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Non-verbal signals expressed through body language play a crucial role in multi-modal
human communication during social relations. Indeed, in all cultures, facial expressions
are the most universal and direct signs to express innate emotional cues. A human face
conveys important information in social interactions and helps us to better understand
our social partners and establish empathic links. Latest researches show that humanoid
and social robots are becoming increasingly similar to humans, both esthetically and
expressively. However, their visual expressiveness is a crucial issue that must be improved
to make these robots more realistic and intuitively perceivable by humans as not different
from them. This study concerns the capability of a humanoid robot to exhibit emotions
through facial expressions. More specifically, emotional signs performed by a humanoid
robot have been compared with corresponding human facial expressions in terms of
recognition rate and response time. The set of stimuli included standardized human
expressions taken from an Ekman-based database and the same facial expressions
performed by the robot. Furthermore, participants’ psychophysiological responses have
been explored to investigate whether there could be differences induced by interpreting
robot or human emotional stimuli. Preliminary results show a trend to better recognize
expressions performed by the robot than 2D photos or 3D models. Moreover, no
significant differences in the subjects’ psychophysiological state have been found during
the discrimination of facial expressions performed by the robot in comparison with the
same task performed with 2D photos and 3D models.

Keywords: facial expressions, emotion perception, humanoid robot, expression recognition, social robots,
psychophysiological signals, affective computing

1. Introduction

Human beings communicate in a rich and sophisticated way through many different channels,
e.g., sound, vision, and touch. In human social relationships, visual information plays a crucial
role. Human faces convey important information both from static features, such as identity, age,
and gender, and from dynamic changes, such as expressions, eye blinking, and muscular micro-
movements. The ability to recognize and understand facial expressions of the social partner allows
us to establish and manage the empathic links that drive our social relationships.

Charles Darwin was the first to observe that basic expressions, such as anger, disgust, contempt,
fear, surprise, sadness, and happiness, are universal and innate (Darwin, 1872). Since the publication
of his book “The Expression of the Emotions in Man and Animals” in 1872, a strong debate over the
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origin, nature, and function of facial expressions has been raised.
He hypothesized that some facial and body movements are evolu-
tions of biologically based motor actions (Darwin, 1872). Indeed,
human beings are able to recognize faces and read facial expres-
sions almost unconsciously and with little or no effort (LeDoux,
1996).

Due to rapid advances in robotics, computer graphics and
artificial intelligence in recent years, social and interactive agents,
both physical and virtual, have become common in our daily
lives. The rapid growth of robotics science has made possible
the development of a new class of empathic machines known as
social robots. These innovative robots are used in various fields
ranging from entertainment and education to human assistance
and health care (Fong et al., 2003; Christensen, 2009). Whether
they are physical or virtual, the primary goal of these social agents
is to be able to engage people, i.e., to interact and communicate
with others by following social behaviors and rules. Therefore,
researchers are focusing on the development of more pleasant
and user-friendly social agents that are able to reproduce human
facial expressions (Pèlachaud, 2000; Breazeal, 2002). Indeed, the
ability to express emotions is fundamental for their believability
and social capabilities (Bates, 1994; Fong et al., 2003; Siciliano and
Khatib, 2008).

Although both physical robots and virtual characters can
be emotionally expressive and believable, they differ in a fun-
damental aspect: the physical embodiment. The debate about
whether a physical embodiment is or not an added value for
the establishment of social interactions between humans and
these social agents is open (Lee et al., 2006) raising the fol-
lowing questions: Do we really need to build social humanoid
robots? Does the physical embodiment increase the believability and
emotion conveying capabilities of synthetic agents? Do humanoid
robots and virtual characters have the same capability to con-
vey emotions through facial expressions? These interrogatives are
mainly driven by considerations related to the costs of designing
and building such agents. Physical robots are usually high-cost
products typically used only in academia and research fields.
Conversely, virtual characters are widely used in games, sto-
rytelling, tutoring, and e-commerce assistance (Gockley et al.,
2006).

The esthetic effect of the robot’s physical embodiment has been
debated since Masahiro Mori proposed the “Uncanny Valley”
hypothesis in the late 1970s (Mori, 1970; Mori et al., 2012). He
hypothesized that the acceptance of a humanoid robot increases
with its realism but only up to a certain point when the curve
suddenly plunges into the uncanny valley. Thus, an observer
could lose the sense of affinity and experience an eerie sensation.
Nevertheless, Hanson et al. (2005) demonstrated that robots with
highly realistic aesthetic cues can induce higher acceptability rates
in the involved subjects.

This work is based on the hypothesis that highly anthropomor-
phic robots with physical embodiment are able to convey expres-
sions more easily and more intuitively than virtual characters. It is
known that the form and appearance of a robot can easily raise
some sort of social expectations in people (Fong et al., 2003).
Therefore, the physical embodimentmay help the robot to express
its emotions by means of its materialization that is absent in

entities shown on a screen. It is also known that humans recognize
positive facial expressions faster than the negative ones (Leppänen
andHietanen, 2004) because they donot require the analysis of the
entire face. Positive expressions can be usually characterized by a
single feature, such as a smiling mouth for happiness (Adolphs,
2002). Our study also investigated whether this phenomenon is
valid for facial expressions performed by an affective humanoid.

Physiological signal variations were studied to investigate
whether the facial expression recognition task of 2D photos, 3D
models, and a physical robot can induce different psychophysio-
logical states in interacting subjects. Indeed, it is already known
that autonomic nervous system (ANS) activity variations can be
indirectly measured through several sets of physiological signals
(Andreassi, 2000). More specifically, heart rate variability (HRV),
extracted using an electrocardiogram (ECG), and electrodermal
response (EDR) are known to be strongly correlated with subject’s
ANS activity and psychophysiological state (Picard, 1997; Zito
et al., 2008; Lanatà et al., 2010; Valenza et al., 2013).

Cognitive theories of emotional disorders (Beck, 1976; Bower,
1981) predict that anxiety should be associated with biases favor-
ing the processing of emotional stimuli. Mathews andMackintosh
(1998) suggest that anxiety states are associated with a more
pessimistic interpretation of ambiguous stimuli. The effects of
heightened, but non-clinical, levels of trait anxiety are also known
to be related with the processing of emotional facial expressions.
Indeed, in interpretation taskswhere ambiguous facial expressions
were displayed, high-trait anxious participants weremore likely to
identify emotional stimuli as frightening than low-trait anxious
participants (Richards et al., 2002). In other studies, subjects with
high levels of anxiety demonstrated attentional biases toward the
identification of both angry (Bradley et al., 1998) and fearful
expressions (Fox et al., 2000).

Due to these considerations, an anxiety test was administered
to all subjects to avoid biases in recognizing emotional expressive-
ness. Only subjects with a low or moderate level of anxiety were
accepted.

In summary, our study tested the ability of a humanoid robot
to perform human perceivable facial expressions in comparison
with 2D photos and 3D models of humans and of the robot itself.
Moreover, this study also investigated whether the interaction
with our humanoid robot induced changes in the subjects’ psy-
chophysiological state. In particular, this research was driven by
the following questions:

1. Is a robot able to convey expressions as well as humans 2D
photos and 3D models?

2. Are there statistical differences in interpreting facial expres-
sions shown as 2D photos, 3D models, or performed by a
physical robot?

3. Studies investigating the recognition of different facial expres-
sions state that human positive emotions are faster and usually
simpler to recognize than negative ones. Does the designed
protocol verify this phenomenon with 2D photos and 3D
models of human expressions?

4. Is the positive/negative expression recognition phenomenon
also valid for expressions performed by a humanoid robot?
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5. Does the interpretation of humanoid robot expressions induce
a different psychophysiological state in comparison with 2D
photos and 3D models?

This paper is structured as follows: Section 2 discusses the
related work; Section 3 presents materials and methods used
in the experiment to create the stimuli, to acquire and analyze
physiological signals, and describes the protocol of the experiment
and its set-up; Section 4 reports the statistical analysis and related
results of the facial expression recognition test and of the subjects’
physiological signals analysis; finally, Sections 5 discusses and
summarizes the results of the experiment.

2. Related Work

The main question of this study is whether the physical embod-
iment of a humanoid robot adds value to the establishment of
an emotional interaction with humans. Emotional expressiveness
has been widely investigated but less attention has been paid
to the evaluation of whether there are differences in perceiving
expressions between virtual and physical agents.

Bartneck et al. (2004) investigated the influence of the char-
acter’s embodiment on how users perceive its emotional expres-
sions. They used iCat, a cartoon-like robot with facial expression
capabilities controlled by 13 standard R/C servos, and a computer
screen showing a face. The emotion factor consisted of five basic
emotional expressions, i.e., anger, fear, happiness, sadness, and
surprise, by excluding the disgust expression, which received very
low recognition ratings in a pilot test. They found that the embodi-
ment of their character had no significant influence on howpeople
perceived its emotional expression and did not help to express
emotions better than the screen character.

Kätsyri and Sams (2008) investigated the comparison between
the identification of facial expressions of human faces and a
virtual character called Talking Head. The emotional stimuli
included the six basic expressions, i.e., anger, disgust, fear, happi-
ness, sadness, and surprise, taken from three different databases:
Ekman–Friesen facial affect pictures (Ekman and Friesen, 1976b),
Cohn–Kanade database (Kanade et al., 2000), and their own
expression database. Each expression was tagged with the correct
label and shown to the subjects. The survey investigated the sub-
jects’ agreement with the expression (indicated by the label) using
a scale from 1 to 7 (1= totally disagree, 4= uncertain, 7= totally
agree). Their preliminary results indicated that the identification
of Talking Head stimuli was worse than human stimuli.

In the case of humanoid robots, Becker-Asano and Ishiguro
(2011) designed two online surveys to investigate the expressive-
ness of facial emotions performed by a humanoid robot called
Geminoid F. In the first survey, users were asked to label photos of
Geminoid F’s face by choosing among angry, fearful, happy, neu-
tral, sad, surprise, or “none of these labels.” They found that people
confused the facial expressions of Geminoid Fmore often than the
corresponding human expressions. The second online survey was
aimed at investigating whether intercultural differences influence
the judgment of an expression. The Asian participants showed
lower agreement in labeling the expressions than the American
and European participants probably due to general intercultural
differences. Indeed, Japanese people tend to focus more on the

eyes than the mouth region (Yuki et al., 2007) and the model
person’s portrayals showed much more variations around the eyes
than Geminoid F, which has limited ability to change its face
around the eyes.

In addition to these seminal studies, our experimental work
investigated the influence of the physical embodiment on the
recognition of facial expressions performed by a very realistic
humanoid. The stimuli used in our experiment included human
and robot facial expressions shown as 2D photos and 3D models
and facial expressions performed by the physical robot in real-
time.

The creation of facial expressions that reproduce realistic
human facial movements is a very complex process. It involves
knowledge of human anatomy, psychology, and engineering and
requires many steps, from the analysis of the facial muscles
involved in the expression to the mapping of these muscles on
the position and intensity of the robot motors. Shayganfar et al.
(2012) tried to standardize themechanism of designing emotional
facial expressions using a systematic approach, which is valid for
humanoid robots with limited degrees of freedom. They applied
this methodology to their humanoid robot and asked people
to identify the facial expressions. Their results showed that the
predicted data by their methodology qualitatively agreed with the
observed data in the static conditions but less in the dynamic
conditions due to some aspects of the dynamic expressions not
explicitly considered in the designmethodology, such as the order
of onset of action units and their durations.

Our work used a similar approach to Shayganfar’s study, but
it also investigated the effectiveness of robot facial expressions in
comparison with human expressions.

Another fundamental aspect concerns the validity of the
“uncanny valley” hypothesis, i.e., whether the “uncanny valley”
emerges at a certain level of realism.

Tinwell et al. (2011)) investigated the presence of “uncanniness”
by comparing animations of human facial expressions with two
types of virtual character animations, i.e., fully and partially ani-
mated facial expressions. In the partially animated facial expres-
sions, all movements in the top part of the face were disabled.
Their results showed that videos of humans were rated as more
familiar and human-like than both videos of the virtual character.
Moreover, the full animation stimuli attracted higher ratings than
those with partial facial animation.

Conversely, Bartneck et al. (2007) showed that there was no
strong evidence that supported the uncanny valley hypothesis.
Their goals were to attempt to plot Mori’s hypothesized curve
and investigate the influence of framing on the user’s percep-
tion of the stimuli. They presented three different pictures of six
categories, i.e., real and manipulated humans, virtual characters,
robots, humanoids, and actroids (humanoid robots with strong
visual human-likeness). Their results showed that appealing and
acceptance as human-like was not influenced by the category
but only by the esthetic appearance. Indeed, highly human-like
androids were not uncanny because they were robots, but because
of their level of anthropomorphism. On the base of these results,
they suggested the existence of an uncanny cliff model rather than
an uncanny valley model since even pictures of humans do not
reach the level of pictures of toy robots.
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FIGURE 1 | (A) AU positions mapped on the robot; (B) major facial muscles involved in the facial expressions; and (C) servo motor positions corresponding
to the Aus.

Several researchers adoptedMori’s hypothesis as a guideline for
the design of the physical appearance of both virtual agents (Fabri
et al., 2004; Wages et al., 2004; Hodgkinson, 2009) and physical
robots (Cañamero and Fredslund, 2001; DiSalvo et al., 2002; Fong
et al., 2003; Minato et al., 2004; Woods et al., 2004). Indeed, this
hypothesis could hold true for both virtual agents and physical
robots, but the question is still open. This work is not focused on
the validation of Mori’s hypothesis but on a comparison between
a physical robot and its virtual model, which belongs to this
historical debate of the influence of the physical embodiment on
the emotion convey capability of affective synthetic agents.

3. Materials and Methods

3.1. The Robot FACE
Facial automaton for conveying emotions (FACE) is an android
female face used to study human–robot interactions with a focus
on non-verbal communication, developed in collaboration with
Hanson Robotics (Hanson, 2006). FACE consists of a passive body
equipped with a robotic head made of an artificial skull based
on the portrait of a woman covered by a porous elastomer called
Frubber™. FACE is animated by 32 servomotors positioned inside
the skull and in the upper torso and linked to specific elastomer-
fiber anchors with yarns. The mechanical properties of Frubber™
allow it to be stretched by themotion of the servomotors distribut-
ing the force in the area close to the anchor point of the skin.

In this study, the attention was focused on recognizing the
six basic emotions considered as “universally accepted” by
Ekman (1992), e.g., happiness, sadness, anger, fear, disgust, and
surprise. Facial expressions of FACE were manually created
using an expression editor that is part of Hybrid Engine for
Facial Expression Synthesis (HEFES) (Mazzei et al., 2012), a
software system devoted to the synthesis and animation of facial
expressions of FACE.

The Facial Action Coding System (FACS) developed by Ekman
and Friesen (1976a) was used to design a set of six standardized

basic expressions of FACE. Using the FACS, a facial expression
can be decomposed into action units (AUs), which are defined as
observable independent movements of the face. The servo motors
of FACE are positioned inside the skull and the upper torso simi-
larly to the major facial muscles; therefore, it is possible to find a
correspondence between them and the AUs (Figure 1). However,
due to a non-perfect mapping between the position and intensity
of AUs and the position and strength of the FACE servo motors,
FACS-based facial expressions of FACE were less expressive than
the ones made following a free hand artistic modeling. There-
fore, the FACS-based facial expressions were refined according
to Artnatomy1, an online visual tool developed at the Fine Arts
University of Valencia and based on the atlas of human anatomy.
Artnatomy illustrates the underlying anatomical structures of the
face and the muscles involved in the different facial expressions.
This information was used to identify the servo motors that could
take part in each facial movement refining the FACS-based facial
expressions of FACE.

3.2. Synthetic 2D and 3D Stimuli
The stimuli chosen for the experiment were 2D photos and 3D
models of the robot FACE and 2D photos and 3D models of a
human being (Figure 2). A photography of each basic expression
was used to create the set of 7 images for FACE. The set of 7 3D
models of FACE was created using the Autodesk® 123D® Catch
program, which generates 3D models by taking a set of pictures
acquired from various angles as inputs. The set of FACE pictures
included one hundred photos taken around the robot, covering
approximately 180°.

The set of human 2D photos and 3D models was taken by
selecting a single subject from the Bosphorus Database (Savran
et al., 2008). The Bosphorus Database is a 2D/3D collection of

1ARTNATOMY (http://www.artnatomia.net), Victoria Contreras Flores, Spain,
2005
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FIGURE 2 | 2D photos and 3D models used in the experiment: (A) FACE expressions and (B) human expressions.

FACS-based facial expressions acquired using a structured-light
based 3D system (Savran et al., 2012). The subject selected from
the Bosphorus Database was a female with Caucasian traits (item
bs103). The Unity 3D software (Unity Technologies, 2013) was
used as the front-end animation tool to show both 2D photos and
3D models.

As previously mentioned in Section 1, FACE servo motors are
not perfectly mapped on AUs. As shown in Table 1, a similar
problem is also present in the Bosphorus database, which used an
adaptedmapping. The AU configurations taken as reference point
for human expressions are reported in Matsumoto and Ekman
(2008). Table 1 shows a comparison between the Ekman AUs
configuration, the adapted AUs configuration for FACE, and the
adapted AUs configuration used in the Bosphorus database.

Due to technical problems with the servo motor corresponding
to the buccinator muscle (motor no. 4), FACEwas partially unable
to raise the left part of the smile obtaining an ambiguous happiness
expression.

3.3. Experimental Set-Up
Participants were seated comfortably at a desk within a room,
approximately 0.5m from either from a TV screen (size: 32′′,
frame rate: 100Hz, resolution: 1920× 1080) or the robot. The
experimental set-up included three laptops, one for controlling
the robot FACE, one for controlling the animation on the TV

screen, and the last one for acquiring the subjects’ physiological
signals.

3.4. Subjects’ Recruitment
Fifteen subjects (10 males, 5 females) aged 19–31 years (mean age
24.1± 3.4) were recruited for the experiment. All subjects, except
for one, studied scientific disciplines at the University of Pisa (IT).
All participants were native Italian speakers and had either normal
or corrected vision. All subjects gave written informed consent for
participation.

3.5. Experimental Protocol
Anxiety can bring a bias in emotion recognition test, as reported
in several studies (Rossignol et al., 2005; Cooper et al., 2008),
where they assumed that anxious subjects have an attention bias
for fearful faces. In the study of Richards et al. (2002), ambiguous
emotional facial expressions were identified as fearful from high-
trait anxious participants.

To study the influence of anxiety in our emotion recognition
tasks, all subjects completed both the trait and state sections of
the Spielberger State-Trait Anxiety Inventory (STAI) (Spielberger
et al., 1983). It differentiates between the temporary condition
of “state anxiety” and the more general and long-standing qual-
ity of “trait anxiety.” The trait subtest was administered to the
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TABLE 1 | Comparison between the action unit configurations of the expressions: the Ekman AUs configuration (first column), the adapted AUs
configuration for FACE (second column), and the adapted AUs configuration used in the Bosphorus database (third column).

Action units

FACS based on humans FACE Bosphorus DB

Anger 4+ 5+7+ 22+ 23+24 4B+ 7A+ 16E+ 25C 4C+ 38A
Disgust 9+ 10+ (25/26) 4B+ 7B+ 9D+ 10D+ 16E+ 25C 1C+ 4B+ 7B+ L10A+R11C+ 20C+ 25C
Fear 1+ 2+4+ 5+ 20+ 26 1C+2C+ 4B+ 5D+ 20B+ 26B 1C+R2C+ 5D+ 25C+ 26C+38C
Happiness 6+ 12 6E+ 7B+ 12E+ 25D 7B+ 10C+ 12C+ 25D
Sadness 1+ (4)+ 15+ (17) 1D+ 2A+4E+ 7B+ 15E 1C+ 4B+ 7C+ 11C
Surprise 1+ 2+5+ 25/26 1E+ 2E+5D+ 12C+ 25D+ 27D 1B+ 2B+ 5B+ 25C+ 27C

subjects some days before the experiments while the state sub-
test was administered immediately before the beginning of the
experiment. The state section was considered a control test.

Subjects with scores above the 75th percentile or below the 25th
percentile on the trait component of the STAI are considered high
or low anxiety as reported in the previous study by Cooper et al.
(2008). All subjects had a trait anxiety level under the 75th per-
centile and over the 25th percentile (males: 37± 10.68; females:
43.4± 12.28); therefore, no subjects were considered high-trait or
low-trait anxious.

Before the beginning of the protocol, each subject signed the
informed consent form and was instructed about the rules and
times of the experiment. During the entire experiment, the sub-
jects’ physiological signals were continuously monitored.

The protocol was structured as a stepwise stimulation where
the realism of the stimulus gradually increases. In particular,
the presentation of the stimuli was organized according to the
following four phases:

• Rest phase: 3min of rest to acquire the physiological signal
baseline.

• First phase: each subject had to recognize 14 2D photos of
facial expressions: 7 photos of humans from the Bosphorus
database and 7 photos of FACE, in random order (different
for each subject).

• Second phase: each subject had to recognize 14 3Dmodels of
facial expressions: 7 3Dmodels of humans from the Bospho-
rus database and 7 3D models of FACE, in random order
(different for each subject).

• Third phase: each subject had to recognize six basic expres-
sions performed by the robot FACE in random order (differ-
ent for each subject).

The set of possible answers included the seven basic expressions
available in the database and reproduced by the robot (indicated
by * in Table 2) plus eight similar labels and “I do not know.” The
set of possible answers was extended to avoid a strictly forced-
choice method and allow subjects to choose the label that best
matched the expression in their opinion, as suggested in Rus-
sell’s review of the cross-cultural studies about the recognition of
emotion from facial expressions (Russell, 1994).

In each phase, the subject had a total of 30 s to recognize the
expression and give the answer, i.e., at most 10 s to observe the
expression plus at most 20 s to answer. In all three phases, after
30 s, the next stimulus appeared. If no answer is given, the software
assigned a null label that was considered as an incorrect answer.

TABLE 2 | The set of possible answers for all phases which includes the 7
basic expressions available in the database and reproduced by the robot
(indicated by * symbol).

Italian English

Orgoglio Pride
Felicità* Happiness*
Imbarazzo Embarrassment
Neutra* Neutral*
Sorpresa* Surprise*
Disgusto* Disgust*
Dolore Pain
Compassione Pity
Disprezzo Contempt
Tristezza* Sadness*
Interesse Interest
Vergogna Shame
Paura* Fear*
Eccitamento Excitement
Rabbia* Anger*
Non lo so I do not know

Italian answers are in bold style, English translation is in normal style.

In the first and second phase, after the first 10 s or if the subject
pressed “Enter” a black screen appeared and the subject had to
choose one of the possible answers from the questionnaire. The
response time was recorded on the “Enter” key pressing.

In the third phase, after the first 10 s or before the subject
answered by selecting a label of the questionnaire shown on the
screen, the robot performed the neutral expression. In this case,
the subject evaluated six instead of seven different facial expres-
sions because the neutral expression was used as “black screen.”
The subject had to select an option directly on the screen through a
software tool running on a laptop. The response timewas recorded
by the mouse click.

The maximum duration of the experiment was 20min.
To avoid the subjects’ loss of interest and attention due to the

length of the experiment and the repetitiveness of the tasks, the
protocol included only one initial rest phase and physiological
signal variations of all phases were normalized to the initial rest
phase.

3.6. Physiological Signals Acquisition and
Analysis
The autonomic nervous system variations induced by emotional
elicitation was investigated through the processing of both elec-
trocardiogram (ECG) and skin conductance (SC) tests. These
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TABLE 3 | HRV and SCR features extracted from the subjects’ physiological signals.

HRV features SCR features

Time domain Frequency domain

Mean RR Mean inter-beat interval (in ms) VLF Very low frequency (in Hz and in ms2) nSCR Number of SCR in the windows
response

STD RR Standard inter-beat interval (in ms) LF Low frequency (in Hz and in ms2) MAX-phasic Maximum value of the phasic
component

RMSSD Root mean square of the successive
differences (in ms)

HF High frequency (in Hz and in ms2) Latency Time interval between the
stimulus and the SCR peak

NN50 Number of pairs of successive
beat-to-beat intervals (NNs) that
differ by more than 50ms (count)

LF/HF
ratio

Ratio between the power of LF and HF
bands indicating the balance between
sympathetic and parasympathetic
systems

AUC-phasic Area under the phasic curve over
time

pNN50 Proportion of NN50 divided by total
number of NNs (in %)

LF Ratio between absolute value of the LF
and difference between total power and
VLF (in n.u., i.e., normalized unit)

Mean-phasic Mean value of the phasic
component

HRV tri-index Total number of all NN intervals
divided by the height of the
histogram of all NN intervals

HF Ratio between absolute value of the HF
and difference between total power and
VLF (in n.u., i.e., normalized unit)

STD-phasic SD of the phasic component

biosignals are used to infer if the interpretation of robot expres-
sions induced different psychophysiological states in the subjects
in comparison with the interpretation of human 2D photos and
3D models of facial expressions. In this work, the psychophysio-
logical measures were used as indicators of the general autonomic
nervous system activity (Rani et al., 2002; Bethel et al., 2007;Mauri
et al., 2010) and not as indicators of the elicited arousal or affective
level.

The two biosignals, i.e., ECG and SC, were continuously
acquired using BIOPAC MP150 instrumentation, which was
equipped with body-worn sensors. Specifically, the ECG100C
analog front-end was used for the ECG acquisition and the
GSR100C analog front-end was used for the skin conductance
measure.

To acquire the ECG, three pregelled Ag/AgCl electrodes were
placed following the Einthoven triangle configuration. This signal
was used only to extract the heart rate variability (HRV) because it
is well known that theHRVcarries information about howphysio-
logical factors, more specifically the sympathetic/parasympathetic
balance and the normal heart-beat rhythm (Rajendra Acharya
et al., 2006). In particular, the HRV estimation was extracted from
the QRS complexes using the Pan–Tompkins algorithm (Fowles
et al., 1981). The R–R time intervals (tachogram) were calculated
as the time difference between consecutive R-peaks. Later, the
HRV was computed using a cubic spline interpolation and the
problem of the resulting non-uniform sampling was overcome by
a resampling at 4Hz (Valenza et al., 2012).

The SC signal was acquired through two Ag/AgCl electrodes
placed at the fingertip of the middle and index fingers of the
non-dominant hand. In the scientific literature, SC variations
are known to be psychologically induced changes in sweat gland
activity due to external affective stimuli (Winton et al., 1984). In
fact, SC is widely accepted and used as an indirect autonomic
nervous system (ANS) marker because the sympathetic nerve
activity (SNA) directly controls the sweat gland activity (Boucsein,
1992). The signal processing methodology used for treating SC
was mainly based on the decomposition of SC into a phasic and

tonic component (Greco et al., 2012, 2014). The tonic component,
also known as the skin conductance level (SCL), is the baseline
signal and is different fromperson to person. The SCL depends on
both the patient physiological state and autonomic regulation. By
contrast, the phasic component, also known as the skin conduc-
tance response (SCR), is superimposed on the SCL and is directly
related to the external stimuli. Here, following the experimental
set-up and the timeline of the stimulation protocol, only the SCR
component was used.

The HRV and SCR signals were divided into sections according
to the experimental protocol and several features were extracted.
Specifically, the HRV features were extracted in both the time and
frequency domains. The time domain features included statistical
parameters and morphological indexes. Because the changes in
the spectral power are known to be correlated with the ANS
modulation (Camm et al., 1996), the frequency domain features
included the calculation of three spectral powers for the following
bands: very low frequency (VLF), low frequency (LF), and high
frequency (HF) components. The set of HRV features is reported
in Table 3. After the feature extraction, a statistical analysis was
performed on the obtained dataset.

4. Results

4.1. Data Analysis
The set of expressions considered in the analysis included anger,
disgust, fear, sadness, and surprise. As mentioned in Section 3.2,
the happiness expression of the robot was ambiguous due to
technical problems with the servo motors. For this reason, the
happiness expression was excluded from all datasets in the data
analysis.

The facial expression recognition rates were analyzed using
the Cohen’s kappa (Cohen, 1960), a statistical measure of inter-
rater reliability used to examine the agreement among observers
on categorizing a clustered variable. The Cohen’s kappa ranges
from −1.0 to 1.0, where large numbers mean better reliability,
values near zero suggest that agreement is attributable to chance,
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TABLE 4 | Confusion matrix (N=15) of the recognition rates (in percentage) of the seven (for humans) and six (for the robot) facial expressions with
presented models (columns) against selected labels (rows).

Confusion matrix (N= 15)

Human 2D photos Human 3D models Physical robot

A D F N Sa Su A D F N Sa Su A D F Sa Su

Anger 13.3 6.7 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 0.0 33.3 20.0 0.0 0.0 0.0
Disgust 0.0 33.3 0.0 0.0 13.3 0.0 0.0 20.0 6.7 0.0 0.0 0.0 13.3 53.3 13.3 0.0 6.7
Fear 0.0 0.0 20.0 0.0 0.0 0.0 6.7 20.0 26.7 0.0 0.0 0.0 6.7 0.0 53.3 0.0 20.0
Neutral 0.0 0.0 0.0 86.7 0.0 0.0 0.0 0.0 0.0 86.7 0.0 0.0 / / / / /
Sadness 0.0 13.3 0.0 6.7 20.0 0.0 0.0 0.0 0.0 6.7 40.0 0.0 0.0 0.0 0.0 33.3 0.0
Surprise 0.0 0.0 60.0 0.0 0.0 93.3 0.0 0.0 53.3 0.0 0.0 93.3 0.0 0.0 13.3 0.0 73.3
Pride 6.7 0.0 0.0 0.0 0.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0
Embarrass. 0.0 6.7 13.3 0.0 0.0 6.7 0.0 13.3 6.7 0.0 20.0 0.0 0.0 0.0 13.3 0.0 0.0
Pain 6.7 26.7 0.0 0.0 13.3 0.0 0.0 33.3 6.7 0.0 20.0 0.0 13.3 0.0 0.0 13.3 0.0
Pity 0.0 6.7 0.0 0.0 33.3 0.0 6.7 0.0 0.0 0.0 13.3 0.0 0.0 6.7 0.0 53.3 0.0
Contempt 20.0 0.0 0.0 6.7 6.7 0.0 6.7 0.0 0.0 6.7 0.0 0.0 20.0 20.0 0.0 0.0 0.0
Interest 20.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Shame 0.0 6.7 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0
Excitement 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0
Idonotknow 33.3 0.0 6.7 0.0 13.3 0.0 20.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0
Noanswer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0

The highest values are set in bold.
The column labels are A, anger; D, disgust; F, fear; N, neutral; Sa, sadness; Su, surprise.

and values <0 signify that agreement is even less than that which
could be attributed to chance. According to Landis and Koch
(1977), with a significance level of 0.05, kappa can be classified
according to the following: k≤ 0.00 less than chance agreement,
0.01< k< 0.20 slight agreement, 0.21< k< 0.40 fair agreement,
0.41< k< 0.60 moderate agreement, 0.61< k< 0.80 substantial
agreement, and 0.81< k≤ 1 almost perfect agreement.

The Kolmogorov–Smirnov test (Smirnov, 1948) and the anal-
ysis of variance were applied to the datasets of the response
times and physiological signals. When normality condition and
homogeneity of variance within each of the populations were
confirmed, the ANOVA-1way parametric test with a post hoc
Bonferroni test (Scheffé, 1999) was used to examine the category
differences.Otherwise, theKruskall–Wallis test (Kruskal andWal-
lis, 1952) was preferred due to the non-parametric nature of the
gathered data, i.e., the variables were not normally distributed or
the variance within each of the populations was not equal. The
statistical inference was carried out using the OriginLab software
(OriginLab, 2012).

Data analysis was carried out aiming at discussing the research
interrogatives at the base of this work.

4.1.1. Are Facial Expressions of the Robot Perceived
as Well as the Expressions of the Humans? Yes
The subjects’ answers for the human 2D photos, human 3D mod-
els, and FACE robot expressions are reported as confusion matrix
(i.e., a specific table, which contains information about the pre-
sented models (on the columns) against the selected labels (on the
rows) in Table 4. For all three categories, the best recognition rate
was achieved for the surprise expression. Human anger was not so
well understood, i.e., it was classified as “I do not know” (33.33%
in the human 2D photos and 20% in the human 3D models). The
human disgust was often labeled as “pain” (26.67% in the human
2D photos and 33.33% in the human 3D models) or as “contempt”

(20% in the robot expressions). Fear was confused with “surprise”
both in the human 2D photos (60%) and in the human 3D models
(53.33%). Moreover, the expression intended to convey sadness
was labeled as “pity” (33.33% in the human 2D, 53.33% in the
robot expressions) or “pain” and “embarrassment” (20% in the
human 3D models). The Cohen’s kappa of the three categories
showed a homogeneous expression evaluation: KHum2D = 0.536
(p< 0.001) 95% CI (0.338, 0.733), KHum3D = 0.616 (p< 0.001)
95% CI (0.440, 0.791), and KRobot = 0.648 (p< 0.001) 95% CI
(0.491, 0.805).

Figure 3A shows a trend of increasing recognition rate for
stimuli that gradually become more realistic, i.e., from human
photographs to human 3D models up to the physical robot. This
supports our hypothesis about the importance of the physical
embodiment in conveying expressions.

Table 5 shows the means and the SDs of the response time for
each expression in the three categories: human 2D photos, human
3D models, and FACE robot. The ANOVA-1way parametric test
did not find significant differences between the three categories
[F(2,89)= 1.7584, p= 0.17825, α = 0.05] (Figure 3B).

4.1.2. Is there a Valid and Useful Reason to Create
and Develop a Realistic Humanoid Robot Instead of
Using Photographs or 3D Model? Yes
Our study is based on the hypothesis that the physical embodi-
ment of the FACE robot is an added value that could help people
to better understand and interpret its emotional state.

Table 6 shows the confusion matrix of the subjects’ answers
for the robot expressions shown as 2D photos, 3D models, and
physical robot. As in the previous case, for all three categories, the
best recognition rate was achieved for the surprise expression. The
angerwas often confusedwith “disgust” (46.67% in the 2Dphotos)
or “contempt” (40% in the 3D models), while the disgust was
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FIGURE 3 | (A) Recognition rates (in percentage) and (B) response time (in seconds) of human 2D photos, human 3D models, and robot FACE expressions.

often labeled as “contempt” (46.67% in the 2D photos and in the
3D models). The subjects’ judgments showed less confusion for
the fear, neutral, and surprise than the other expressions. Except
for the sadness (labeled as “pity” for 53.33% in the expressions
performed by the physical robot), the expressions performed by
the robot were less confused than those shown in 2D photos
or 3D models. The level of agreement between the subjects was
comparable for the three categories: KFACE2D = 0.514 (p< 0.001)
95%CI (0.333, 0.693),KFACE3D = 0.638 (p< 0.001) 95%CI (0.456,
0.819), and KRobot = 0.648 (p< 0.001) 95% CI (0.491, 0.805).

The comparison among robot stimuli where the realism grad-
ually increases, i.e., from photographs to 3D models up to the
physical robot, shows a positive trend of the recognition rate
(Figure 4A). This suggests that the embodiment allows the phys-
ical robot to better convey the expressions in comparison with its
2D photos and 3D models.

Table 7 shows the response time means and SDs for each
expression in the different categories of FACE: 2D photos, 3D
models, and the physical robot. The ANOVA-1way paramet-
ric test could not distinguish between the three distributions
[F(2,87)= 0.20964, p= 0.81128, α = 0.05] (Figure 4B).

4.1.3. The Literature Studies Investigating the
Recognition of Different Facial Expressions State that
Positive Emotions are Faster and may be Considered
Simpler to Recognize than Negative Facial
Expressions. Does our Experiment Confirm this
Result? Yes, Partially
In order to investigate if our protocol was able to confirm the
phenomenon of positive/negative expression discrimination, the
recognition rate and speed of human expressions were analyzed.
As already mentioned, the happiness expression of the robot had
a technical problem that compromised its interpretation. For this
reason, in order to uniform the dataset, the happiness has been
removed in this analysis. Therefore, the category of the positive
expressions includes only surprise.

Figure 5A shows a tendency to better recognize human positive
expressions in comparison with human negative expressions. The
ANOVA-1way did not show a significant difference between the
answer times for the human positive and negative expressions
[F(1,54)= 2.17483, p= 0.14609, α = 0.05] (Figure 5B).

TABLE 5 |Means and SDs of the response time (in seconds) of 15 subjects in
recognizing the facial expressions of human 2D photos, human 3D models,
and the robot FACE.

Response time (s)

Human 2D Human 3D Robot

Mean SD Mean SD Mean SD

Anger 4.09 0.60 8.42 5.71 8.53 4.43
Disgust 7.42 4.26 10.79 3.30 10.55 5.78
Fear 9.71 6.90 11.01 1.61 9.68 3.87
Sadness 15.40 8.76 9.78 5.45 16.02 0.96
Surprise 6.81 5.48 8.39 3.83 9.31 4.20

4.1.4. Is the Positive/Negative Recognition
Phenomenon Replicated by the Robot? Yes, Partially
Even for the robot stimuli, the discrimination between pos-
itive and negative expressions showed a trend to better rec-
ognize the positive expressions (Figure 6A). The ANOVA-
1way did not show statistically significant differences for the
response time between the positive and the negative expressions
performed by FACE [F(1,88)= 0.18989, p= 0.66408, α = 0.05]
(Figure 6B).

As mentioned at the beginning of the Section 1, the happiness
expression performed by the robot resulted ambiguous and diffi-
cult to recognize. Figure 7 highlights this fact showing that the
happiness is the least recognized expression with a recognition
rate of only 17.78%. Instead, the surprise expression achieved the
best recognition rate in comparison with each negative expression
with a difference of at least 25% (Figure 7).

4.1.5. Does the Interpretation of Humanoid Robot
Expressions Induce a Different Psychophysiological
State in Comparison with 2D Photos and 3D Models?
No
The features extracted from the HRV and SCR physiological
signals were statistically analyzed to identify the differences in
the subjects’ psychophysiological state induced by the protocol
phases.

To assess if the facial expression interpretation task based on
2D photos, 3D models, and the physical robot induces statistically
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TABLE 6 | Confusion matrix (N= 15) of the recognition rates (in percentage) of the robot facial expressions with presented models (columns) against
selected labels (rows).

Confusion matrix (N=15)

FACE 2D photos FACE 3D models Physical robot

A D F N Sa Su A D F N Sa Su A D F Sa Su

Anger 13.3 6.7 6.7 0.0 0.0 0.0 13.3 20.0 0.0 0.0 0.0 0.0 33.3 20.0 0.0 0.0 0.0
Disgust 46.7 33.3 13.3 0.0 0.0 13.3 26.7 33.3 0.0 0.0 0.0 0.0 13.3 53.3 13.3 0.0 6.7
Fear 6.7 0.0 33.3 0.0 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 6.7 0.0 53.3 0.0 20.0
Neutral 0.0 6.7 0.0 40.0 0.0 0.0 0.0 0.0 0.0 46.7 0.0 0.0 / / / / /
Sadness 0.0 0.0 0.0 0.0 40.0 6.7 0.0 0.0 0.0 0.0 33.3 0.0 0.0 0.0 0.0 33.3 0.0
Surprise 6.7 0.0 6.7 6.7 0.0 53.3 6.7 0.0 20.0 0.0 0.0 73.3 0.0 0.0 13.3 0.0 73.3
Pride 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 0.0 6.7 0.0 0.0 0.0 0.0
Embarrass. 0.0 0.0 13.3 0.0 6.7 6.7 0.0 0.0 13.3 0.0 0.0 6.7 0.0 0.0 13.3 0.0 0.0
Pain 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 0.0 13.3 0.0 0.0 13.3 0.0
Pity 0.0 0.0 6.7 0.0 40.0 6.7 0.0 0.0 26.7 0.0 13.3 0.0 0.0 6.7 0.0 53.3 0.0
Contempt 13.3 46.7 6.7 6.7 6.7 6.7 40.0 46.7 0.0 6.7 0.0 0.0 20.0 20.0 0.0 0.0 0.0
Interest 0.0 0.0 0.0 20.0 6.7 0.0 13.3 0.0 0.0 26.7 6.7 6.7 0.0 0.0 0.0 0.0 0.0
Shame 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Excitement 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
I do not know 6.7 6.7 6.7 6.7 0.0 6.7 0.0 0.0 6.7 6.7 26.7 13.3 0.0 0.0 6.7 0.0 0.0
No answer 6.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0

The highest values are set in bold.
The column labels are A, anger; D, disgust; F, fear; N, neutral; Sa, sadness; Su, surprise.

FIGURE 4 | (A) Recognition rates (in percentage) and (B) response time (in seconds) of robot 2D photos, robot 3D models, and robot FACE expressions.

TABLE 7 |Means and SDs of the response time (in seconds) of 15 subjects
in recognizing the facial expressions of robot 2D photos, robot 3D models,
and the physical robot.

Response time (s)

FACE 2D FACE 3D Robot

Mean SD Mean SD Mean SD

Anger 16.49 11.20 12.60 9.09 8.53 4.43
Disgust 9.80 9.31 7.46 2.98 10.55 5.78
Fear 7.75 5.90 10.25 8.01 9.68 3.87
Sadness 9.19 5.71 9.12 6.22 16.02 0.96
Surprise 12.86 3.10 10.28 5.83 9.31 4.20

discernible psychophysiological states, the extracted features were
studied using the Kruskal–Wallis test due to the non-Gaussianity
of samples.

Two different analyses were performed:

• an intra-subject analysis by comparing the results of each
subject between the 2D photos, 3D models, and FACE robot
stimuli;

• an inter-subject analysis carried out for each expression
by grouping the results of all subjects and comparing the
responses of the three types of stimuli.

None of the statistical analysis yielded significant differences
neither in the intra-subject case nor in the inter-subject case for all
features (p> 0.05). More specifically, in the intra-subject analysis
taking in account each single subject and feature extracted from
both theHRVand the SCRanalysis, the three groups of data donot
show any significant difference. The same results were achieved in
the inter-subject analysis, where none feature was able to find any
significant difference among the three groups.
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FIGURE 5 | (A) Recognition rates (in percentage) and (B) response time (in seconds) of positive/negative human expressions.

FIGURE 6 | (A) Recognition rates (in percentage) and (B) response time (in seconds) of positive/negative robot expressions.

FIGURE 7 | Recognition rates (in percentage) of the FACE expressions.

An example of statistical result of the interpretation task based
on human 2D photos, human 3D models, and the physical robot
is shown in Figure 8: the Kruskal–Wallis test on two features
extracted from HRV and from SCR highlights the inability to

distinguish the three groups both in the intra-subject analysis
(Figure 8, top charts) and the inter-subject analysis (Figure 8,
bottom charts).

5. Discussion

Our study aimed at investigating if: (1) the recognition rates of
facial expressions performed by FACE were similar to the ones
achieved with humans stimuli; (2) there were differences in rec-
ognizing facial expressions performed by FACE shown as 2D
photos, 3D models, or by the physical robot itself; and (3) the
literature claims that positive emotions are easier and quicker to
be recognized than negative ones, is this phenomenon replicated
by our protocol with human facial expressions? What happens in
the case of robot facial expressions? In addition, the analysis of
subjects’ physiological signals has been addressed for discussing
how these points can influence the subjects’ psychophysiological
state.

The final dataset used in the analysis did not include the hap-
piness expression due to an abnormal functioning of the servo
motor related to the mouth of the robot that made the expres-
sion ambiguous. The inclusion of the happiness expression could
distort the final results as shown in Figure 7.
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FIGURE 8 | Statistical analysis of two features extracted from HRV and
SCR during the interpretation task based on human 2D photos, human
3D models, and the physical robot. (A) HRV results. Example of an
intra-subject (subject 1) and an inter-subject statistical analysis result. The mean

RR feature represents the mean value of the RR distance (ms). (B) SCR results.
Example of an intra-subject (subject 1) and an inter-subject statistical analysis
result. The mean-phasic feature represents the mean value of the SCR signal
(uSiemens).

In regard to the first question, the preliminary results showed
a general trend to better recognize expressions performed by the
physical robot in comparison with the human stimuli. This sup-
ports our hypothesis that the robot is able to convey expressions at
least as well as human 2D photos and 3D models. More in detail,
anger, disgust, and fear were definitely recognized better when
performed by the physical robot. Robot surprise was mainly con-
fused with fear, which can be explained by the fact that these two
expressions are characterized by the common motion of Upper
Lid Raiser (AU5) and Jaw Drop (AU26) followed by the later acti-
vation of Eyebrow Raiser (AU1-2) and the artificial nature of the
robot could make this transition less natural than in a human face
(Jack et al., 2014). Instead, in all three categories, sadness was often
confused with other negative expressions belonging to the same
emotional area and with a similar emotional meaning, i.e., pity or
pain, and this can be due to the wide range of possible answers,
which was extended to allow subjects to choose the label that best
matched the expression in their opinion as suggested by Russell
(1994). Moreover, the analysis of the response time of human and
robot facial expressions did not show significant differences.

Concerning the second question, the recognition rate shows
an increasing tendency to better discriminate expressions
performed by the robot in comparison with its 2D photos and
its 3D models. Even in this case, all expressions were definitely
recognized better when performed by the physical robot with
the exception of sadness that was often confused with other
negative expressions belonging to the same emotional area and
with a similar emotional meaning, i.e., pity or pain, in all three
categories. As in the previous case, the reason could be the
wide forced-choice method adopted and the subjects’ cultural

background (Russell, 1994). We can consequently state that the
physical embodiment of the robot is an added value for the
emotion conveying capability of social humanoids. On the other
side, the subjects’ performance in terms of response time in the
three categories did not show significant differences.

Regarding the third and fourth question, our results confirm
that there is a trend to better recognize positive facial expressions
than the negative ones. Indeed, in case of human 2D photos
and 3D models, negative expressions were often confused with
other expressions of the same category, e.g., disgust with pain or
contempt, sadness with pity or pain, except for fear, which was
often labeled as surprise. Instead, the statistical analysis of the
response time for the human expression recognition did not show
significant differences for the two categories, i.e., human 2D pho-
tos and 3D models. These results confirm that our protocol par-
tially reproduced the positive/negative expression phenomenon.
Even in the case of the physical robot, the result is partially
confirmed: the best recognition rate was generally achieved for
positive expressions, while negative expressions, such as anger
and disgust, were often confused with other negative expressions.
Looking at the robot expressions in detail, the surprise was defi-
nitely the best recognized emotionwhereas, as alreadymentioned,
the happiness was excluded from the dataset due to its ambiguous
interpretation as highlighted in Figure 7. Among the negative
expressions, the least discriminated expression was anger, which
was mainly confused with contempt and with disgust or pain. The
reason for the confusion about the anger can be mainly due to
the wide range of possible answers of the extended forced-choice
method and to the fact that all these emotions belong to the same
negative emotional area. Even in this case, the statistical analysis
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of the response time did not show significant differences between
positive and negative expressions of the robot.

In the matter of the last question, the statistical analysis of
the subjects’ psychophysiological measures did not show any sig-
nificant differences neither in the intra-subject case nor in the
inter-subject case for the all extracted features. In particular, the
intra-subject and inter-subject statistical analyses of the physi-
ological signals could not distinguish between the human 2D
photos, human 3D models, and FACE robot facial expressions
during the interpretation tasks. These results confirm that the
robot is able to perform facial expressions that are perceived as
well as human expressions shown as 2D photos or 3D models
without altering the subjects’ psychophysiological state. Even in
the interpretation of the robot facial expressions shown as 2D
photos, 3D models, or performed by the robot itself, the intra-
subject and inter-subject analyses of the physiological signals
did not show significant differences between the three different
tasks. Therefore, we can conclude that interpreting the expres-
sions performed by a physical robot do not induce psychophys-
iological states that can be classified as different than the ones
induced by interpreting facial expressions shown as 2D photos or
3D models.

In conclusion, these results support the contention that
the embodiment of physical social humanoids improves the
recognition and discrimination rate of emotions in comparison
with 2D picture and 3D virtual stimuli (Wehrle et al., 2000;
Ambadar et al., 2005; Bould and Morris, 2008). Moreover, rec-
ognizing positive expressions is easier than recognizing negative
ones for both human and robot performed facial expressions
under different conditions. The subjects’ psychophysiological
measures were analyzed as indicators of the general autonomic
nervous system activity (Lanatà et al., 2011), which can be induced
by challenging mental tasks (Stein et al., 1994; Sztajzel, 2004;

Dawson et al., 2007). The results demonstrated that interpreting
facial expressions of a humanoid robot does not alter the subjects’
psychophysiological states in a different way than interpreting
those of human 2D photos and 3D models.

In addition to the exclusion of the expression of happiness,
two factors may have influenced the statistical analysis: the small
size of the sample and the extended forced-choice paradigm. This
work represents a preliminary study of the expression recognition
of our robot and its results are encouraging for future experiments.

Future works will aim at improving the performance of the
robot by creating dynamic facial expressions and associating them
with basic vocalizations and movement of the head/neck. This
study highlighted that generating emotional facial expressions is
a challenging task that requires high-fidelity reproduction and a
deep expertise in animatronic- and artistic-related disciplines. The
new expression dataset will be designed by extending the current
one with the contribution of artists specialized in facial portrait
and sculpture. The problem encountered with the servo motor
will be fixed in order to include the happiness expression in the
dataset. Moreover, an improved protocol and questionnaire will
be designed.
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