprivation under
the conditions used. At steady state, the growth rate of the AglgC strain saturated at a
lower light intensity than the WT, but Oy evolution was not compromised and became
increasingly decoupled from growth rate with rising irradiance. Photophysiological proper
ties of the AglgC strain suggest energy dissipation from photosystem Il and reconfiguration
of electron flow at the level of the plastoquinone pool.
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INTRODUCTION

Photosynthetic metabolism generates a wide range of biomol-
ecules fundamental to energy, agriculture, and health (Durrett
et al., 2008; Hu et al., 2008; Atsumi et al., 2009; Lubner et al.,
2009; Lindberg et al., 2010; Lu, 2010; Niederholtmeyer et al.,
2010; Kilian et al., 2011; Wahlen et al., 2011; Ducat et al., 2012;
Elliott et al., 2012; Work et al., 2013; Sorek et al., 2014). Hav-
ing rapid growth rates, efficient energy conversion, and meta-
bolic adaptability, photosynthetic microorganisms (PSMs) includ-
ing genetically tractable unicellular algae and cyanobacteria have
received substantial attention for synthesizing biofuel precur-
sors via native or transgenic processes (Ferrari et al., 1971; Cas-
con and Gilbert, 2000; Heifetz, 2000; Lee, 2001; Schmer et al.,
2008; Rodolfi et al., 2009; Elliott et al., 2011; Fore et al., 2011;
Liu et al., 2011; Radakovits et al., 2011; Soratana and Landis,
2011; Rosgaard et al., 2012; Bentley et al., 2013; Gronenberg
et al., 2013; Leite et al., 2013; Mollers et al., 2014; Davies et al.,
2015).

Abbreviations: ADP, adenosine diphosphate; DCMU, 3-(3,4-dichlorophenyl)-1,1-
dimethylurea; LED, light-emitting diode; PCC, Pasteur culture collection.

Biodiesel can be derived from biological fatty acids (FAs)
extracted from photosynthetic organisms (Ma and Hanna, 1999;
Durrett et al., 2008; Hu et al., 2008). While oil content and quality
differs between species, the composition of FAs typically includes
the predominant 16- and 18-carbon FAs (C16 and C18), as well
as varying levels of shorter (C8—C14) and longer (>C20) FAs
(Gopinath et al., 2010). Currently, vegetable oil is the main source
of the approximately 20 billion liters (L) of biodiesel produced
yearly worldwide (Hoekman et al., 2012; Kopetz, 2013). However,
recent efforts in genetic engineering seek to utilize microorganisms
for FA production, a concept that would transition fuel produc-
tion from cropland to bioreactors or pond systems (Lee, 2001; Hu
et al., 2008; Li et al., 2008; Rodolfi et al., 2009; Leite et al., 2013).
Lauric acid (C12:0) is naturally synthesized by coconut, palm, and
bay trees (Litchfield et al., 1967; Denke and Grundy, 1992) and,
when esterified, exhibits qualities comparable to modern diesel
fuel, with better cold-flow properties relative to longer chain FAs
(Gopinath et al., 2010; Hoekman et al., 2012). Microbial C12 syn-
thesis has been achieved via transgenics in both heterotrophic and
photoautotrophic hosts (Ohlrogge et al., 1995; Lu et al., 2008; Liu
et al., 2011; Radakovits et al., 2011; Lennen and Pfleger, 2012),
offering diverse opportunities in production platforms.
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In photosynthetic eukaryotes, FAs of specific chain lengths
are hydrolyzed from acyl carrier protein (ACP) by thioesterase
enzymes, and the released FAs move out of the chloroplast into
the cytoplasm where they are activated by coenzyme A (CoA)
to facilitate transfer into higher lipids (Radakovits et al., 2010;
Li et al., 2013). It has been found that many bacteria, includ-
ing cyanobacteria, typically bypass the free FA (FFA) intermediate
when assembling newly synthesized FA into membrane lipids (Sato
and Wada, 2010; Jansson, 2012). When heterologous thioesterases
are expressed in certain bacteria, most of the hydrolyzed FFA is
found either in the culture medium or associated with the outside
of the cell (Voelker and Davies, 1994; Ohlrogge et al., 1995; Liu
et al., 2011; Zhang et al., 2011; Ruffing and Jones, 2012; Ruffing,
2014). Though the mechanism of secretion is not established, it is
known that extracellular FFA can move back across the mem-
brane and be reincorporated into metabolism by an acyl-acyl
carrier protein synthetase (AAS) (Kaczmarzyk and Fulda, 2010).
If this enzyme is disrupted, FFAs remain in the medium and can
separate from the aqueous cultures. In the present study, carbon
distribution in the cyanobacterium Synechococcus sp. Pasteur cul-
ture collection (PCC) 7002 was modified for C12 FFA synthesis by
heterologous thioesterase expression (and AAS deletion) in both
wild-type (WT) and carbohydrate-deficient genetic backgrounds.

MATERIALS AND METHODS
GENETIC ENGINEERING OF SYNECHOCOCCUS sp. PCC 7002
Synechococcus sp. PCC 7002 (Synechococcus sp. 7002 hereafter)
was genetically modified using previously described protocols
(Frigaard et al., 2004; Xu et al., 2011). The pAQ1Ex plasmid con-
taining the Synechocystis sp. 6803 promoter cpcBA (Xu et al., 2011)
and spectinomycin antibiotic-resistance gene aadA (Frigaard etal.,
2004); and the kanamycin-resistant AglgC mutant (Guerra et al.,
2013) harboring the gene aphll (Frigaard et al., 2004) were kindly
provided from the laboratory of Donald A. Bryant. In Synechococ-
cus sp. 7002, the gene glgC (NC_010475.1) encodes ADP-glucose
pyrophosphorylase (AGPase), which activates glucose for poly-
merization. The gene fadD (NC_010475.1) encodes a putative
AAS with homology to the Synechocystis sp. PCC 6803 gene slr1609
(NC_000911.1) (Kaczmarzyk and Fulda, 2010; Gao et al., 2012). A
thioesterase derived from Umbellularia californica encoded by the
gene fatBl (GenBank M94159) hydrolyzes 12-carbon FA chains
from ACP during FA synthesis yielding lauric acid (C12), and
a version of this gene codon optimized for expression in Syne-
chocystis sp. 6803 was generously provided from the laboratory of
Roy Curtiss III (Liu et al., 2011). Lauric acid and C12 in the text
designate transesterifiable 12-carbon saturated fatty acyl chains.
The pAQI1Ex vector was modified for knockin expression of
fatBl concurrent with deletion of the putative AAS. To con-
struct the lauric acid secretion (LAS) module, fatBI was placed
between the vector’s promoter and antibiotic selection marker via
Necol/BamHI restriction sites. Flanking sequences of the fadD gene
were inserted to target the cassette for homologous recombination
using FIIR primer pairs (5-3") 1l:gttcacATGCATggctaggttcg-
taatctttgggggtallgtatagGAATTCgccgaaatcatggctacaatcctacttt, 2:cat-
actGTCGACgatccgaatggcggaatcttcgllgttcacGCATGCgtgctggcttttgt
cacaatcttcttg (restriction enzyme recognition sequences used
in plasmid construction are capitalized). Transformation was

accomplished following an established protocol for homologous
recombination in this organism (Xu et al.,, 2011). Integration of
the LAS module into all genome copies was achieved by increas-
ing spectinomycin pressure and confirmed by PCR (not shown)
for complete allele segregation using the 1F and 2R primers
listed above. The strain SAOl contains the LAS module in a
WT background, and the strain SA13 contains this module in
a carbohydrate-deficient background (Table 1).

BATCH CULTIVATION

The saltwater medium A+ used in batch experiments contained,
per liter, 18 g NaCl, 5g MgSO4-7H,0, 1g NaNOs3, 0.6g KCl,
0.05 g KH,POy, 0.03 g Nay-EDTA, 0.27 g CaCly, 1 g Trizma base
(Tris), 1mLL™! of 3.89gL~! FeCl3-6H,0 stock in 0.1 N HCI,
and 1 mLL~! of P1 metals micronutrient solution. The P1 stock
solution contained, per liter, 34.26 g H3BO3, 4.32 g MnCl,-4H, 0,
0.315g ZnCl, 0.03g MoO3 (85%), 12.15mg CoCl,-6H,0, and
3mg CuSO4-5H;0. For A4+ medium without nitrogen (—N),
NaNOs3 was replaced by an equimolar amount of NaClL.

Liquid cell cultures were grown using a rotary shaker under
constant illumination in an atmosphere of 1% CO,, 34°C, and
160 pmol photons m~2s~! (umol m~2 s~ hereafter) photosyn-
thetically active radiation (PAR) in 250-mL Erlenmeyer flasks with
soft caps to facilitate gas exchange (VWR, Radnor, PA, USA). Batch
flask cultures were grown in quadruplicate and standardized to
2.5mgL~! chlorophyll a at the beginning of each experiment.
Pre-cultures were similarly normalized and grown to mid-linear
phase (15-25 wg mL~! chlorophyll a), whereupon cells were con-
centrated by centrifugation and resuspended in fresh medium for
experimental replicates, which were sampled over a time course.

CONTINUOUS CULTURE

Steady-state physiology was assayed in a photobioreactor (PBR)
that maintains constant optical density (turbidostasis) over a range
of light intensities delivered by 630 and 680 nm light-emitting
diodes (LEDs), as described previously (Melnicki et al., 2013).
For maximal light penetration and steady-state illumination, cell
cultures were maintained at 0.08 OD73¢ in A+ medium contain-
ing 0.9 gL~! NH4Cl as the nitrogen source, and Tris was omitted
as pH 7.5 was maintained independently. Cultures were held at

Table 1| Synechococcus sp. 7002 strains used in this study.

Strain Description Genotype

WT Wild-type Synechococcus sp. 7002

SAO01 Secretes lauric acid? AfadD::Pepcpa-fatB1l-
aadAP

AglgC RC-deficient (AGPase disrupted) AglgC::aphll

SA13 RC-deficient and secretes lauric acid  AglgC::aphll,

AfadD::Ppcpa-fatBl-aadA

Antibiotic-resistance markers confer resistance to spectinomycin (aadA) or
kanamycin (aphll) (Frigaard et al., 2004). The cpcBA promoter drives fatB1
expression. RC, glucose-equivalent reducing carbohydrate.

“Transesterifiable C12:0.

b AS module.
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30°C and constantly sparged with N, gas containing 1.3% CO,
at 4.1 Lmin~!. Doubling times were calculated by In(2)/dilution
rate, O, evolution by percent air saturation, photophysiology by
pulse amplitude modulation (PAM) fluorometry, and biochemical
composition were measured in WT, SA01, and AglgC strains at
light intensities of 5/5 (33), 10/10 (66), 15/15 (99), 20/20 (132),
25/25 (165), 40/40 (264), 60/60 (396), 70/70 (462), 125/60 (610),
and 170/60 (759) as incident 630/680 nm light each and (in paren-
theses) total spherical umol m~2s~!. A linear 21 incident sensor
was used to measure individual wavelengths, and total spherical
illumination was reported by a 41 sensor. Absorbance scans of
total cell culture were measured over a 350-900 nm spectral range
using a Shimadzu BioSpec 1601 spectrophotometer (Shimadzu,
Kyoto, Japan). Non-transmitted fractions of 630 and 680 nm light
were calculated using transmitted light values obtained in situ from
the linear sensor and normalized to total spherical irradiance as
described previously (Melnicki et al., 2013).

BIOCHEMICAL ANALYSES

Chlorophyll a was measured by absolute methanol extraction of
a 1-mL cell pellet and calculated as described previously (Meeks
and Castenholz, 1971; Porra et al., 1989). Reducing carbohydrates
(RCs) were measured as glucose equivalents by a colorimetric
anthrone—sulfuric acid assay described previously (Meuser et al.,
2012).

Dry cell weight (DCW) of batch cultures was measured from
2mL of liquid culture concentrated by centrifugation. The cell
pellet was washed once in 1 g L~! Tris buffer (TB), resuspended in
1 mL TB, thoroughly dried at 80°C, and the dry weight of 1 mL TB
subtracted to give DCW. From PBR cultures, DCW is represented
as ash-free weight from 400 mL steady-state culture concentrated
by centrifugation, resuspended in distilled water, dried at 105°C,
and burned at 550°C for 1h. Ash-free weight was calculated as
mass lost between drying and burning.

Organic acids (OAs) were quantified by HPLC (Surveyor Plus,
Thermo Scientific, Waltham, MA, USA) using 0.45-pm filtered
supernatant from —N cultures. A 25-pL sample was injected onto
a 150 mm x 7.8 mm fermentation monitoring column (BioRad,
Hercules, CA, USA) at 0.5mLmin~! 8 mM H,S0, eluent, 45°C
column operating temperature, and 50°C refractive index (RI)
detector operating temperature, in parallel with a photodiode
array detector for absorbance at 210 nm. A standard mix of acetate,
pyruvate, succinate, a-ketoglutarate, and a-ketoisocaproate was
used for quantification, and all samples were held at 10°C in a
thermostated sample tray before injection.

Fatty acyl content was measured as transesterifiable fatty acid
methyl esters (FAMEs) using an adapted method (Radakovits
et al., 2011). Briefly, 0.5 mL of liquid culture was hydrolyzed and
lipids saponified at 100°C for 2h in 1 mL 95:5% v/v absolute
methanol:0.8 g L~! KOH (in H,0), after which 1.5 mL 94.2:5.8%
v/v methanol:12N HCI was added for acid-catalyzed methylation
at 80°C for 5h. FAMEs were extracted into 1 mL n-hexane and
the extract was analyzed using an Agilent 7890A gas chromato-
graph (GC) and DB-5ms column with flame ionization detec-
tion (Agilent Technologies, Santa Clara, CA, USA). A flow rate
of 1.15mLmin~! H, carrier gas was used to separate FAMEs
at 20°Cmin~! to 230°C, held for 1min, then 20°Cmin~! to

310°C and held for 5min. A standard mix of FAMEs was used
for quantification and retention time correlation (37-component
FAME mix, Supelco, Bellefonte, PA, USA). Due to insufficient res-
olution between unsaturated C18 FAs, the combined contents of
18:1, 18:2, and 18:3 are reported as 18:n. The unknown (unk)
compound that elutes prior to C16:1 was not included in FAME
tabulations. A two-tailed ¢-test was performed to determine statis-
tical significance (p-value). Lauric acid methyl ester (C12 FAME)
was identified via mass spectral analysis conducted using a Varian
3800 GC and Varian 1200 quadrupole MS/MS (Agilent Technolo-
gies, Santa Clara, CA, USA) equipped with a Rxi-5ms column
(30 mm x 0.25 mm; 0.25 wm film thickness) (Restek Corporation,
Bellefonte, PA, USA). A flow rate of 1.2 mL min~! He carrier gas
was used to separate FAMEs at 20°C min~! from 70 to 230°C for
a 1-min hold, then 20°C min~! to 310°C for a 5-min hold. Mass
spectra were obtained after electron ionization at 70 eV. Results
were compared to the known mass spectrum of C12 FAME (NIST
Mass Spec Data Center, and Stein, 2015).

PULSE AMPLITUDE MODULATION FLUOROMETRY

Variable chlorophyll fluorescence was measured using PAM flu-
orometry in a DUAL-PAM-100 system (Walz GmbH, Effeltrich,
Germany) with a photodiode detector and RG665 filter (Schreiber,
1986). Red measuring light (620nm) at the lowest power was
pulsed at 1000 Hz during the dark and at 10,000 Hz during 635 nm
actinic illumination at 98 pmol m—2 s~!. From PBR cultures, 3 mL
was immediately transferred to a cuvette and fluorescence induc-
tion was measured with a programed script consisting of 15s
darkness, 30s actinic illumination (O), application of a satu-
rating pulse at 2000 umolm=2s~! for 200ms (J), 5s of only
far-red light (730 nm) (I), another 15s of actinic light (P), and
30s of darkness (S). Variable fluorescence observed during the
O-J-I-P-S induction provided the basis to compare changes in
the electron transport processes downstream of PSIL. The effec-
tive quantum yield of PSII (YII') was measured by transient
fluorescence changes between “J” and “I” states. The estimated
redox status of the plastoquinone (PQ) pool was determined
by the rise from “I” to “P” level, normalized to the total vari-
able fluorescence observed over this period, and subtracted from
1 (Chylla and Whitmarsh, 1989). Relative changes in electron
transport downstream of the PQ pool were measured by P >> S
quenching as the drop from “P” to “S” states relative to the
variable fluorescence (Serrano et al., 1981). The relative dark
rate of PQ oxidation was obtained from the declining slope of
post-illumination fluorescence, calculated from between 10 and
20 s after the level had peaked (Ryu et al., 2003). Dark-adapted
measurements were taken after cells were held in the dark for
20min and then acclimatized in actinic light for 90s before
induction.

RESULTS

BATCH CULTURE PRODUCTIVITY

Nitrogen replete and nitrogen deplete batch cultures of WT, SA01,
AglgC, and SA13 were analyzed over 48 h for chlorophyll a, DCW,
FAME, RC, and OA. Cultures of C12-secreting strains developed
a layer of surfactant bubbles (Figure 1).
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Chlorophyll a and dry cell weight

Bulk biomass accumulation in nutrient replete batch cultures
yielded an increase in chlorophyll a content of 12- to 15-fold over
48 h (Figure S1A in Supplementary Material), and DCW accu-
mulated 4- to 5-fold (Figure S1C in Supplementary Material).
In nitrogen-deplete cultures, growth attenuation was suggested
by unchanging chlorophyll a content and DCWs that were within
the range of error relative to inoculum DCWs over the time course
(Figures S1B,D in Supplementary Material).

Fatty acids
Secretion conferred by the LAS modification of transesterifi-
able C12 FAs into batch culture medium is demonstrated in

FIGURE 1 | Foaming is visible atop culture medium of the lauric
acid-secreting Synechococcus sp. PCC 7002 strains SA01 and SA13.

Figures 2A-D. The identity of transesterified C12 was con-
firmed by GC-MS (Figure 2E). Lauric acid was detected nei-
ther during nitrogen starvation nor when fatBl was expressed
at a neutral locus without concurrent deletion of the putative
AAS fadD (not shown). After 48h, total FAME recovered
from nutrient replete batch cultures reached 85.0+0.7 (WT),
83.6 4.5 (SA01), 95.3+£5.0 (AglgC), and 93.6+6.1 (SA13)
mgL~! (Figure 3A), representing 3-5% of DCW (Figure 3B).
Over 48h, SAO01 and SA13 generated, respectively, 9.1 +0.4
and 8.7+0.6mgL~! Cl2, accounting for ~10% of total
FAME (Table 2). C12 was recovered from culture medium
of SAO1 and SA13, respectively, at concentrations of 4.4+ 0.4
and 3.5+£02mgL~! after the first 24h, and 6.5+0.6 and
5.940.2mgL~! after 48 h (Figure 3C), an ~70% secretion level
in both strains.

Distribution of FAME in 48-h nutrient replete cultures
(Table 2) is consistent with previous studies of Synechococcus
sp. 7002, including cumulative levels of unsaturated C18 FA
(Kenyon, 1972; Sakamoto et al., 1997; Sakamoto and Bryant,
2002). Strains with the LAS modification showed diminished con-
tents of 16:0 (p <0.02), 16:1 (p <0.001), and 18:n (p <0.01).
All three mutants contained twofold more 18:0 than WT. The
AglgC mutant exhibited less 16:1 than WT (p < 0.02), while
16:0 and 18:n occurred at WT levels. In the AGPase-disrupted
background, the LAS modification conferred a lower fraction

74

FIGURE 2 | FAME profiles and identification of secreted FA from batch
cultivation of WT and SAO01 strains of Synechococcus sp. 7002. GC-FID
chromatograms of FAME from representative (A) WT and (B) SA01 cell

culture, and (C) WT and (D) SAO1 cell-free supernatant. (E) Mass spectrum
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from GC-MS of SA01 FAME matching lauric acid methyl ester from the NIST
database (C12 FAME NIST) (NIST Mass Spec Data Center, and Stein, 2015).
The labeled standard is shown on the mirror axis. m/z, mass-to-charge ratio;
pA, picoamps (detection current); RT, retention time.

Frontiers in Bioengineering and Biotechnology | Synthetic Biology

April 2015 | Volume 3 | Article 48 | 4


http://www.frontiersin.org/Synthetic_Biology
http://www.frontiersin.org/Synthetic_Biology/archive

Work et al.

Lauric acid secretion from Synechococcus 7002

A 120 - @ Native B 45 -
0ci12:.0 4 -
100 - -
— = 3.5 -
%80 g
: .
£ 60 o =
m = 2
> 20 w
< 1 S 15 9
N
20 -
0.5 -
0 T T T — 0 h
wt SA01 AglgC SA13 wt
FIGURE 3 | FAME content of nutrient replete batch cultures after 48 h
represented (A) by volume and (B) as a function of average dry cell
weight (DCW). Native, endogenous fatty acyls; C12:0, heterologous lauric
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acid. (C) C12 FAME recovered from the medium of nutrient replete SAO01 and
SA13 cultures after 24 and 48 h. Error bars represent SD over four biological
replicates.

Table 2 | Percent of total FAME by chain length from 48-h nutrient
replete cultures, corresponding to Figure 3.

% of total FAME

Strain 12:0 16:0 16:1 18:0 18:n

wt nd 53.1+£0.8 11.8+0.3 1.7+0.1 33.4+0.6

SA01 109404 502+09 73+03 3.1+£04 284406
78+40.4°

AglgC  nd 53.5+ 1.1 10.24+06 3.6+0.7 32.6+0.7

SA13 9.0+0.5° 486+0.2 83+05 3.2+11 30.8+0.5
6.3+£0.2°

The two values for C12.:0 represent total (a) and secreted (b) FAs and are not
additive. FAMEs are derived from lauric (12:0), palmitic (16:0), palmitoleic (16:1),
stearic (18:0), oleic (18:1), linoleic (18:2), and a-linolenic (C18:3) FAs. Unsaturated
C18 FA content is grouped (18:n). Error is represented as SD over four biological
replicates.

2Cell culture.

b Cell-free supernatant of?.

nd, none detected.

(p<0.02) of C12 relative to total FAME under the culturing
conditions used.

Carbohydrates and organic acids

During nitrogen deprivation (—N), AGPase-disrupted strains
accumulated substantially less RC than the WT background:
over 24-48h, RC on a culture volume basis reached 7-11% of
WT levels in AglgC and 6-13% in SA13 (Figure 4A). Under
the same conditions, RC comprised 30% of DCW in the WT
background after 24 h and remained at this percentage over the
next 24 h; whereas RC was accumulated to 4-5% of DCW in
AglgC and 4-7% in SA13. The carbohydrate-deficient back-
ground secreted OA during —N to a total of 15% of DCW
in both AglgC and SAI13 after 24 and 48h. Neither WT nor
SAO01 secreted detectable amounts of OA over the —N time
course, and OAs were not detected in nutrient replete growth
media (not shown). Combined, RC and OA (RC+ OA) in the
AGPase-disrupted strains accumulated under —N conditions to
19% of DCW. Relative to WT RC levels, RC+ OA in AglgC

cultures reached 31% after 24h and 39% after 48h, and SA13
reached 28 and 38% of WT, respectively (Figure 4A). While
WT and SAO01 cultures developed yellow coloration during —N,
the AGPase-disrupted cultures did not (Figure 4B). Under the
culturing conditions used, acetate was the most abundant OA
secreted from the carbohydrate-deficient strains during —N, fol-
lowed by succinate and o-ketoisocaproate (Figures 4C-E). Lesser
concentrations of pyruvate and a-ketoglutarate were also observed
(Figures 4F,G). Levels of OA secretion were not affected by the
LAS modification.

STEADY-STATE PHYSIOLOGY

At stable growth rate for each indicated light intensity in the
LED-PBR, cultures of Synechococcus sp. 7002 WT, SA01, and
AglgC were analyzed for RC, DCW, FAME, O, evolution, dou-
bling rate, and photophysiological characteristics. Growth rate
and O production measurements for the same conditions were
made previously using a separate cultivar of WT Synechococcus sp.
7002 (not shown), which demonstrate the reproducibility of PBR
measurements (Work, 2014).

Biomass profiles

Disruption of AGPase inhibited RC accumulation while RC levels
in the WT background increased with light intensity (Figure 5). At
610 pumolm~—2s~1, RC represented 51% of DCW in WT and 43%
in SAO1, but AglgC reached only 10% of DCW which occurred
at 264 wmol m~2 s~!. Due to the dilute concentration of PBR cul-
tures, FAMEs of C16:0 and C12:0 (C12 hereafter) were detectable
but not quantifiable (<1 mgL~"). In representative PBR cultures
at 396 pmol m~2 s~!, all observed C12 was recoverable from SA01
cell-free filtrate, and C12 was not detected in WT or AglgC (not
shown) (Work, 2014).

Growth rates and 0, evolution

Minimum stable doubling times of 3.5h (WT), 3.8 h (SA01), and
4.6 h (AglgC) were observed at 759 umol m~2 s ! in the WT back-
ground and at 462 pmolm™2s™! in AglgC (Figure 6A). Bulk O,
evolved by SA01 exceeded both WT and AglgC over the majority
of light intensities tested (Figure 6B). On a per-doubling basis,
AglgC produced O; at levels similar to WT and in fact sur-
passed WT at 396 umolm~2s~! and above (Figure 6C) despite
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FIGURE 4 | (A) Reducing carbohydrate (RC) content and secreted
organic acids (OAs) by volume in batch cultures of WT, SA01, AglgC,
and SA13 during nitrogen deprivation at inoculation (0 h) and after 24
and 48 h. (B) Pigmentation differences between wild-type and
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diminished growth rates (Figure 6A). The doubling rate required
per unit DCW was similar between all strains (Figure 6D).
O, evolved by AglgC was comparable to WT by bulk DCW
(Figure 6E) but greater on the basis of DCW-normalized growth
rate (Figure 6F). The uncoupling of O; evolution from growth
rate in AglgC at high irradiance was not observed when further
normalized to DCW (Figure 6F). Despite attaining lower growth
rates than WT at 264 pmolm™2s™! and above, SAO1 exhibited
consistently elevated O, evolution by volume (Figure 6B), growth
rate (Figure 6C), bulk DCW (Figure 6E), and DCW-normalized
growth rate (Figure 6F).

Photophysiology

Photosynthetic electron transport appears to be altered by AGPase
disruption (Figure 7). With increasing irradiance of the AglgC
culture, a higher quantum yield of PSII was observed (Figure 7A),
and the PQ pool became more reduced (Figure 7B) than the
WT background. The rate of electron transport downstream
of the PQ pool was also adversely affected by glgC disrup-
tion (Figure 7C), as less P>>S quenching occurred in this
background with higher light. After dark adaptation, AglgC
cultures exposed to 165umolm—2s~! and above exhibited
more rapid rates of PQ oxidation in the dark (Figure 7D).

The transmittance of 630nm light by cell cultures was unaf-
fected between strains (Figure 7E), but AglgC transmitted less
680 nm light than the WT background (Figure 7F) indicating
more absorption or scattering by the strain at this wave-
length.

DISCUSSION
Derived from photosynthetically fixed CO,, FAs secreted by genet-
ically engineered cyanobacteria have yielded up to 197 mg L=! FFA
by Synechocystis sp. 6803 and 131 mgL~! FFA (6.5mgL~!'d™!)
by Synechococcus sp. 7002 (Liu et al., 2011; Ruffing and Jones,
2012; Ruffing, 2014). Secretion of 4.4 mgL~! day~! transesterifi-
able lauric acid (C12) from modified strains of Synechococcus sp.
7002 was achieved in batch cultures that grew at a similar rate to
WT. Sodium lauryl sulfate is a common ingredient in soap, and the
foam layer atop cultures secreting C12 suggests detergent activity.
Under these conditions, C12 may accumulate in surface bubbles.
Phase separation may be a consideration in applying photosyn-
thetic FA secretion on an industrial scale, and actively removing
C12 from cultures, for example by hexane overlay (Davies et al.,
2014) or solid-state methods (Léonard et al., 2011), may create
more favorable conditions for productivity.

Attenuating the synthesis of polymeric carbohydrates did not
augment C12 production during normal growth, and attempts

www.frontiersin.org

April 2015 | Volume 3 | Article 48 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive

Work et al.

Lauric acid secretion from Synechococcus 7002

>

0.4 4

0.3 -

0.1 -

PSIl quantum yield (YII’)

-O-wt [FSA01 -&AglgC

0.0 T T T
0 200 400 600 800

Post-PQ electron transport rate @

0 200 400 600 800

0.9 1
0.8

0.7

0.6 - T T T )
0 200 400 600 800

Non-transmitted fraction, 630nm m

Irradiance (umol m2s?1)

FIGURE 7 | Pulse amplitude modulation (PAM) fluorometry from
steady-state PBR cultures of WT, SA01, and AglgC over a range of light
intensities. (A) PSII quantum yield (YII'). (B) Relative redox status of the PQ

0.4 -
0.3

0.2 -
0.1 1

PQ redox status (relative index) @

0 200 400 600 800

0.003
0.002 -

0.001

Dark-adapted PQ oxidation rate ©

0 200 400 600 800

0.84

0.80

0.76

0.72 -

0.68 -

Non-transmitted fraction, 680nm =

0.64 T T )
0 200 400 600 800

Irradiance (umol m=2s)
pool (more positive is more reduced). (C) Relative P >> S electron transport

rates downstream of PQ. (D) Dark PQ oxidation rates in dark-adapted cultures.
Non-transmitted fractions of (E) 630 nm and (F) 680 nm light by cell culture.

to direct metabolism to FAs by nitrogen starvation instead elimi-
nated C12 altogether. The absence of C12 may be due to cessation
of protein and/or lipid synthesis under these conditions, or, since a
phycocyanin-related promoter is responsible for fatB1 expression,
the gene may be downregulated in times of nitrogen stress, as phy-
cobiliproteins can be degraded as an intracellular nutrient source
(Sauer et al., 1999; Richaud et al., 2001). Additionally, the AGPase-
disrupted batch cultures exhibited a non-bleaching phenotype
when nitrogen-deprived, and as previously reported, higher
absorbances in the 580—650 nm phycobilin range suggest that these
proteins are not deconstructed for nutrients in this background as
they are in WT (Guerra et al., 2013; Davies et al., 2014). Similar
characteristics were described in carbohydrate-deficient mutants
of Synechocystis sp. 6803 and Synechococcus elongatus 7942
(Carrieri et al., 2012; Griindel et al., 2012; Hickman et al., 2013).

Intracellular carbohydrate accumulation during nitrogen stress
requires AGPase for glucose polymerization in Synechococcus sp.
7002 (Davies et al., 2014), S. elongatus PCC 7942 (Hickman et al.,
2013), and Synechocystis sp. 6803 (Carrieri et al., 2012; Griindel
et al.,, 2012), and energy spilling in the form of OA secretion
was observed upon disruption of this function; and a similar
outcome occurred with glycogen synthase deletions (Xu et al.,
2013). Of the OA secreted by nitrogen-deprived AglgC and SA13
strains, pyruvate (Cs), a-ketoglutarate (Cs), and succinate (C4) are
also gluconeogenic metabolites (Zhang and Bryant, 2011; Stein-
hauser et al., 2012). In S. elongatus 7942, a-ketoglutarate has
been demonstrated as an effector of the nitrogen regulator NtcA
(Vazquez-Bermudez et al., 2001; Tanigawa et al., 2002). Possibly
derived from protein degradation or metabolite redistribution, a-
ketoisocaproate (Cg) is a biosynthetic intermediate of the amino
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acid leucine and can be converted to acetyl-CoA and acetoacetate,
which, along with pyruvate and acetate (C;), are direct precursors
of FAs, terpenoids, higher alcohols, and reduced storage polymers
such as poly-3-hydroxybutyrate (PHB) and polyhydroxyalkanoate
(PHA). Though biosynthetic enzymes for the latter two have not
been identified in Synechococcus sp. 7002 (McNeely et al., 2010),
secreted OA could be supplied to a capable organism by medium
exchange (Niederholtmeyer etal.,2010) or co-cultivation (Contag,
2012; Therien et al., 2014).

Steady-state photoautotrophic doubling times of 3.5h (WT),
3.8h (SA01), and 4.6 h (AglgC) are close to the fastest observed
in Synechococcus sp. 7002 (Ludwig and Bryant, 2012). Increased
O, production on the basis of DCW-normalized growth rate
in both SAO1 and AglgC may represent unidentified photosyn-
thetic energy sinks (Badger et al., 2000; Nomura et al., 2006;
Suzuki et al., 2010; Zhu et al., 2010; Xu et al., 2013), which in
SAO1 could be related to the synthesis of secreted FA. Dimin-
ished photosynthetic productivity caused by AGPase disruption
was evident, as AglgC reached maximum growth rate at a lower
light intensity than WT. After growth rate saturation, dissipation
of excess radiant energy appears to be accomplished in part by
RC storage in the WT background. Restricting RC by AGPase
disruption resulted in a more reduced, less oxidizable PQ pool
indicating overreduction of the photosynthetic electron trans-
port chain and/or the inability to utilize photosynthetic reductant.
However, high rates of PQ oxidation by AglgC in the dark pos-
sibly demonstrate a respiratory or other continuous quenching
function (Joét et al., 2002; Bailey et al., 2008; McDonald et al.,
2011). The severity of these redox alterations may lead to the
protection of PSII in AglgC under irradiances at which WT and
SA01 accumulated RC, as evidenced by O, evolution decoupling,
elevated PSII quantum yields, and more scattered or absorbed
680 nm light, perhaps owing in part to increased content of PSII
or a phycobiliprotein such as phycocyanobilin that can absorb at
680 nm and is involved in free radical scavenging (Alvey et al,,
2011; Ge et al., 2013). Demonstrating a robust capacity to manage
excess light energy, Synechococcus sp. 7002 could be a promis-
ing organism in scaled systems (Dong et al., 2009; Zhu et al,,
2010; Ludwig and Bryant, 2012), and efforts to reroute meta-
bolic flux may identify enzyme targets through further investi-
gation of carbon partitioning at high light in the present genetic
backgrounds.

The planktonic cyanobacterium Synechococcus sp. 7002 was
engineered to convert photosynthate into biofuel precursors,
which were naturally secreted from the cell. Lauric acid and OAs
can be processed into diesel and alcohols or used as a carbon
source for other organisms, and their recovery from culture fil-
trate avoids costly cell harvesting and lysis. Though redirection of
carbohydrate-deficient metabolism toward FA synthesis was not
effective under the present conditions, central metabolites for FA,
terpenoid, and glucan biosynthesis were generated that poten-
tially could be captured with further metabolic adjustments for
redistribution into desired pathways.
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