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Transposable elements (TEs) are abundant in mammalian genomes and appear to
have contributed to the evolution of their hosts by providing novel regulatory or coding
sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA)
genes in human and mouse genomes to systematically assess the potential contribution
of TEs to the evolution of the structure and regulation of expression of lincRNA genes.
Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES),
followed by exons and then promoter regions although the density of TEs is not significantly
different between exons and promoters. Higher frequencies of ancient TEs in promoters
and exons compared to introns implies that many lincRNA genes emerged before the
split of primates and rodents. The content of TES in lincRNA genes is substantially higher
than that in protein-coding genes, especially in exons and promoter regions. A significant 
positive correlation was detected between the content of TEs and evolutionary rate of
lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. 
These results are consistent with the repeat insertion domains of LncRNAs hypothesis
under which TEs have substantially contributed to the origin, evolution, and, in particular,
fast functional diversification, of lincRNA genes.
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introduction

Traditionally, genomes have been perceived mostly as repositories of protein-coding genes. Although 
this might be largely true in the case of viruses, prokaryotes, and unicellular eukaryotes, numerous 
recent studies on the genomes of multicellular eukaryotes, particularly animals, have revealed a vast 
non-coding RNome, i.e., numerous genes encoding various classes of non-coding RNAs (ncRNAs) 
(Carninci et al., 2005; Mattick and Makunin, 2006; Ponting et al., 2009; Derrien et al., 2012; Amaral 
et al., 2013). Strikingly, the total number of genes for ncRNAs that are expressed from a mammalian 
genome seems to exceed the number of protein-coding genes several fold (Mattick and Makunin, 
2006; Amaral et al., 2013). The classification of ncRNAs and validation of their functionality remain 
matters of intensive investigation and debate (Van Bakel and Hughes, 2009; Ponting and Belgard, 2010; 
Graur et al., 2013). Among many distinct classes of ncRNAs, the long non-coding RNA (lncRNA) is 
probably the most enigmatic group. The definition of a lncRNA is based solely on the transcript size: 
lncRNAs are defined as ncRNAs longer than 200 nt (Mattick and Makunin, 2006; Ponting et al., 2009). 
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Many lncRNAs are spliced, 5′capped, and polyadenylated (Okazaki 
et al., 2002; Carninci et al., 2005; Kapranov et al., 2007; Ponjavic 
et al., 2007). Based on the localization in the genome, lncRNAs 
can be divided into two distinct classes: (i) transcripts that overlap 
protein-coding genes, many of which are likely to be involved in 
sense–antisense regulation (Chen et al., 2005; Ponting and Belgard, 
2010; Rinn and Chang, 2012) and (ii) long intergenic non-coding 
(linc)RNAs that are transcribed from genome regions separating 
protein-coding genes (Ponjavic et al., 2007; Mercer et al., 2008; 
Ponting et al., 2009).

The current knowledge on the functions of long intergenic 
non-coding RNAs (lincRNAs) is scarce because very few of the 
lincRNAs have been experimentally characterized. Nevertheless, 
the functional range of this class of ncRNA is believed to be broad 
on the basis of indirect evidence (Bertone et al., 2004; Ponjavic 
et al., 2007; Mercer et al., 2008; Ponting and Belgard, 2010; Ulitsky 
et al., 2011; Glazko et al., 2012; Ng et al., 2013). It has been proposed 
that lincRNAs could be involved in the regulation of many cel-
lular processes (Mattick and Makunin, 2006; Loewer et al., 2010; 
Wang et al., 2011; Rinn and Chang, 2012). For example, they can 
affect transcription locally on the gene level (Martens et al., 2004; 
Martianov et al., 2007; Osato et al., 2007; Hirota et al., 2008) as well 
as target transcription regulators and thus affect transcription of 
many genes (Feng et al., 2006; Goodrich and Kugel, 2006). They 
can also target RNA polymerase II in human and mouse (Espinoza 
et al., 2007; Mariner et al., 2008) and thus affect the expression of an 
even broader range of genes. Furthermore, lincRNAs participate in 
the regulation of splicing (Munroe and Lazar, 1991; Beltran et al., 
2008) and translation (Wang et al., 2005; Centonze et al., 2007). 
Well-characterized examples of lincRNAs involved in epigenetic 
processes are Xist (Brockdorff et  al., 1992; Elisaphenko et  al., 
2008), Kcnq1ot1 (Umlauf et al., 2004; Pandey et al., 2008), and 
Air (Nagano et al., 2008).

It is well established that, compared to protein-coding 
sequences and structural RNAs, lincRNAs are weakly conserved 
in evolution. Many early studies, therefore, branded the lincRNAs 
“transcriptional dark matter” and considered them to be generally 
non-functional (Van Bakel and Hughes, 2009; Robinson, 2010). 
However, low level or lack of detectable conservation does not 
necessarily imply that these molecules have no function (Pang 
et al., 2006). A case in point is the best-characterized, functionally 
important lincRNA gene, Xist, which is weakly conserved although 
it does contain evolutionary constrained regions (Elisaphenko 
et al., 2008). In general, lincRNAs show reduced substitution and 
insertion–deletion rates, which has been attributed to purifying 
selection (Ponjavic et al., 2007; Managadze et al., 2011). Taking 
into account that some lincRNA genes originated from protein-
coding genes [for example, Xist (Duret et al., 2006; Elisaphenko 
et al., 2008)], it appears likely that many properties of lincRNAs 
would generally resemble those of protein-coding genes, despite 
the typically lower level of constraint. In particular, protein-coding 
genes that are highly expressed in many tissues typically evolve 
slower than genes with lower expression level and breadth (Duret 
and Mouchiroud, 2000; Krylov et al., 2003; Drummond and Wilke, 
2008), and a similar dependence has been observed for lincRNA 
genes (Managadze et  al., 2011). Taken together, these findings 
imply that an unknown but substantial fraction of lincRNAs are 

functional molecules rather than transcriptional noise and have 
evolutionary properties similar to those of protein-coding genes. 
However, the number of functionally characterized lincRNAs 
remains scarce (Amaral et al., 2013).

The origin of lincRNA genes generally remains enigmatic. 
However, analysis of the well-characterized Xist lincRNA has 
revealed fragmentary homology to a protein-coding gene Lnx3 
suggesting that the Xist genes emerged in early eutherians via inte-
gration of transposable elements (TEs) into the Lnx3 gene, which 
gave rise to simple tandem repeats (Duret et al., 2006; Elisaphenko 
et al., 2008). The Xist gene promoter region and 4 of its 10 exons 
retain homology to exons of the Lnx3 gene. The remaining six Xist 
exons including those containing simple tandem repeats show 
similarity to different TEs (Elisaphenko et al., 2008). Integration of 
TEs into the Xist gene apparently had been occurring throughout 
the course of evolution of this gene and most likely continues in 
contemporary eutherian species. Additionally, it has been shown 
that the combination of remnants of protein-coding sequences and 
TEs is not unique to the Xist gene but is also found in neighboring 
genes that encode non-coding nuclear RNAs (Elisaphenko et al., 
2008; Kolesnikov and Elisafenko, 2010).

The discovery of the pivotal contribution of TEs to the evolution 
of the Xist gene prompts the question on a possible general role of 
TEs in the evolution of lincRNAs. Diverse TEs are widespread and 
abundant in the genomes of most eukaryotes (Smit, 1996; Brosius, 
1999; Kidwell and Lisch, 2001; Deininger and Batzer, 2002). 
Different classes of TEs include mobile retrovirus-like elements, 
or retrotransposons, which transpose within the genome via RNA 
intermediates, and DNA transposons, which can relocate directly. 
Retrotransposons including long interspersed repetitive elements 
(LINEs), short interspersed repetitive elements (SINEs), and long 
terminal repeat (LTR) retrotransposons are widely represented in 
mammals (Smit, 1996; Deininger and Batzer, 2002). The LINEs 
are transcribed by RNA polymerase II and contain open reading 
frames (ORFs) (Temin, 1985). A complete and transposition-
ally active L1 element (the most common variety of LINEs) is 
~7 kb long and contains a 5′-untranslated region (UTR) with an 
internal promoter, two ORFs (ORF1 and ORF2) and a 3′-UTR 
terminated by a polyadenylate-rich tail (Smit, 1996; Deininger and 
Batzer, 2002). The ORF1 encodes a putative RNA-binding protein 
~40 kDa in size (Martin, 2006) whereas ORF2 encodes a protein 
with endonuclease and reverse transcriptase (RT) activities that 
generates cDNAs from RNA transcripts of the element (Loeb et al., 
1986). The mobility of the LINE elements had been demonstrated 
in mouse and human genomes (Kazazian et al., 1988; Boccaccio 
et al., 1990). The SINEs are characterized by the presence of a split 
intragenic RNA polymerase III promoter and a 3′A-rich region 
often followed by an oligo(A) tail (Smit, 1996; Rogozin et al., 2000; 
Kapitonov and Jurka, 2003). The SINEs do not contain long ORFs 
and do not encode enzymes for transposition. Instead, transposi-
tion of SINEs apparently requires RT encoded by other TEs, in 
particular, LINEs (Smit, 1996; Deininger and Batzer, 2002). The 
LTR retrotransposons have LTRs that range from ~100 bp to over 
5000 bp in size (Smit, 1996; Deininger and Batzer, 2002). The LTR 
retrotransposons are similar to retroviruses in organization, with 
transcriptional regulatory sequences located in the flanking LTRs, 
a RT priming site that is typically located immediately downstream 
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of an first LTR, and several ORFs encoding proteins involved in 
retrotransposition, in particular, RT and integrase (Smit, 1996; 
Deininger and Batzer, 2002).

The TEs are the primary contributors to the bulk of the genomic 
DNA in many eukaryotes, in particular mammals, and have the 
potential to contribute to the evolution of the hosts by provid-
ing novel regulatory or coding sequences (Makalowski, 2000). 
Different classes of regulatory regions in the human genome have 
been surveyed for the presence of TE-derived sequences (TES) 
to systematically assess the potential contribution of TEs to the 
regulation of human genes, and almost 25% of the analyzed pro-
moter regions have been found to contain TES (Jordan et al., 2003; 
Feschotte, 2008; Bourque, 2009). In addition, numerous examples 
where experimentally characterized cis-regulatory elements are 
derived from TE sequences have been identified (Jordan et al., 
2003; Bourque et al., 2008; Faulkner et al., 2009). Thus, thousands 
of human (and other mammalian) genes appear to be regulated, 
at least in part, by sequences derived from TEs (Jordan et  al., 
2003; Feschotte, 2008; Bourque, 2009). The TES are likely to have 
substantially contributed to evolutionary change in both gene 
specific and global patterns of mammalian protein-coding gene 
regulation (Makalowski, 2000; Jordan et al., 2003).

In light of the regulatory and structural effects that some TEs 
exert on host protein-coding and lncRNA genes (Makalowski, 
2000; Jordan et al., 2003; Elisaphenko et al., 2008; Mattick et al., 
2010; Wang et al., 2011; Kapusta et al., 2013; Johnson and Guigo, 
2014), we sought to examine the contribution and conservation of 
TES to regulatory regions, exons and introns of human and mouse 
lincRNA genes. We found that introns of lincRNA genes contain 
the highest fraction of TES, followed by exons. The promoters of 
the lincRNAs contain the lowest fraction of TES but the largest 
fraction of ancient TES that are conserved between primates and 
rodents. The content of TES in lincRNA genes is substantially 
greater than in protein-coding genes, particularly in exons and 
promoter regions. These results are compatible with the view 
that TEs are major contributors to the origin and evolution of 
lincRNAs. We further sought to assess the potential utility of TES 
as an “evolutionary variable” by analyzing the correlations between 
the TES content, lincRNA expression, and sequence conservation.

Materials and Methods

Human and mouse lincRNA genes, the corresponding genomic 
alignments and expression data were taken from our previous work 
(Managadze et al., 2011) where the procedures of data processing 
are described in full details. Briefly, complete mouse and human 
probe sets were downloaded from the NRED database (Dinger 
et  al., 2009) in the tab delimited and browser extensible data 
(BED, containing genomic coordinates) formats. The probe sets 
from platform GNF Atlas 2 (Mouse and Human), with the target 
classification “Non-coding Only,” were used for further analysis. 
This protocol yielded 917 human and 5444 mouse probe sets. Only 
the probe sets that mapped to intergenic regions of the human and 
mouse genomes (i.e., between two adjacent protein-coding genes) 
were used for further analysis. The resulting list of lincRNAs was 
further filtered: sequences shorter than 200 nt were removed. This 
procedure yielded the final set of NCBI GenBank Accession IDs 

of 2390 mouse and 589 human lincRNAs and their corresponding 
microarray expression probe sets. The genomic coordinates and 
sequences of exons and introns of lincRNA and protein-coding 
genes were downloaded from the UCSC Table Browser (Karolchik 
et al., 2004), specifically, from “all_mrna” tables of mouse mm8 
and human hg18 assemblies. Multiple alignments of these regions 
were fetched from Galaxy (Goecks et al., 2010). For the detection 
of TES, lincRNA and protein-coding genes were analyzed using 
RepeatMasker version open-3.1.31 with the following parameters: 
-w -s -no_is -cutoff 255 -frag 20000 -gff -species mouse/human. 
A TE insert was considered ancient if the pairwise alignment 
between human and mouse orthologous TE sequences was longer 
than 100 bp and contained <5% insertions/deletions (stringent 
definition) or 25% insertions/deletions (relaxed definition). 
Microarray data for normal (non-cancerous) tissues (73 human 
and 61 mouse tissues) were used to analyze the lincRNA expres-
sion. Log2-normalized median values of expression for each 
probe set across the tissues were calculated (Managadze et  al., 
2011). As an alternative method of measuring expression levels, 
the mouse RNA-seq data for eight tissues (the ENCODE project; 
modENCODE Consortium) were downloaded from the UCSC 
genome browser Web site2 and pooled together. The RPKM value 
was calculated for each mouse lincRNA (Managadze et al., 2011). 
Pairwise evolutionary distances for human–macaque and mouse–
rat lincRNA alignments were calculated using the DNADIST 
program from the PHYLIP package (Felsenstein, 1996), with the 
Kimura nucleotide substitution model. The lists of lincRNA genes 
and expression data are available at ftp://ftp.ncbi.nlm.nih.gov/pub/
managdav/paper_suppl/TEs_lincRNA/.

One of the problems in the analysis of lincRNAs is that there is 
little overlap between lincRNA sets produced in different studies 
(Ulitsky et al., 2011; Chew et al., 2013; Managadze et al., 2013; Schuler 
et al., 2014). We used human and mouse datasets because these 
curated lincRNA sets have known evolutionary and gene expression 
properties (Managadze et al., 2011, 2013). Another reason for this 
choice is that we sought to analyze lincRNA datasets as different as 
possible from those used in previous studies (Kapusta et al., 2013; 
Johnson and Guigo, 2014) and to check how small sample size of 
human lincRNA set influences results. As shown below, the sample 
size does not perceptibly affect the conclusions of this study.

results

Transposable elements in human and Mouse 
lincrna genes
Transposable element-derived sequences (TES for short) com-
prise at least half of the mammalian genomes, and in particular, 
are found in most lincRNAs. We identified TES in 69% of the 
human lincRNAs and 51% of the mouse lincRNAs. These values 
are somewhat lower than the previously reported 83% of TES 
in human lincRNAs (Kelley and Rinn, 2012) but nevertheless 
clearly show the importance of TE for lincRNA evolution. The 

1 http://www.repeatmasker.org
2 http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/
wgEncodeLicrRnaSeq/
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Figure 2 | correlation between the fraction (proportion) of Tes in 
concatenated exons and evolutionary rate for human (a) and mouse 
(B) lincrnas. Pearson correlation coefficient is 0.183 for human and 0.337 
for mouse (P < 10−5 for both comparisons).
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distribution of TES in 5′ flanking regions (putative core promoter 
regions), lincRNA exons, and introns is shown in the Figure 1. The 
lowest fraction of TES was found in the predicted core promoter 
regions (100 bp upstream regions), and the highest fraction of 
TES was observed in introns, whereas exonic sequences showed 
intermediate densities of TES (Figure 1A). This distribution of 
TES is compatible with the previously described general tendency 
of TES avoidance in functionally important regions of protein-
coding genes (Jordan et al., 2003). In particular, similar to the 
protein-coding genes, the TES density in extended promoter 
regions has been found to be significantly greater than that in 
core promoter regions (Jordan et al., 2003). Notably, the frac-
tions of TES in introns of lincRNAs and protein-coding genes 
are nearly identical, suggestive of comparable (weak) functional 
constraints. By contrast, in the exons and the core promoter 
regions of lincRNA genes, the fractions of TES are substantially 
and statistically significantly (P < 10−5 according to the Fisher 
exact test) higher than in the respective regions of protein-coding 
genes (compare Figures 1A,B). These findings are consistent with 
the results of a previous study that employed different datasets of 
lincRNA genes (Kapusta et al., 2013), indicating that the distribu-
tion of TES in lincRNA genes is a robust feature. A more detailed 
analysis of the distribution of TES across lincRNAs is shown 
in Figure S1 in Supplementary Material. The most prominent 

Figure 1 | Fractions (proportions) of lincrna gene regions 
(concatenated promoters, exons, and introns) (a) and protein-coding 
gene regions (B) occupied by Te-derived sequences. The differences 
for pairwise comparisons “promoters vs. introns” and “exons vs. introns” are 
statistically significant for both classes of genes (P < 10−5 according to the 
Fisher exact test; the raw counts of nucleotides in TES vs. the raw counts of 
nucleotides in TE-free regions was used as the input for 2 × 2 contingency 
tables).

feature of this distribution is the high fraction of lincRNAs 
with a low TES content: in 66% of human lincRNAs and 78% 
of mouse lincRNAs, the fraction of TES is <20% (Figure S1 in 
Supplementary Material).

The avoidance of TES in lincRNAs is consistent with purifying 
selection, which is an important feature of lincRNA evolution 
(Ponjavic et  al., 2007; Managadze et  al., 2011). The significant 
positive correlation between the evolutionary rate and the content 
of TES was observed for both human and mouse lincRNA sets (for 
human and mouse, respectively, the Pearson correlation coefficient 
are 0.183 and 0.337, P < 10−5 for both comparisons) (Figure 2). 
We also tested the correlation between the expression level and the 
content of TES (Figure S2 in Supplementary Material). In many 
independent previous studies, it has been shown that protein-
coding genes that are highly expressed in many tissues typically 
evolve slower than genes with lower expression level and breadth 
(Duret and Mouchiroud, 2000; Krylov et al., 2003; Drummond 
and Wilke, 2008), and a similar dependence has been observed 
for lincRNA genes (Managadze et al., 2011). Consistent with these 
observations, here we found a significant negative correlation 
between the content of TES and the expression level of lincRNAs 
(Figure S2 in Supplementary Material; for mouse RNA-seq data, 
Pearson correlation coefficient is −0.158, P  <  10−5; for mouse 
microarray data, Pearson correlation coefficient is −0.07, P < 10−5; 
for human microarray data, Pearson correlation coefficient is 
−0.253, P < 10−5).

Different classes of Transposable elements in 
lincrna genes
Analysis of different classes of TEs indicates that the fractions of 
each class are similar for introns of lincRNA and protein-coding 
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Figure 3 | Fractions (proportions) of human lincrna gene regions 
(concatenated promoters, exons, and introns) and the whole genome 
sequence (a) and protein-coding gene regions (B) occupied by 
sequences derived from different types of Tes. Differences for pairwise 

comparisons “SINEs vs. LINEs” and “LTRs vs. LINEs” are statistically significant 
for both classes of genes (P < 10−5 according to the Fisher exact test; the raw 
counts of nucleotides in TES vs. the raw counts of nucleotides in TE-free 
regions was used as the input for 2 × 2 contingency tables).
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genes and whole genomes (Figures 3 and 4). In each case, the 
fraction of LINEs is substantially greater than those of SINEs and 
LTR elements (Figures 3A and 4A). However, there is a significant 
suppression of LINEs in exonic and promoter regions, in both 
human and mouse (Figures 3A and 4A). This effect cannot be 
explained by fluctuations of the base composition in different gene 
regions because there are no significant compositional differences 
between exons, introns, and promoter regions for human and 
mouse lincRNA genes (results not shown). The same trend was 
observed for different lincRNA sets (Kapusta et al., 2013) suggest-
ing that re-distribution of TEs is a general property of mammalian 
lincRNA genes. Furthermore, similar tendency is observed in 
promoter sequences of protein-coding genes (Figures 3B and 4B), 
the overall lower abundance of TEs notwithstanding. Conceivably, 
when the smaller SINEs are inserted into functionally important 
parts of genes, they typically exert a milder deleterious effect than 
the larger LINEs and LTR elements and accordingly, are more often 
fixed in the course of evolution.

higher Frequency of ancient Transposable 
element-Derived sequences in Promoters and 
exons compared to introns
Evolutionary conservation of TEs is likely to reflect molecular 
domestication of the respective elements (Jordan et  al., 2003; 
Feschotte, 2008; Jurka, 2008; Bourque, 2009; Sinzelle et al., 2009). 
We analyzed the fraction of ancient mobile elements in differ-
ent regions of lincRNA genes (Figure 5). A significantly higher 

abundance of ancient TEs (P < 10−5 according to the Fisher exact 
test) was detected in exons and especially in promoter regions 
compared to introns (Figure 5). This finding is consistent with the 
hypothesis that TEs, in some cases, may perform novel functions 
in the host organisms (Makalowski, 2000; Jordan et al., 2003). The 
excess of ancient TEs was more pronounced in human compared 
to mouse lincRNA genes (Figure 5), possibly reflecting differences 
in evolutionary processes in rodents and primates although a 
bias caused by technical problems with the detection of 5′-ends 
of human lincRNA sequences cannot be ruled out (Kutter et al., 
2012). We searched the putative promoter regions of lincRNA 
genes for the presence of TATA boxes and found a substantially 
elevated frequency of TATA-like sequences in the region −25 
to −35 (Figure S3 in Supplementary Material). Given that a 
similar distribution is observed in many well-annotated human 
protein-coding genes (Yang et  al., 2007), these observations 
suggest acceptable accuracy of 5′-end identification in lincRNA 
genes. The fractions of TATA-containing promoters are similar 
for protein-coding genes (10–25%) (Yang et al., 2007; Anish et al., 
2009) and the analyzed sets of lincRNA genes (19–30%; Table S1 
in Supplementary Material). The higher frequency of ancient TEs 
in promoters and exons compared to introns (Figure 5; Table 
S2 in Supplementary Material) suggests that many lincRNA 
genes emerged before the split of primates and rodents, and that 
TEs contributed to the origin of these ancient lincRNAs. This 
finding is consistent with recent observations that 60–70% of 
the lincRNAs genes are conserved between human and mouse 
(Kutter et al., 2012; Managadze et al., 2013), and with the observed 
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Figure 5 | ancient transposable elements (Tes) in putative promoter 
regions, exons, and introns of lincrna genes. A TE was considered 
ancient if the alignment between human–mouse orthologous TE sequences 
was longer than 100 bp and contained <5% insertions/deletions (the 
stringent threshold). “% TEs” stands for the fraction (proportion) of ancient 
TEs. Results for the relaxed threshold (the alignment between human–mouse 
orthologous TE sequences was longer than 100 bp and contained no more 
than 25% insertions/deletions) are shown in the Table S2 in Supplementary 
Material. Differences between pairwise comparisons “promoters vs. introns” 
and “exons vs. introns” are statistically significant (P < 10−5 according to the 
Fisher exact test; the raw counts of ancient TES vs. the raw counts of 
lineage-specific TES was used as the input for 2 × 2 contingency tables).
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Figure 4 | Fractions (proportions) of mouse lincrna gene regions 
(concatenated promoters, exons, and introns) and the whole genome 
sequence [the data for the whole genome sequence were from 
Waterston et al. (2002)] (a) and protein-coding gene regions (B) 
occupied by sequences derived from different types of Tes. Differences 

for pairwise comparisons “SINEs vs. LINEs” and “LTRs vs. LINEs” are 
statistically significant for both classes of genes (P < 10−5 according to the 
Fisher exact test; the raw counts of nucleotides in TES vs. the raw counts of 
nucleotides in TE-free regions was used as the input for 2 × 2 contingency 
tables).

higher conservation of lincRNA promoter regions compared to 
exons (Elisaphenko et  al., 2008; Kapusta et  al., 2013; Johnson 
and Guigo, 2014).

Discussion

The staggering evolutionary success of TEs in eukaryotes is often 
attributed to their ability to out replicate the host genomes in 
which they reside, as opposed to any selective advantage that 
they might provide to their hosts. Indeed, it has been shown that 
TEs can spread within and among genomes even in the face of a 
selective cost to the host (Hickey, 1982). Hence, the selfish DNA 
concept of TEs focuses on the parasitic nature of these elements 
and emphasizes the deleterious effects of transposition as well as 
the negligible evolutionary benefit that TEs provide to their hosts 
(Orgel et al., 1980; Gould and Vrba, 1982). However, the sheer 
abundance of TEs in the genome, as well as the variety of muta-
tion effects induced by their mobility, suggest that they might, in 
some cases, be exapted (Gould and Vrba, 1982) or domesticated 
(Miller et al., 1999), to serve the evolutionary interests of the host 
(Makalowski, 2000; Jordan et  al., 2003). Indeed, multiple lines 
of evidence indicate that the presence of TEs can result in host 
adaptation by shaping and reshaping the genome in many different 
ways (Smit, 1996; Makalowski, 2000; Rogozin et al., 2000; Kidwell 
and Lisch, 2001; Deininger and Batzer, 2002; Jordan et al., 2003).

The TEs comprise at least half of the mammalian genomes, and 
in particular, are found in most lincRNAs [this study and Kelley 
and Rinn (2012)]. Here, we demonstrate that TEs substantially 
contribute to the evolution of lincRNAs and their promoter regions. 
Although the densities of TES in these regions are much lower than 
those in introns, ostensibly, due to the purifying selection that 
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affects functional regions, the contributions of TEs to the evolu-
tion of these regions is substantially greater than in the respective 
regions of protein-coding genes. The higher density of TES in the 
exons of lincRNAs compared to protein-coding exons appears to 
reflect the much lower level of functional constraint characteristic 
of the former (Ponjavic et al., 2007; Managadze et al., 2011). The 
promoters of lincRNA appear to similarly enjoy greater plasticity 
and flexibility compared to the promoters of protein-coding genes.

Thus, TE insertion is an important factor that affects lincRNA 
evolution and biological function. An analysis of TEs in human 
lincRNAs revealed that the TES composition in lincRNA genes 
significantly differs from genomic averages: LINEs and SINEs are 
depleted whereas LTR retrotransposons are enriched (Kelley and 
Rinn, 2012). The TES occur in biased positions and orientations 
at lincRNA transcription start sites suggesting a functional role 
in lincRNA transcriptional regulation (Kelley and Rinn, 2012). In 
many cases, lincRNAs devoid of TES are expressed at higher levels 
than lincRNAs containing TES in all tested tissues and cell lines 
(Kelley and Rinn, 2012). Thus, it has been suggested that TES divide 
lincRNAs into classes and have contributed to lincRNA evolution 
and function by conferring tissue-specific expression from extant 
transcriptional regulatory signals (Kelley and Rinn, 2012). Here, 
we add another facet to these observations by showing that the 
promoter regions of lincRNAs are specifically enriched for ancient 
TES. This finding indicates that not only have many lincRNA genes 
evolved before the radiation of primates and rodents but also that 
at least some features of their regulation were already established 
at that time through TE insertion.

The possibility that some lincRNA genes encode short peptides 
that are translated, perhaps in a tissue-specific manner, is the 
subject of an ongoing debate (Brosius and Tiedge, 2004; Mattick 
and Makunin, 2006; Dinger et al., 2008; Makalowska et al., 2010; 
Carvunis et al., 2012; Chew et al., 2013). It is extremely hard to 
rule out such a role for a fraction of purported lincRNAs. A recent 
peptidomics study demonstrated that most annotated lincRNAs 
do not generate stable protein (peptide) products (Banfai et al., 
2012). Furthermore, ribosomal profiling of lincRNAs suggests that 
ribosomal engagement with lincRNAs is likely to be regulatory 
(Chew et al., 2013). The presence of ORFs in the analyzed lincRNA 
data sets had been analyzed before using different approaches 
(Managadze et  al., 2011, 2013). Importantly, removal of ORF-
containing lincRNAs did not affect the conclusions of both studies 
(Managadze et al., 2011, 2013). The much higher abundance of 
TES in lincRNA compared to 5′UTR and protein-coding regions 
of mRNAs is consistent with the low frequency of protein-coding 
regions in the analyzed data sets.

It has been proposed that lncRNAs are organized into 
combinations of discrete functional domains, but the nature of 
these domains and their identification remain elusive (Guttman 
and Rinn, 2012). Insertion of TEs and exaptation of TES could 
represent an important route of evolution of the domain struc-
ture of lncRNAs. More specifically, Johnson and Guigo (2014) 
have proposed that exonic TES comprise functional domains of 
lncRNAs that they dubbed repeat insertion domains of LncRNAs 
(RIDLs). A growing number of RIDLs have been experimentally 
identified whereby lncRNA TES function as RNA-, DNA-, and 
protein-binding domains/motifs (Elisaphenko et al., 2008; Kelley 

and Rinn, 2012; Grote and Herrmann, 2013; Holdt et al., 2013; 
Johnson and Guigo, 2014). These examples are likely to reflect a 
more general phenomenon of exaptation and/or domestication 
during lncRNA evolution whereby TES are employed as DNA-, 
RNA-, and protein-binding domain/motifs (Johnson and Guigo, 
2014). The RIDL hypothesis has the potential to explain how 
functional evolution can keep pace with the fast evolution observed 
in many lncRNA genes (Johnson and Guigo, 2014). The findings 
on the distribution of TES across different regions of lincRNA 
genes, the higher occurrence of TES in lincRNA promoters and 
exons compared to introns, and significant correlations between 
the content of TES and evolutionary rate presented here appear to 
be compatible with the RIDL hypothesis. More specifically, even 
if a substantial fraction of TES are not fixed in lincRNA exons 
and promoter regions, those TES that are fixed tend to persist in 
the genome longer than intronic TES. Moreover, given the near 
ubiquity of recognizable TES in lincRNA genes, TE mapping can 
be a useful approach for characterization of lincRNAs and possibly 
even prediction of their functions. The correlations between the 
content of TES and various features of lincRNA genes described 
here could be useful for the characterization of lincRNA functions.

conclusion

The results of the present analysis, along with several previous 
studies, indicate that TEs have contributed to the evolution of 
many if not most mammalian lincRNAs. Whereas the density 
of TES in the introns of lincRNA genes is about the same as in 
introns of protein-coding genes exons, and promoters of lincRNAs 
are markedly enriched in TES compared to the counterparts in 
protein-coding genes. This high prevalence of TES reflects the 
relatively weak evolutionary constraints on lincRNA genes and 
itself appears to contribute to the plasticity and functional diver-
sification of lincRNAs. Furthermore, the distribution of TE types 
in the functional regions of lincRNA genes significantly differs 
from that in introns (or whole genomes), conceivably, because 
the smaller SINEs that encode no proteins are more suitable for 
exaptation than the larger, protein-coding LINEs. The prodigious 
exaptation of TE could account, at least in part, for the functional-
ity of many lincRNAs despite their rapid evolution.
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