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INTRODUCTION
Tissue engineering is currently one of the
most exciting fields in biology (Grayson
et al., 2009). Fractal analysis is equally
exciting (Di Ieva et al., 2013), as is the
study of microglia, the brain’s immuno-
inflammatory cell, recently shown to be of
considerably more importance than previ-
ously imagined in both healthy and dis-
eased brain (Tremblay et al., 2011). Each
of these fields is developing at a pace far
outstripping our capacity to integrate and
translate the information gained into clin-
ical use (Karperien et al., 2008b, 2013;
Jelinek et al., 2011, 2013), and the excite-
ment more than trebles where these fields
intersect. Three elements of fractal analy-
sis – monofractal, multifractal, and lacu-
narity analysis – applied to microglia may
contribute significantly to the next steps
forward in engineered tissues and 3D mod-
els in neuroscience.

FRACTAL ANALYSIS AND LACUNARITY
To define “fractal analysis” would take a
volume, but for this commentary, it is suf-
ficient to understand that fractal analy-
sis in biology assesses the scaling inherent
in biological forms or events, and turns
out a statistical index of complexity hav-
ing no units called the “fractal dimen-
sion” (DF). This number measures not
length, width, height, or density, but scale-
invariant detail. For a pattern to have fractal
scale-invariant detail means that the pat-
tern repeats itself infinitely as one inspects
it at closer and closer resolution (magnifies
it), where that detail is not trivial. To elabo-
rate, as one magnifies a simple line, it infin-
itely repeats itself quite trivially as a simple
line, but as one magnifies a fractal line, one
finds it never resolves into straight pieces

but rather each magnified segment repeats
the initial fractal pattern infinitely. A DF

measures this infinite scaling, quantifying
complex patterns without rendering mean-
ingless the relative numbers of large and
small measurements within them. Without
getting too technical, fractal analysis of a
simple line yields a DF of 1.00, and the
higher the “complexity,” the higher the DF

(Mandelbrot, 1983; Takayasu, 1990). Build-
ing on this so-called monofractal analysis,
multifractal analysis, to summarize, is a way
of finding for a single pattern a spectrum
of DFs, owing to a pattern having charac-
teristically multiple degrees of scaling, such
as could be imagined for a cascading frac-
tal phenomenon (Jestczemski and Sernetz,
1996; Falconer, 2014).

The word “lacuna” is derived from the
word for lake, and refers to a gap or
pool. In fractal analysis, lacunarity trans-
lates to measures of gappiness or “visual
texture,” such as might be seen in the
patchiness of forests, for instance (Plot-
nick et al., 1993). It has been defined as
the degree of inhomogeneity and transla-
tional and rotational invariance in an image
(Plotnick et al., 1993; Smith et al., 1996),
where low lacunarity implies homogene-
ity and that rotating the image will not
change it significantly. Thus, an image hav-
ing mostly similarly sized gaps and little
rotational variance would be expected to
have low lacunarity, and one with much
heterogeneity, many differently sized gaps,
and notable rotational variance, would be
expected to have high lacunarity (Karpe-
rien et al., 2011a). Lacunarity is frequently
assessed during fractal analysis because the
data on which it is based are easily col-
lected by the same methods. The details
and calculations behind fractal analysis are

beyond the scope of this commentary but
user-friendly, freely available software for
biologists (Karperien, 2001, 2013) and in-
depth explanations are available elsewhere
(Smith et al., 1996).

MICROGLIA
Microglia are of considerable interest to
the tissue engineer interested in the cen-
tral nervous system (CNS). These are tiny
immuno-inflammatory cells that are very
abundant in and wield considerable power
in the brain and spinal cord of humans as
well as many other species (Dowding and
Scholes, 1993; Sheffield and Berman, 1998;
Bernhardi and Nicholls, 1999; Sierra et al.,
2014a). They are considered structural in
some senses, and are indeed immune cells,
yet traffic through the CNS, and are not
grossly separated from their surround-
ings in the way that the meninges can
be peeled from the brain or lymph nodes
are segregated from surrounding tissue, for
instance. Similar in number to neurons but
much smaller in size, microglia in living
organisms are usually found as individual
cells physically integrated within the tan-
gled mesh of cells that is the CNS (Lawson
et al., 1990; Rezaie and Male, 1999; Billiards
et al., 2006; Inoue, 2006; Stoll et al., 2006;
Leung et al., 2008; Morgan et al., 2012; Zhao
et al., 2012; Hinwood et al., 2013).

They play key roles in immature, devel-
oping nervous tissue, and in adult tissue,
they ensure normal goings on but also
police, protect, repair, and remodel neu-
rons, including by removing cell parts and
debris (Sierra et al., 2014a,b). They are
meaningfully involved in virtually every-
thing that goes on in the brain, from medi-
ating behavioral effects of emotional stress
(Hinwood et al., 2013) to autism (Maezawa
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et al., 2011; Morgan et al., 2012) to clean-
ing up after a stroke (Vinet et al., 2012).
The scientific community has show-cased
them using time-lapse photography and
in vivo thin-skull visualization, revealing
how they move within their space, by furl-
ing, unfurling, and waving their processes
about, and throughout their space, migrat-
ing and phagocytosing (Nimmerjahn et al.,
2005; Tremblay et al., 2011). Marvelously,
they have no single form, rather, they
exist along a highly disparate continuum
of forms, shape-shifting to meet the most
immediate challenge to the neurons they
support, morphing back and forth as
required (Karperien et al., 2013). Indeed,

their function is usually inferred largely
from their form, albeit generally backed up
with biochemical and other data (Streit and
Kreutzberg, 1987; Kreutzberg, 1995; Banati
et al., 1999; Orlowski et al., 2003; Sheets
et al., 2013).

MEASURING MICROGLIA WITH
FRACTAL ANALYSIS
What is perhaps most marvelous of all is
that their morphology can be measured
by their DF, as well as their lacunarity,
and to some extent multifractal spectra
(Soltys et al., 2001; Jelinek et al., 2008, 2011;
Karperien et al., 2008c, 2011b, 2013). Find-
ing this was a relief to the beleaguered

microgliologist, because microglial mor-
phology is not easily quantifiable by tra-
ditional measures despite that microglial
function is so well-correlated with that
morphology. Basically, while microglia
change shape back and forth from highly
ramified usually radially branched struc-
tures to plump and rounded blobs, their
DFs range from higher to lower values cor-
responding to the spectrum of morpho-
logical change (see Figure 1) (Karperien
et al., 2013). Results of in silico modeling
studies agree with these general conclu-
sions from studies of actual cells, show-
ing microglia can be successfully modeled
using sets of increasingly complex fractal

FIGURE 1 | (A,B) Self-similarity in two typical microglial morphologies.
(C) The cycle of microglial morphology. Microglia adopt morphologies along a
cycle that corresponds to their box-counting DF (shown ranging from 1.00 to
1.65 in the figure). Ramified morphologies are more complex, and the most

activated, rounded forms least complex. The bottom of (C) shows two cells
from pathological vs. non-pathological tissue that were visually
indistinguishable but objectively distinguishable by the box-counting DF.
Author’s figures adapted from Karperien et al. (2013).
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branching parameters (Jelinek et al., 2002;
Jelinek and Karperien, 2008).

The practical value of fractal analysis
surpasses classifying individual cells and
verifying models. The DF has been used
to analyze overall status in pathological
conditions and aging (Jelinek et al., 2008;
Karperien et al., 2008a,c). Data from bio-
logical and in silico cells (Jelinek et al.,
2002) suggest the significance of multifrac-
tal scaling in particular is that it identifies
microglia in temporarily hyper-ramified
transitional states between ramified and
intermediately activated forms.

Lacunarity, like multifractal spectra,
also complements the DF. Lacunarity and
DFs have been shown to be correlated in
some research, but not by all methods of
fractal analysis. For microglia, the box-
counting DF and lacunarity both generally
decrease as cells cycle toward a more acti-
vated state, then increase as they return to a
ramified state (Jelinek et al., 2008), but this
is not strictly the case and the exceptions are
meaningful. It has been established using
box-counting fractal analysis methods that
some patterns indistinguishable by their
DFs are distinguishable by their lacunar-
ity, or vice versa, and such is the case for
microglia (Karperien et al., 2011a, 2013).
In silico modeling of microglia has shown
that although the DF is generally more sen-
sitive using whole cells, lacunarity is more
sensitive to changes in particular features
such as soma size relative to process length
(Karperien et al., 2011a, 2013). Lacunar-
ity has also been demonstrated to better
identify microglia than does the DF in cer-
tain situations (e.g., elderly human cor-
tex but not tumor) (Soltys et al., 2005;
Karperien et al., 2011a).

CONCLUSION
To sum up, our point here is twofold:
first, to let the tissue engineer modeling
CNS know that he or she needs to con-
sider microglia, because despite that these
cells are tiny and were once considered
negligible for normal function, they are
entirely engaged physically and physio-
logically within the CNS; and second, to
ensure that he or she is aware that these
cells are characterized by some degree of
fractal scaling. When developing meth-
ods to restore and replace diseased tissue,
the tissue engineer who does not consider
these two factors may develop models that

overlook or misrepresent events. In partic-
ular, there is a need to ensure that models,
such as engineered tissues being used as
3D in vivo models and cell-culture mod-
els being used for things like pharmaceu-
tical research, do not overlook ostensibly
subtle features of microglial activity that
are characterizable by fractal measures but
not traditional measures, and may be very
important (Leung et al., 2008; Katari et al.,
2014). The work discussed here focused on
individual cell changes, but such changes
can be understood within broader notions
of decreasing complexity with increasing
pathology, perhaps attributable to decreas-
ing ability to generate novel responses to
deal with rapidly changing environments.
At any rate, for engineering and model-
ing CNS, from cell-culture environments
to tissue formation and function, microglia
are tiny but critical components, and their
fractal and multifractal features need to be
considered.

ACKNOWLEDGMENTS
The authors thank Lucas Karperien,
biomedical engineering student, Faculty
of Engineering, University of Victo-
ria, Canada, for helpful review of the
manuscript.

REFERENCES
Banati, R. B., Goerres, G. W., Myers, R., Gunn, R. N.,

Turkheimer, F. E., Kreutzberg, G. W., et al. (1999).
[11C](R)-PK11195 positron emission tomography
imaging of activated microglia in vivo in Ras-
mussen’s encephalitis. Neurology 53, 2199–2203.
doi:10.1212/WNL.53.9.2199

Bernhardi, R. V., and Nicholls, J. G. (1999). Transfor-
mation of leech microglial cell morphology and
properties following co-culture with injured cen-
tral nervous system tissue. J. Exp. Biol. 202(Pt 6),
723–728.

Billiards, S. S., Haynes, R. L., Folkerth, R. D., Trachten-
berg, F. L., Liu, L. G.,Volpe, J. J., et al. (2006). Devel-
opment of microglia in the cerebral white matter of
the human fetus and infant. J. Comp. Neurol. 497,
199–208. doi:10.1002/cne.20991

Di Ieva, A., Grizzi, F., Jelinek, H., Pellionisz, A. J.,
and Losa, G. A. (2013). Fractals in the neuro-
sciences, part I general principles and basic neuro-
sciences. Neuroscientist 20, 403–417. doi:10.1177/
1073858413513927

Dowding, A. J., and Scholes, J. (1993). Lymphocytes
and macrophages outnumber oligodendroglia in
normal fish spinal cord. Proc. Natl. Acad. Sci. U.S.A.
90, 10183–10187. doi:10.1073/pnas.90.21.10183

Falconer, K. (2014). Fractal Geometry: Mathematical
Foundations and Applications. Chichester: Wiley.

Grayson, W. L., Martens, T. P., Eng, G. M., Radisic,
M., and Vunjak-Novakovic, G. (2009). Bio-
mimetic approach to tissue engineering. Semin. Cell

Dev. Biol. 20, 665–673. doi:10.1016/j.semcdb.2008.
12.008

Hinwood, M., Tynan, R. J., Charnley, J. L., Beynon, S.
B., Day, T. A., and Walker, F. R. (2013). Chronic
stress induced remodeling of the prefrontal cor-
tex: structural re-organization of microglia and the
inhibitory effect of minocycline. Cereb. Cortex 23,
1784–1797. doi:10.1093/cercor/bhs151

Inoue, K. (2006). “ATP receptors of microglia involved
in pain,” in Novartis Foundation Symposium,
Vol. 276 (Chichester: Wiley), 263–272; discussion
273–281.

Jelinek, H., Karperien, A., Buchan, A., and Bosso-
maier, T. (2008). Differentiating grades of microglia
activation with fractal analysis. Complex. Int. 12,
1–12.

Jelinek, H., Karperien, A., Cornforth, D., Cesar, R.,
and Leandro, J. (2002). “MicroMod: an L-systems
approach to neuron modelling,” in Proceedings of
the Sixth Australasia-Japan Joint Workshop on Intel-
ligent and Evolutionary Systems, (Canberra, ACT:
Australian National University), 156–163.

Jelinek, H. F., and Karperien, A. (2008). “Microglia
modelling and analysis using L-systems grammar,”
in BIOSTEC 2008 International Joint Conference on
Biomedical Engineering Systems and Technologies,
eds P. Encarnação and A. Veloso (Funchal: Institute
for Systems and Technologies of Information, Con-
trol and Communication (INSTICC)), 289–294.

Jelinek, H. F., Karperien, A., and Milosevic, N. T.
(2011). “Lacunarity analysis and classification of
microglia in neuroscience,” in Proceedings of the 8th
European Conference on Mathematical and Theoret-
ical Biology, Cracow.
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Krstonošić, B. (2013). “Box-counting and multi-
fractal analysis in neuronal and glial classification,”
in Advances in Intelligent Control Systems and Com-
puter Science, ed. I. Dumitrache (Berlin: Springer),
177–189.

Jestczemski, F., and Sernetz, M. (1996). Multifractal
approach to inhomogeneous fractals. Physica A
223, 275–282. doi:10.1016/0378-4371(95)00365-7

Karperien, A. (2001). FracLac User’s Guide [Online].
Available at: http://rsbweb.nih.gov/ij/plugins/
fraclac/FLHelp/Introduction.htm

Karperien, A. (2013). FracLac for ImageJ. Albury-
Wodonga: Charles Sturt University.

Karperien, A., Ahammer, H., and Jelinek, H. F. (2013).
Quantitating the subtleties of microglial morphol-
ogy with fractal analysis. Front. Cell. Neurosci. 7:3.
doi:10.3389/fncel.2013.00003

Karperien, A., Jelinek, H., and Milosevic, N. (2011a).
“Reviewing lacunarity analysis and classification of
microglia in neuroscience,” in 8th European Confer-
ence on Mathematical and Theoretical Biology (Cra-
cow: European Society for Mathematical and The-
oretical Biology (ESMTB)).

Karperien, A., Jelinek, H. F., and Milošević, N. T.
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