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Cyanobacteria represent a promising platform for the production of plant secondary
metabolites. Their capacity to express plant P450 proteins, which have essential
functions in the biosynthesis of many plant secondary metabolites, makes cyanobac-
teria ideal for this purpose, and their photosynthetic capability allows cyanobac-
teria to grow with simple nutrient inputs. This review summarizes the advan-
tages of using cyanobacteria to transgenically produce plant secondary metabolites.
Some techniques to improve heterologous gene expression in cyanobacteria are
discussed.

Keywords: plant secondary metabolites, phenylpropanoid, cyanobacteria, P450 proteins, photosynthetic
growth

Benefits of Plant Secondary Metabolites to Human Health

Secondary metabolites produced by plants confer protection against stresses such as infections,
wounding, UV irradiation, and ozone (Douglas, 1996), and allow plants to adapt to continuously
changing environmental conditions (Korkina, 2007). Secondarymetabolites are largely derived from
primary metabolites, such as amino acids and carbohydrates, which are modified by methylation,
hydroxylation, or glycosylation (Crozier et al., 2006).

Increasing evidence suggests that plant secondary metabolites, especially the largest group,
phenylpropanoids, and their derivatives, are powerful antioxidants that directly scavenge reactive
oxygen and nitrogen species (ROS/RNS) (Perron and Brumaghim, 2009). A balance between
oxidant and antioxidant systems is critical for maintaining cellular functions. The excessive pro-
duction of ROS/RNS inside cells results in oxidative stress, loss of cell function, and apop-
tosis or necrosis. Detoxification of ROS/RNS by enzymatic and non-enzymatic antioxidants
minimizes cell damage (Ratnam et al., 2006; Reuter et al., 2010). The antioxidant activity of
five phenylpropanoids (i.e., verbascoside, forsythoside, arenareoside, ballotetraside, and caffeoyl
malic acid) extracted from the perennial herb Ballota nigra were investigated against super-
oxide, hydrogen peroxide, hypochlorite, and hydroxyl radicals generated in cell-free systems
(Fraga et al., 2010). The ability of these phenylpropanoids to scavenge free radicals was com-
parable to that of N-acetyl cysteine, an established antioxidant drug (Nordberg and Arner,
2001).

Plant secondary metabolites have become the focus of intensive research, due to their ben-
eficial effects on human health as anticancer, antioxidant, anti-virus, and anti-inflammatory
agents. However, these compounds are mainly isolated from plant extracts or from cul-
tivated plant cells at relatively high cost and low yield. It is expensive and technically
challenging to chemically synthesize these molecules. Therefore, there is a strong need to
develop novel, efficient, and economical methods to produce beneficial plant secondary
metabolites.
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Cyanobacteria are Suitable for Producing
Plant Secondary Metabolites

Several inherent properties of cyanobacteria make them attractive
candidates for the biosynthesis of plant secondary metabolites,
such as their photosynthetic activity, their amenability to genetic
engineering, and their ability to live in tough environments.

Large-scale cyanobacterial cultivation is frequently performed
in phototrophic conditions because this approach is cheaper,
results in less contamination, and consumes CO2 (Chen et al.,
2011). Commercially used open ponds or closed photobiore-
actors have been developed for large-scale biomass production
(Olaizola, 2000; López et al., 2006; Eriksen, 2008; Ugwu et al.,
2008; Rodolfi et al., 2009; Singh andGu, 2010). The nutrient inputs
for cyanobacteria are simple: sunlight, CO2, H2O, N, P, and a
few mineral nutrients, without carbohydrate feedstocks (Yu et al.,
2013).

A wide variety of enzymes and pathways are involved in plant
secondary metabolite production. Of these enzymes, cytochrome
P450 monooxygenases participate in the pathways to produce
compounds such as phenylpropanoids, alkaloids, terpenoids,
cyanogenic glycosides, and glucosinolates (Mizutani and Ohta,
2010). They contribute various oxidative modifications of the
carbon skeleton using NADPH or NADH as reducing equiv-
alents (Sligar, 1999). P450 sequences have been found in the
genome of most known cyanobacterial species (Ke et al., 2005);
Anabaena sp. PCC 7120 has six P450 genes (Robert et al., 2010)
and Synechocystis sp. PCC 6803 has one (cyp120A1/slr0574)
(Ke et al., 2005). Because most eukaryotic P450 proteins are
membrane-bound proteins, it is challenging to heterologously
express these proteins in other prokaryotes, such as E. coli,
which lack developed internal membrane systems. By contrast,
cyanobacteria have an intracellular membrane system, i.e., the
thylakoids, which function in electron transport. This makes
cyanobacteria highly suitable hosts in which to express P450
enzymes (Melis, 1999).

Using Cyanobacteria to Produce Plant
Secondary Metabolites

Several cyanobacteria have been engineered as cell factories for the
production of plant secondary metabolites (Table 1). Metabolic
distributions of produced plant secondary metabolites are sum-
marized in Figure 1 based on their biosynthetic pathways.

Tricarboxylic Acid Cycle

To produce ethylene, an ethylene-forming enzyme gene (efe) from
Pseudomonas syringaewas inserted into the Synechococcus elonga-
tus PCC 7942 chromosome at the psbAI locus, and the recombi-
nant strain produced ~512 µg ethylene L−1 h−1 OD730−1 (Taka-
hama et al., 2003). An artificial chimeric enzyme complex con-
taining two ethylene-generating enzymes from Solanum lycop-
ersicum (tomato) was introduced into S. elongatus PCC 7942,
and the strain produced ethylene with a titer of ~3.9 µg ethy-
lene L−1 h−1 OD730−1 (Jindou et al., 2014).

TABLE 1 | Plant secondary metabolites produced by genetically engineered
cyanobacteria.

Products Yield Host Reference

Ethylene ~512 µg L−1 h−1

OD730−1b
S. elongatus
PCC 7942

Takahama et al.
(2003)

~3.9 µg L−1 h−1

OD730−1
S. elongatus
PCC 7942

Jindou et al.
(2014)

Isoprene 50 µg (g dry
cell)−1 day−1

Synechocystis
sp. PCC 6803

Lindberg et al.
(2010)

~125 µg (g dry
cell)−1 day−1

Synechocystis
sp. PCC 6803

Bentley et al.
(2014)

Caffeic acida 7.2mgL−1 Synechocystis
sp. PCC 6803

Xue et al.
(2014b)

ρ-coumaric
acida

82.6mgL−1 Synechocystis
sp. PCC 6803

Xue et al.
(2014a)

Mannitol 0.15 g L−1 day−1 Synechococcus
sp. PCC 7002

Jacobsen and
Frigaard (2014)

Limonene 56 µg L−1 day−1 Synechocystis
sp. PCC 6803

Kiyota et al.
(2014)

50 µg L−1 h−1 Synechococcus
sp. PCC 7002

Davies et al.
(2014)

Carotenoida 8.4mg (g dry
cell)−1

Synechocystis
sp. PCC 6803

Kudoh et al.
(2014)

aTime over which the yield was achieved is not provided in the publication.
bThe yield is calculated from ethylene gas production of 451 nLmL−1 h−1 OD370−1

reported by Takahama et al. (2003). The authors believe that the rate of 37mgL−1 h−1

previously attributed to this study (Lan and Liao, 2011; Shen and Liao, 2012; Wang et al.,
2012) is incorrect.

2-C-Methyl-D-Erythritol 4-Phosphate
Pathway

Isoprene, which protects plants from abiotic stresses (Sharkey
et al., 2008) and serves as a renewable biofuel, was produced
in Synechocystis sp. PCC 6803 with a titer of 50 µg (g dry
cell)−1 day−1 by expressing an isoprene synthase gene (ispS)
from Pueraria Montana (Lindberg et al., 2010). By co-expressing
seven genes of a heterologous mevalonic acid biosynthetic path-
way from Enterococcus faecalis and Streptococcus pneumoniae
in that ispS transformant, the yield of isoprene production
increased 2.5-fold (Bentley et al., 2014). To produce limonene,
a limonene synthase gene (LMS) from Schizonepeta tenuifolia
was expressed in Synechocystis sp. PCC 6803, and the titer was
41 µg L−1 day−1. By overexpressing three genes (dxs, crtE, and
ipi) in the 2-C-methyl--erythritol-4-phosphate (MEP) pathway
to increase the supply of limonene substrate, geranyl pyrophos-
phate (GPP), limonene production was improved by 1.4-fold
(Kiyota et al., 2014). In another study, 50 µg L−1 h−1 limonene
was produced by a Synechococcus sp. PCC 7002 strain express-
ing codon optimized Mentha spicata limonene synthase gene
(mslS) (Davies et al., 2014). Carotenoids are naturally pro-
duced terpenoid-type molecules by cyanobacteria through MEP
pathway. Recently, Kai et al. overexpressed a key enzyme, 1-
deoxy--xylulose-5-phosphate synthase (DXS), in Synechocystis
sp. PCC 6803, and the carotenoid level in the strain was 1.5
times higher than that in the wild-type strain (Kudoh et al.,
2014).
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FIGURE 1 | Cyanobacterial metabolic pathways for the production of
plant secondary metabolites. Abbreviation: G6P, glucose-6-phosphate;
G1P, glucose-1-phosphate; F6P, fructose-6-phosphate; G3P,
glyceraldehyde-3-phosphate; RuBP, ribulose-1,5-diphosphate; 3PGA,
3-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr, pyruvate; DXP,
1-deoxy-D-xylulose 5-phosphate; HMBPP, 4-hydroxy-3-methylbut-2-enyl
diphosphate; IPP, isopentenyl pyrophosphate; DMAPP, dimethylallyl
pyrophosphate; GPP, geranyl pyrophosphate; AcCoA, acetyl-CoA; OAA,
oxoacetate; CIT, citrate; ICT, isocitrate; AKG, α-ketoglutarate; SSA, succinic
semialdehyde; SUC, succinate; FUM, fumarate; MAL, malate; GlgC,
ADP-glucose pyrophosphorylase; MtlD, mannitol-1-phosphate
dehydrogenase; Mlp, mannitol-1-phosphatase; DXS,
1-deoxy-D-xylulose-5-phosphate synthase; IspS, isoprene synthase; MsLS,
Mentha spicata limonene synthase; EFE, ethylene-forming enzyme; TAL,
tyrosine ammonia-lyase; C3H, ρ-coumarate 3-hydroxylase; H.

Other Metabolites

Our group recently constructed a Synechocystis sp. PCC 6803
strain genetically engineered to produce caffeic acid, in which
an Arabidopsis ρ-coumarate 3-hydroxylase (encoded by ref8) was
expressed. With the addition of substrate, ρ-coumaric acid, to
the medium, the titer reached 7.2mg L−1 (Xue et al., 2014b). In
another report, the direct precursor of caffeic acid, ρ-coumaric
acid, was produced at a concentration of 82.6mg L−1 by a
Synechocystis sp. PCC 6803 mutant, which harbored a tyrosine
ammonia-lyase (TAL) gene (sam8) from Saccharothrix espanaen-
sis and lacked a hypothetical laccase gene (Xue et al., 2014a).
Mannitol was produced in Synechococcus sp. PCC 7002 with a
titer of 0.15 g L−1 day−1 by heterologously expressing mannitol-
1-phosphate dehydrogenase (mtlD) from E. coli and mannitol-1-
phosphatase (mlp) from Eimeria tenella. By genetically inactivat-
ing glycogen synthesis, the yield increased 3.2-fold (Jacobsen and
Frigaard, 2014).

Some Considerations for the Genetic
Manipulation of Cyanobacteria

Although many species of cyanobacteria have been successfully
engineered to express heterologous genes and produce valu-
able compounds, as summarized above, this approach remains
challenging due to epigenetic suppression, poor transcription,
and protein post-translational modifications. Here, we high-
light some factors that need to be considered when genet-
ically engineering cyanobacteria to produce plant secondary
metabolites.

Inactivation of Glycogen Synthesis
Pathway

Glycogen is one of the dominant carbon sinks for cyanobac-
teria. Up to 60% of dry cell weight is converted to glyco-
gen when cyanobacteria are growing in nitrogen-limited media
(Allen and Smith, 1969). Therefore, inactivation of glycogen
synthesis pathway should allow a greater proportion of car-
bon partitioning to non-native products. In a recent study, the
glgC gene (coding for glucose-1-phosphate adenylyltransferase)
was knocked out from S. elongatus PCC 7942 strain produc-
ing isobutanol. The amount of total fixed carbon flux toward
isobutanol production was increased by 2.5-fold after deletion
of glgC under constant high light condition (150 µE s−1 m−2)
(Li et al., 2014). Another example is a Synechoccocuus sp.
PCC 7002 strain expressing a mannitol biosynthetic path-
way, which produces mannitol equivalent to 10% of cell dry
weight under 250 µE s−1 m−2. By blocking glycogen biosyn-
thesis, the yield increased to 32% (Jacobsen and Frigaard,
2014).

Laccase Knockout

Laccases are enzymes that oxidize many phenolic compounds
and are present in a large variety of species. Oxidized substrates
become free radicals, which are unstable and can be modified
by other non-enzymatic reactions, such as hydration, polymer-
ization, and disproportionation (Thurston, 1994). In a recent
study, a putative laccase gene, slr1573, was found in Synechocystis
sp. PCC 6803. After knocking out slr1573 from its genome, the
production of p-coumaric acid increased by more than 25-fold in
the strain expressing TAL enzyme (Xue et al., 2014a). Although
reports of laccase functions in cyanobacteria are limited, this
gene might be a barrier for phenylpropanoids production using
cyanobacteria.

Codon Optimization

A codon usage bias exists formost protein-coding genes expressed
in heterologous hosts. It is critical to optimize the codon usage
in order to obtain high levels of overexpression of heterolo-
gous genes (Steen et al., 2010; Bond-Watts et al., 2011; Pad-
don et al., 2013). Several factors need to be considered when
designing new gene sequences, including host codon usage fre-
quency (Angov et al., 2011), AT/GC ratio (Gustafsson, 2009),
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mRNA secondary structure (Tang et al., 2011), repeat sequences
(Li et al., 2011), and restriction sites for cloning (Raab et al.,
2010). Our group recently constructed a transgenic Synechocys-
tis sp. PCC 6803 that heterologously expressed ref8 from Ara-
bidopsis thaliana, which encodes a P450 enzyme ρ-coumarate 3-
hydroxylase, and was capable of producing caffeic acid (Xue et al.,
2014b).

Transgene Stability

Several reports describe the instability of transgenes in genetically
engineered cyanobacteria. During subculturing of an ethylene-
producing S. elongatus PCC 7942 transformant, a duplicated
sequence in the efe gene was found that resulted in a truncated and
non-functional gene (Takahama et al., 2003). In another study,
a Synechocystis sp. PCC 6803 strain was genetically modified to
produce lactic acid by integrating a lactate dehydrogenase gene
in the genome. Wild-type phenotypic colonies appeared during
segregation, and further analysis identified a nonsense muta-
tion in the transgene (Angermayr et al., 2012). Similarly, in an
effort to produce isopropanol, four enzymes in the isopropanol
biosynthetic pathway from Clostridium acetobutylicum, Clostrid-
ium beijerinckii, and E. coli were expressed in S. elongatus PCC
7942. The authors repeatedly found a missense mutation in one
gene (atoD), which reduced the enzymatic activity (Kusakabe
et al., 2013). The mechanism underlying the instability has not
been determined. A common approach is to select transformants
carrying single unrearranged transgenes and to keep these as
backups.

Markerless System

The standard method of genetically engineering cyanobacteria
involves transformation of a plasmid carrying genes of inter-
est and integration of these foreign genes into the cyanobacte-
rial genome at specific sites through double-crossover homol-
ogous recombination (Vermaas, 1996). Antibiotic resistances
are used as selectable markers for positive transformants. In
some cases, when multiple gene integrations are required in
one strain, the number of available antibiotic markers restricts
the number of insertions, and thus markerless genomic muta-
tions are desirable. Currently, the most widely used marker-
less technique for cyanobacteria was developed using a plasmid
containing sacB (a levansucrase gene) and an antibiotic resis-
tance cassette (Lagarde et al., 2000). In the first transforma-
tion, a target region in the genome is replaced by the sacB-
antibiotic resistance cassette and antibiotic resistance is used for
positive selection. The second transformation is performed by
replacing the sacB-antibiotic resistance cassette with the gene
of interest. Sucrose is added to the medium for negative selec-
tion. The levansucrase encoded by sacB converts sucrose to
levans, a toxic polymer that kills the bacteria. Consequently,
only markerless mutants can survive in the presence of sucrose.
For example, a Synechocystis sp. PCC 6803 mutant was con-
structed for ethanol production by integrating pyruvate decar-
boxylase (pdc) and alcohol dehydrogenase II (adh) genes into

the genome. An aphX/sacB selection cassette was used to gener-
ate a markerless transformant, which is able to produce ethanol
at a titer of 5.2mmolOD730 unit−1 L−1 day−1 (Dexter and Fu,
2009). Recently, an alternative strategy was developed using a
one-step gene replacement approach (Viola et al., 2014). The
plasmid designed for this strategy harbors an nptI (kanamycin
resistance gene)-sacB selection cassette flanked by 5′ and 3′ frag-
ments of the gene of interest, which have overlapping segments.
After transformation, the nptI-sacB cassette with the exogenous
gene is integrated into the genome through double-crossover
recombination, and complete segregations are selected based
on kanamycin resistance. Then, a second single crossover event
occurred between the overlapping fragments, leading to the exci-
sion of the nptI-sacB cassette. Mutants that had undergone the
second recombination were screened on sucrose in the absence
of kanamycin.

Another successful counter selection method based on acrylate
toxicity was developed for Synechococcus sp. PCC 7002, in which
sacB counter selection system did not work (Begemann et al.,
2013). After one transformation step, a native acsA gene (encoding
an acetyl-CoA ligase) is replaced by the gene of interest, and the
loss of acetyl-CoA ligase function overcomes growth inhibition by
acrylate. Thus, positive transformants can be screened on growth
medium with addition of acrylate. After reinsertion of the acsA
gene into a neutral site on genome, multiple gene integrations can
be achieved.

Limitations of Cyanobacteria for Producing
Plant Secondary Metabolites

In addition to the potential advantages of using cyanobacteria
to produce plant secondary metabolites mentioned above, this
technology is still in its infancy and numerous challenges need
to be addressed. For instance, production titers from engineered
cyanobacteria are much lower than that from heterotrophic fer-
mentation, and efficient, large volume bioreactors need to be
designed. Another consideration is the protein post-translational
modifications. Because some plant enzymes in the secondary
metabolite biosynthesis pathways require post-translational mod-
ifications (e.g., glycosylation), they could be non-functional when
expressed in cyanobacteria that are not equipped with these
machineries.

Conclusion

Cyanobacteria can be used as cell factories to convert solar energy
into high value products, such as plant secondary metabolites,
which are beneficial to human health. Their high photosynthetic
efficiency and ease of genetic manipulation make cyanobacteria
a better choice for this purpose than other organisms. Recently,
researchers have put efforts into engineering cyanobacteria to
produce plant secondary metabolites from sunlight and CO2.
However, there are still challenges for engineering applications of
cyanobacteria, such as improvement of product titers, bioprocess
scale-up, and product recovery.
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